searching the database
Your data matches 28 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000002
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000002: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000002: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
 => [1] => 0
[[1,2]]
 => [1,2] => 0
[[1],[2]]
 => [2,1] => 0
[[1,2,3]]
 => [1,2,3] => 1
[[1,3],[2]]
 => [2,1,3] => 0
[[1,2],[3]]
 => [3,1,2] => 0
[[1],[2],[3]]
 => [3,2,1] => 0
[[1,2,3,4]]
 => [1,2,3,4] => 4
[[1,3,4],[2]]
 => [2,1,3,4] => 2
[[1,2,4],[3]]
 => [3,1,2,4] => 1
[[1,2,3],[4]]
 => [4,1,2,3] => 1
[[1,3],[2,4]]
 => [2,4,1,3] => 0
[[1,2],[3,4]]
 => [3,4,1,2] => 0
[[1,4],[2],[3]]
 => [3,2,1,4] => 0
[[1,3],[2],[4]]
 => [4,2,1,3] => 0
[[1,2],[3],[4]]
 => [4,3,1,2] => 0
[[1],[2],[3],[4]]
 => [4,3,2,1] => 0
[[1,2,3,4,5]]
 => [1,2,3,4,5] => 10
[[1,3,4,5],[2]]
 => [2,1,3,4,5] => 7
[[1,2,4,5],[3]]
 => [3,1,2,4,5] => 5
[[1,2,3,5],[4]]
 => [4,1,2,3,5] => 4
[[1,2,3,4],[5]]
 => [5,1,2,3,4] => 4
[[1,3,5],[2,4]]
 => [2,4,1,3,5] => 3
[[1,2,5],[3,4]]
 => [3,4,1,2,5] => 2
[[1,3,4],[2,5]]
 => [2,5,1,3,4] => 2
[[1,2,4],[3,5]]
 => [3,5,1,2,4] => 1
[[1,2,3],[4,5]]
 => [4,5,1,2,3] => 1
[[1,4,5],[2],[3]]
 => [3,2,1,4,5] => 3
[[1,3,5],[2],[4]]
 => [4,2,1,3,5] => 2
[[1,2,5],[3],[4]]
 => [4,3,1,2,5] => 1
[[1,3,4],[2],[5]]
 => [5,2,1,3,4] => 2
[[1,2,4],[3],[5]]
 => [5,3,1,2,4] => 1
[[1,2,3],[4],[5]]
 => [5,4,1,2,3] => 1
[[1,4],[2,5],[3]]
 => [3,2,5,1,4] => 0
[[1,3],[2,5],[4]]
 => [4,2,5,1,3] => 0
[[1,2],[3,5],[4]]
 => [4,3,5,1,2] => 0
[[1,3],[2,4],[5]]
 => [5,2,4,1,3] => 0
[[1,2],[3,4],[5]]
 => [5,3,4,1,2] => 0
[[1,5],[2],[3],[4]]
 => [4,3,2,1,5] => 0
[[1,4],[2],[3],[5]]
 => [5,3,2,1,4] => 0
[[1,3],[2],[4],[5]]
 => [5,4,2,1,3] => 0
[[1,2],[3],[4],[5]]
 => [5,4,3,1,2] => 0
[[1],[2],[3],[4],[5]]
 => [5,4,3,2,1] => 0
[[1,2,3,4,5,6]]
 => [1,2,3,4,5,6] => 20
[[1,3,4,5,6],[2]]
 => [2,1,3,4,5,6] => 16
[[1,2,4,5,6],[3]]
 => [3,1,2,4,5,6] => 13
[[1,2,3,5,6],[4]]
 => [4,1,2,3,5,6] => 11
[[1,2,3,4,6],[5]]
 => [5,1,2,3,4,6] => 10
[[1,2,3,4,5],[6]]
 => [6,1,2,3,4,5] => 10
[[1,3,5,6],[2,4]]
 => [2,4,1,3,5,6] => 10
Description
The number of occurrences of the pattern 123 in a permutation.
Matching statistic: St000119
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
St000119: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00069: Permutations —complement⟶ Permutations
St000119: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
 => [1] => [1] => 0
[[1,2]]
 => [1,2] => [2,1] => 0
[[1],[2]]
 => [2,1] => [1,2] => 0
[[1,2,3]]
 => [1,2,3] => [3,2,1] => 1
[[1,3],[2]]
 => [2,1,3] => [2,3,1] => 0
[[1,2],[3]]
 => [3,1,2] => [1,3,2] => 0
[[1],[2],[3]]
 => [3,2,1] => [1,2,3] => 0
[[1,2,3,4]]
 => [1,2,3,4] => [4,3,2,1] => 4
[[1,3,4],[2]]
 => [2,1,3,4] => [3,4,2,1] => 2
[[1,2,4],[3]]
 => [3,1,2,4] => [2,4,3,1] => 1
[[1,2,3],[4]]
 => [4,1,2,3] => [1,4,3,2] => 1
[[1,3],[2,4]]
 => [2,4,1,3] => [3,1,4,2] => 0
[[1,2],[3,4]]
 => [3,4,1,2] => [2,1,4,3] => 0
[[1,4],[2],[3]]
 => [3,2,1,4] => [2,3,4,1] => 0
[[1,3],[2],[4]]
 => [4,2,1,3] => [1,3,4,2] => 0
[[1,2],[3],[4]]
 => [4,3,1,2] => [1,2,4,3] => 0
[[1],[2],[3],[4]]
 => [4,3,2,1] => [1,2,3,4] => 0
[[1,2,3,4,5]]
 => [1,2,3,4,5] => [5,4,3,2,1] => 10
[[1,3,4,5],[2]]
 => [2,1,3,4,5] => [4,5,3,2,1] => 7
[[1,2,4,5],[3]]
 => [3,1,2,4,5] => [3,5,4,2,1] => 5
[[1,2,3,5],[4]]
 => [4,1,2,3,5] => [2,5,4,3,1] => 4
[[1,2,3,4],[5]]
 => [5,1,2,3,4] => [1,5,4,3,2] => 4
[[1,3,5],[2,4]]
 => [2,4,1,3,5] => [4,2,5,3,1] => 3
[[1,2,5],[3,4]]
 => [3,4,1,2,5] => [3,2,5,4,1] => 2
[[1,3,4],[2,5]]
 => [2,5,1,3,4] => [4,1,5,3,2] => 2
[[1,2,4],[3,5]]
 => [3,5,1,2,4] => [3,1,5,4,2] => 1
[[1,2,3],[4,5]]
 => [4,5,1,2,3] => [2,1,5,4,3] => 1
[[1,4,5],[2],[3]]
 => [3,2,1,4,5] => [3,4,5,2,1] => 3
[[1,3,5],[2],[4]]
 => [4,2,1,3,5] => [2,4,5,3,1] => 2
[[1,2,5],[3],[4]]
 => [4,3,1,2,5] => [2,3,5,4,1] => 1
[[1,3,4],[2],[5]]
 => [5,2,1,3,4] => [1,4,5,3,2] => 2
[[1,2,4],[3],[5]]
 => [5,3,1,2,4] => [1,3,5,4,2] => 1
[[1,2,3],[4],[5]]
 => [5,4,1,2,3] => [1,2,5,4,3] => 1
[[1,4],[2,5],[3]]
 => [3,2,5,1,4] => [3,4,1,5,2] => 0
[[1,3],[2,5],[4]]
 => [4,2,5,1,3] => [2,4,1,5,3] => 0
[[1,2],[3,5],[4]]
 => [4,3,5,1,2] => [2,3,1,5,4] => 0
[[1,3],[2,4],[5]]
 => [5,2,4,1,3] => [1,4,2,5,3] => 0
[[1,2],[3,4],[5]]
 => [5,3,4,1,2] => [1,3,2,5,4] => 0
[[1,5],[2],[3],[4]]
 => [4,3,2,1,5] => [2,3,4,5,1] => 0
[[1,4],[2],[3],[5]]
 => [5,3,2,1,4] => [1,3,4,5,2] => 0
[[1,3],[2],[4],[5]]
 => [5,4,2,1,3] => [1,2,4,5,3] => 0
[[1,2],[3],[4],[5]]
 => [5,4,3,1,2] => [1,2,3,5,4] => 0
[[1],[2],[3],[4],[5]]
 => [5,4,3,2,1] => [1,2,3,4,5] => 0
[[1,2,3,4,5,6]]
 => [1,2,3,4,5,6] => [6,5,4,3,2,1] => 20
[[1,3,4,5,6],[2]]
 => [2,1,3,4,5,6] => [5,6,4,3,2,1] => 16
[[1,2,4,5,6],[3]]
 => [3,1,2,4,5,6] => [4,6,5,3,2,1] => 13
[[1,2,3,5,6],[4]]
 => [4,1,2,3,5,6] => [3,6,5,4,2,1] => 11
[[1,2,3,4,6],[5]]
 => [5,1,2,3,4,6] => [2,6,5,4,3,1] => 10
[[1,2,3,4,5],[6]]
 => [6,1,2,3,4,5] => [1,6,5,4,3,2] => 10
[[1,3,5,6],[2,4]]
 => [2,4,1,3,5,6] => [5,3,6,4,2,1] => 10
Description
The number of occurrences of the pattern 321 in a permutation.
Matching statistic: St000095
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00064: Permutations —reverse⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000095: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00064: Permutations —reverse⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000095: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
 => [1] => [1] => ([],1)
 => 0
[[1,2]]
 => [1,2] => [2,1] => ([(0,1)],2)
 => 0
[[1],[2]]
 => [2,1] => [1,2] => ([],2)
 => 0
[[1,2,3]]
 => [1,2,3] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
 => 1
[[1,3],[2]]
 => [2,1,3] => [3,1,2] => ([(0,2),(1,2)],3)
 => 0
[[1,2],[3]]
 => [3,1,2] => [2,1,3] => ([(1,2)],3)
 => 0
[[1],[2],[3]]
 => [3,2,1] => [1,2,3] => ([],3)
 => 0
[[1,2,3,4]]
 => [1,2,3,4] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[[1,3,4],[2]]
 => [2,1,3,4] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 2
[[1,2,4],[3]]
 => [3,1,2,4] => [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => 1
[[1,2,3],[4]]
 => [4,1,2,3] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
 => 1
[[1,3],[2,4]]
 => [2,4,1,3] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
 => 0
[[1,2],[3,4]]
 => [3,4,1,2] => [2,1,4,3] => ([(0,3),(1,2)],4)
 => 0
[[1,4],[2],[3]]
 => [3,2,1,4] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
 => 0
[[1,3],[2],[4]]
 => [4,2,1,3] => [3,1,2,4] => ([(1,3),(2,3)],4)
 => 0
[[1,2],[3],[4]]
 => [4,3,1,2] => [2,1,3,4] => ([(2,3)],4)
 => 0
[[1],[2],[3],[4]]
 => [4,3,2,1] => [1,2,3,4] => ([],4)
 => 0
[[1,2,3,4,5]]
 => [1,2,3,4,5] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 10
[[1,3,4,5],[2]]
 => [2,1,3,4,5] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 7
[[1,2,4,5],[3]]
 => [3,1,2,4,5] => [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 5
[[1,2,3,5],[4]]
 => [4,1,2,3,5] => [5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
[[1,2,3,4],[5]]
 => [5,1,2,3,4] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
[[1,3,5],[2,4]]
 => [2,4,1,3,5] => [5,3,1,4,2] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[[1,2,5],[3,4]]
 => [3,4,1,2,5] => [5,2,1,4,3] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => 2
[[1,3,4],[2,5]]
 => [2,5,1,3,4] => [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
 => 2
[[1,2,4],[3,5]]
 => [3,5,1,2,4] => [4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => 1
[[1,2,3],[4,5]]
 => [4,5,1,2,3] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
 => 1
[[1,4,5],[2],[3]]
 => [3,2,1,4,5] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[[1,3,5],[2],[4]]
 => [4,2,1,3,5] => [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2
[[1,2,5],[3],[4]]
 => [4,3,1,2,5] => [5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => 1
[[1,3,4],[2],[5]]
 => [5,2,1,3,4] => [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2
[[1,2,4],[3],[5]]
 => [5,3,1,2,4] => [4,2,1,3,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => 1
[[1,2,3],[4],[5]]
 => [5,4,1,2,3] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
 => 1
[[1,4],[2,5],[3]]
 => [3,2,5,1,4] => [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => 0
[[1,3],[2,5],[4]]
 => [4,2,5,1,3] => [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
 => 0
[[1,2],[3,5],[4]]
 => [4,3,5,1,2] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
 => 0
[[1,3],[2,4],[5]]
 => [5,2,4,1,3] => [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
 => 0
[[1,2],[3,4],[5]]
 => [5,3,4,1,2] => [2,1,4,3,5] => ([(1,4),(2,3)],5)
 => 0
[[1,5],[2],[3],[4]]
 => [4,3,2,1,5] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 0
[[1,4],[2],[3],[5]]
 => [5,3,2,1,4] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
 => 0
[[1,3],[2],[4],[5]]
 => [5,4,2,1,3] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
 => 0
[[1,2],[3],[4],[5]]
 => [5,4,3,1,2] => [2,1,3,4,5] => ([(3,4)],5)
 => 0
[[1],[2],[3],[4],[5]]
 => [5,4,3,2,1] => [1,2,3,4,5] => ([],5)
 => 0
[[1,2,3,4,5,6]]
 => [1,2,3,4,5,6] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 20
[[1,3,4,5,6],[2]]
 => [2,1,3,4,5,6] => [6,5,4,3,1,2] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 16
[[1,2,4,5,6],[3]]
 => [3,1,2,4,5,6] => [6,5,4,2,1,3] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 13
[[1,2,3,5,6],[4]]
 => [4,1,2,3,5,6] => [6,5,3,2,1,4] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 11
[[1,2,3,4,6],[5]]
 => [5,1,2,3,4,6] => [6,4,3,2,1,5] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 10
[[1,2,3,4,5],[6]]
 => [6,1,2,3,4,5] => [5,4,3,2,1,6] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 10
[[1,3,5,6],[2,4]]
 => [2,4,1,3,5,6] => [6,5,3,1,4,2] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 10
Description
The number of triangles of a graph.
A triangle $T$ of a graph $G$ is a collection of three vertices $\{u,v,w\} \in G$ such that they form $K_3$, the complete graph on three vertices.
Matching statistic: St001328
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00064: Permutations —reverse⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001328: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00064: Permutations —reverse⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001328: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
 => [1] => [1] => ([],1)
 => 0
[[1,2]]
 => [1,2] => [2,1] => ([(0,1)],2)
 => 0
[[1],[2]]
 => [2,1] => [1,2] => ([],2)
 => 0
[[1,2,3]]
 => [1,2,3] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
 => 1
[[1,3],[2]]
 => [2,1,3] => [3,1,2] => ([(0,2),(1,2)],3)
 => 0
[[1,2],[3]]
 => [3,1,2] => [2,1,3] => ([(1,2)],3)
 => 0
[[1],[2],[3]]
 => [3,2,1] => [1,2,3] => ([],3)
 => 0
[[1,2,3,4]]
 => [1,2,3,4] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[[1,3,4],[2]]
 => [2,1,3,4] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 2
[[1,2,4],[3]]
 => [3,1,2,4] => [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => 1
[[1,2,3],[4]]
 => [4,1,2,3] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
 => 1
[[1,3],[2,4]]
 => [2,4,1,3] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
 => 0
[[1,2],[3,4]]
 => [3,4,1,2] => [2,1,4,3] => ([(0,3),(1,2)],4)
 => 0
[[1,4],[2],[3]]
 => [3,2,1,4] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
 => 0
[[1,3],[2],[4]]
 => [4,2,1,3] => [3,1,2,4] => ([(1,3),(2,3)],4)
 => 0
[[1,2],[3],[4]]
 => [4,3,1,2] => [2,1,3,4] => ([(2,3)],4)
 => 0
[[1],[2],[3],[4]]
 => [4,3,2,1] => [1,2,3,4] => ([],4)
 => 0
[[1,2,3,4,5]]
 => [1,2,3,4,5] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 10
[[1,3,4,5],[2]]
 => [2,1,3,4,5] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 7
[[1,2,4,5],[3]]
 => [3,1,2,4,5] => [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 5
[[1,2,3,5],[4]]
 => [4,1,2,3,5] => [5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
[[1,2,3,4],[5]]
 => [5,1,2,3,4] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
[[1,3,5],[2,4]]
 => [2,4,1,3,5] => [5,3,1,4,2] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[[1,2,5],[3,4]]
 => [3,4,1,2,5] => [5,2,1,4,3] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
 => 2
[[1,3,4],[2,5]]
 => [2,5,1,3,4] => [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
 => 2
[[1,2,4],[3,5]]
 => [3,5,1,2,4] => [4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => 1
[[1,2,3],[4,5]]
 => [4,5,1,2,3] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
 => 1
[[1,4,5],[2],[3]]
 => [3,2,1,4,5] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[[1,3,5],[2],[4]]
 => [4,2,1,3,5] => [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2
[[1,2,5],[3],[4]]
 => [4,3,1,2,5] => [5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => 1
[[1,3,4],[2],[5]]
 => [5,2,1,3,4] => [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2
[[1,2,4],[3],[5]]
 => [5,3,1,2,4] => [4,2,1,3,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => 1
[[1,2,3],[4],[5]]
 => [5,4,1,2,3] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
 => 1
[[1,4],[2,5],[3]]
 => [3,2,5,1,4] => [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => 0
[[1,3],[2,5],[4]]
 => [4,2,5,1,3] => [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
 => 0
[[1,2],[3,5],[4]]
 => [4,3,5,1,2] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
 => 0
[[1,3],[2,4],[5]]
 => [5,2,4,1,3] => [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
 => 0
[[1,2],[3,4],[5]]
 => [5,3,4,1,2] => [2,1,4,3,5] => ([(1,4),(2,3)],5)
 => 0
[[1,5],[2],[3],[4]]
 => [4,3,2,1,5] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 0
[[1,4],[2],[3],[5]]
 => [5,3,2,1,4] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
 => 0
[[1,3],[2],[4],[5]]
 => [5,4,2,1,3] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
 => 0
[[1,2],[3],[4],[5]]
 => [5,4,3,1,2] => [2,1,3,4,5] => ([(3,4)],5)
 => 0
[[1],[2],[3],[4],[5]]
 => [5,4,3,2,1] => [1,2,3,4,5] => ([],5)
 => 0
[[1,2,3,4,5,6]]
 => [1,2,3,4,5,6] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 20
[[1,3,4,5,6],[2]]
 => [2,1,3,4,5,6] => [6,5,4,3,1,2] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 16
[[1,2,4,5,6],[3]]
 => [3,1,2,4,5,6] => [6,5,4,2,1,3] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 13
[[1,2,3,5,6],[4]]
 => [4,1,2,3,5,6] => [6,5,3,2,1,4] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 11
[[1,2,3,4,6],[5]]
 => [5,1,2,3,4,6] => [6,4,3,2,1,5] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 10
[[1,2,3,4,5],[6]]
 => [6,1,2,3,4,5] => [5,4,3,2,1,6] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 10
[[1,3,5,6],[2,4]]
 => [2,4,1,3,5,6] => [6,5,3,1,4,2] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 10
Description
The minimal number of occurrences of the bipartite-pattern in a linear ordering of the vertices of the graph.
A graph is bipartite if and only if in any linear ordering of its vertices, there are no three vertices $a < b < c$ such that $(a,b)$ and $(b,c)$ are edges. This statistic is the minimal number of occurrences of this pattern, in the set of all linear orderings of the vertices.
Matching statistic: St001396
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001396: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00069: Permutations —complement⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001396: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
 => [1] => [1] => ([],1)
 => 0
[[1,2]]
 => [1,2] => [2,1] => ([],2)
 => 0
[[1],[2]]
 => [2,1] => [1,2] => ([(0,1)],2)
 => 0
[[1,2,3]]
 => [1,2,3] => [3,2,1] => ([],3)
 => 1
[[1,3],[2]]
 => [2,1,3] => [2,3,1] => ([(1,2)],3)
 => 0
[[1,2],[3]]
 => [3,1,2] => [1,3,2] => ([(0,1),(0,2)],3)
 => 0
[[1],[2],[3]]
 => [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
 => 0
[[1,2,3,4]]
 => [1,2,3,4] => [4,3,2,1] => ([],4)
 => 4
[[1,3,4],[2]]
 => [2,1,3,4] => [3,4,2,1] => ([(2,3)],4)
 => 2
[[1,2,4],[3]]
 => [3,1,2,4] => [2,4,3,1] => ([(1,2),(1,3)],4)
 => 1
[[1,2,3],[4]]
 => [4,1,2,3] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
 => 1
[[1,3],[2,4]]
 => [2,4,1,3] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
 => 0
[[1,2],[3,4]]
 => [3,4,1,2] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
 => 0
[[1,4],[2],[3]]
 => [3,2,1,4] => [2,3,4,1] => ([(1,2),(2,3)],4)
 => 0
[[1,3],[2],[4]]
 => [4,2,1,3] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
 => 0
[[1,2],[3],[4]]
 => [4,3,1,2] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
 => 0
[[1],[2],[3],[4]]
 => [4,3,2,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
 => 0
[[1,2,3,4,5]]
 => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
 => 10
[[1,3,4,5],[2]]
 => [2,1,3,4,5] => [4,5,3,2,1] => ([(3,4)],5)
 => 7
[[1,2,4,5],[3]]
 => [3,1,2,4,5] => [3,5,4,2,1] => ([(2,3),(2,4)],5)
 => 5
[[1,2,3,5],[4]]
 => [4,1,2,3,5] => [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
 => 4
[[1,2,3,4],[5]]
 => [5,1,2,3,4] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
 => 4
[[1,3,5],[2,4]]
 => [2,4,1,3,5] => [4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
 => 3
[[1,2,5],[3,4]]
 => [3,4,1,2,5] => [3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
 => 2
[[1,3,4],[2,5]]
 => [2,5,1,3,4] => [4,1,5,3,2] => ([(0,4),(1,2),(1,3),(1,4)],5)
 => 2
[[1,2,4],[3,5]]
 => [3,5,1,2,4] => [3,1,5,4,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
 => 1
[[1,2,3],[4,5]]
 => [4,5,1,2,3] => [2,1,5,4,3] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
 => 1
[[1,4,5],[2],[3]]
 => [3,2,1,4,5] => [3,4,5,2,1] => ([(2,3),(3,4)],5)
 => 3
[[1,3,5],[2],[4]]
 => [4,2,1,3,5] => [2,4,5,3,1] => ([(1,3),(1,4),(4,2)],5)
 => 2
[[1,2,5],[3],[4]]
 => [4,3,1,2,5] => [2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
 => 1
[[1,3,4],[2],[5]]
 => [5,2,1,3,4] => [1,4,5,3,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
 => 2
[[1,2,4],[3],[5]]
 => [5,3,1,2,4] => [1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
 => 1
[[1,2,3],[4],[5]]
 => [5,4,1,2,3] => [1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
 => 1
[[1,4],[2,5],[3]]
 => [3,2,5,1,4] => [3,4,1,5,2] => ([(0,3),(1,2),(1,4),(3,4)],5)
 => 0
[[1,3],[2,5],[4]]
 => [4,2,5,1,3] => [2,4,1,5,3] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
 => 0
[[1,2],[3,5],[4]]
 => [4,3,5,1,2] => [2,3,1,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
 => 0
[[1,3],[2,4],[5]]
 => [5,2,4,1,3] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
 => 0
[[1,2],[3,4],[5]]
 => [5,3,4,1,2] => [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
 => 0
[[1,5],[2],[3],[4]]
 => [4,3,2,1,5] => [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
 => 0
[[1,4],[2],[3],[5]]
 => [5,3,2,1,4] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
 => 0
[[1,3],[2],[4],[5]]
 => [5,4,2,1,3] => [1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
 => 0
[[1,2],[3],[4],[5]]
 => [5,4,3,1,2] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
 => 0
[[1],[2],[3],[4],[5]]
 => [5,4,3,2,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
 => 0
[[1,2,3,4,5,6]]
 => [1,2,3,4,5,6] => [6,5,4,3,2,1] => ([],6)
 => 20
[[1,3,4,5,6],[2]]
 => [2,1,3,4,5,6] => [5,6,4,3,2,1] => ([(4,5)],6)
 => 16
[[1,2,4,5,6],[3]]
 => [3,1,2,4,5,6] => [4,6,5,3,2,1] => ([(3,4),(3,5)],6)
 => 13
[[1,2,3,5,6],[4]]
 => [4,1,2,3,5,6] => [3,6,5,4,2,1] => ([(2,3),(2,4),(2,5)],6)
 => 11
[[1,2,3,4,6],[5]]
 => [5,1,2,3,4,6] => [2,6,5,4,3,1] => ([(1,2),(1,3),(1,4),(1,5)],6)
 => 10
[[1,2,3,4,5],[6]]
 => [6,1,2,3,4,5] => [1,6,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5)],6)
 => 10
[[1,3,5,6],[2,4]]
 => [2,4,1,3,5,6] => [5,3,6,4,2,1] => ([(2,5),(3,4),(3,5)],6)
 => 10
Description
Number of triples of incomparable elements in a finite poset.
For a finite poset this is the number of 3-element sets $S \in \binom{P}{3}$ that are pairwise incomparable.
Matching statistic: St001651
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001651: Lattices ⟶ ℤResult quality: 43% ●values known / values provided: 63%●distinct values known / distinct values provided: 43%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001651: Lattices ⟶ ℤResult quality: 43% ●values known / values provided: 63%●distinct values known / distinct values provided: 43%
Values
[[1]]
 => [1] => ([],1)
 => ([],1)
 => ? = 0
[[1,2]]
 => [1,2] => ([(0,1)],2)
 => ([(0,1)],2)
 => 0
[[1],[2]]
 => [2,1] => ([],2)
 => ([],1)
 => ? = 0
[[1,2,3]]
 => [1,2,3] => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => 1
[[1,3],[2]]
 => [2,1,3] => ([(0,2),(1,2)],3)
 => ([],1)
 => ? ∊ {0,0}
[[1,2],[3]]
 => [3,1,2] => ([(1,2)],3)
 => ([(0,1)],2)
 => 0
[[1],[2],[3]]
 => [3,2,1] => ([],3)
 => ([],1)
 => ? ∊ {0,0}
[[1,2,3,4]]
 => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => 2
[[1,3,4],[2]]
 => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
 => ([],1)
 => ? ∊ {0,0,0,4}
[[1,2,4],[3]]
 => [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
 => ([(0,1)],2)
 => 0
[[1,2,3],[4]]
 => [4,1,2,3] => ([(1,2),(2,3)],4)
 => ([(0,2),(2,1)],3)
 => 1
[[1,3],[2,4]]
 => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
 => ([(0,2),(2,1)],3)
 => 1
[[1,2],[3,4]]
 => [3,4,1,2] => ([(0,3),(1,2)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 0
[[1,4],[2],[3]]
 => [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
 => ([],1)
 => ? ∊ {0,0,0,4}
[[1,3],[2],[4]]
 => [4,2,1,3] => ([(1,3),(2,3)],4)
 => ([],1)
 => ? ∊ {0,0,0,4}
[[1,2],[3],[4]]
 => [4,3,1,2] => ([(2,3)],4)
 => ([(0,1)],2)
 => 0
[[1],[2],[3],[4]]
 => [4,3,2,1] => ([],4)
 => ([],1)
 => ? ∊ {0,0,0,4}
[[1,2,3,4,5]]
 => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => 3
[[1,3,4,5],[2]]
 => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
 => ([],1)
 => ? ∊ {0,0,0,1,2,4,4,5,7,10}
[[1,2,4,5],[3]]
 => [3,1,2,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
 => ([(0,1)],2)
 => 0
[[1,2,3,5],[4]]
 => [4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
 => ([(0,2),(2,1)],3)
 => 1
[[1,2,3,4],[5]]
 => [5,1,2,3,4] => ([(1,4),(3,2),(4,3)],5)
 => ([(0,3),(2,1),(3,2)],4)
 => 2
[[1,3,5],[2,4]]
 => [2,4,1,3,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
 => ([(0,2),(2,1)],3)
 => 1
[[1,2,5],[3,4]]
 => [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 0
[[1,3,4],[2,5]]
 => [2,5,1,3,4] => ([(0,4),(1,2),(1,4),(4,3)],5)
 => ([(0,3),(2,1),(3,2)],4)
 => 2
[[1,2,4],[3,5]]
 => [3,5,1,2,4] => ([(0,3),(1,2),(1,4),(3,4)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => 3
[[1,2,3],[4,5]]
 => [4,5,1,2,3] => ([(0,3),(1,4),(4,2)],5)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => 2
[[1,4,5],[2],[3]]
 => [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
 => ([],1)
 => ? ∊ {0,0,0,1,2,4,4,5,7,10}
[[1,3,5],[2],[4]]
 => [4,2,1,3,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
 => ([],1)
 => ? ∊ {0,0,0,1,2,4,4,5,7,10}
[[1,2,5],[3],[4]]
 => [4,3,1,2,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
 => ([(0,1)],2)
 => 0
[[1,3,4],[2],[5]]
 => [5,2,1,3,4] => ([(1,4),(2,4),(4,3)],5)
 => ([],1)
 => ? ∊ {0,0,0,1,2,4,4,5,7,10}
[[1,2,4],[3],[5]]
 => [5,3,1,2,4] => ([(1,4),(2,3),(3,4)],5)
 => ([(0,1)],2)
 => 0
[[1,2,3],[4],[5]]
 => [5,4,1,2,3] => ([(2,3),(3,4)],5)
 => ([(0,2),(2,1)],3)
 => 1
[[1,4],[2,5],[3]]
 => [3,2,5,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => ([],1)
 => ? ∊ {0,0,0,1,2,4,4,5,7,10}
[[1,3],[2,5],[4]]
 => [4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
 => ([],1)
 => ? ∊ {0,0,0,1,2,4,4,5,7,10}
[[1,2],[3,5],[4]]
 => [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
 => ([(0,1)],2)
 => 0
[[1,3],[2,4],[5]]
 => [5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
 => ([(0,2),(2,1)],3)
 => 1
[[1,2],[3,4],[5]]
 => [5,3,4,1,2] => ([(1,4),(2,3)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 0
[[1,5],[2],[3],[4]]
 => [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => ([],1)
 => ? ∊ {0,0,0,1,2,4,4,5,7,10}
[[1,4],[2],[3],[5]]
 => [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
 => ([],1)
 => ? ∊ {0,0,0,1,2,4,4,5,7,10}
[[1,3],[2],[4],[5]]
 => [5,4,2,1,3] => ([(2,4),(3,4)],5)
 => ([],1)
 => ? ∊ {0,0,0,1,2,4,4,5,7,10}
[[1,2],[3],[4],[5]]
 => [5,4,3,1,2] => ([(3,4)],5)
 => ([(0,1)],2)
 => 0
[[1],[2],[3],[4],[5]]
 => [5,4,3,2,1] => ([],5)
 => ([],1)
 => ? ∊ {0,0,0,1,2,4,4,5,7,10}
[[1,2,3,4,5,6]]
 => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => 4
[[1,3,4,5,6],[2]]
 => [2,1,3,4,5,6] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
 => ([],1)
 => ? ∊ {0,0,3,3,4,4,4,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,4,5,6],[3]]
 => [3,1,2,4,5,6] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
 => ([(0,1)],2)
 => 0
[[1,2,3,5,6],[4]]
 => [4,1,2,3,5,6] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
 => ([(0,2),(2,1)],3)
 => 1
[[1,2,3,4,6],[5]]
 => [5,1,2,3,4,6] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
 => ([(0,3),(2,1),(3,2)],4)
 => 2
[[1,2,3,4,5],[6]]
 => [6,1,2,3,4,5] => ([(1,5),(3,4),(4,2),(5,3)],6)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => 3
[[1,3,5,6],[2,4]]
 => [2,4,1,3,5,6] => ([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
 => ([(0,2),(2,1)],3)
 => 1
[[1,2,5,6],[3,4]]
 => [3,4,1,2,5,6] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 0
[[1,3,4,6],[2,5]]
 => [2,5,1,3,4,6] => ([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
 => ([(0,3),(2,1),(3,2)],4)
 => 2
[[1,2,4,6],[3,5]]
 => [3,5,1,2,4,6] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => 3
[[1,2,3,6],[4,5]]
 => [4,5,1,2,3,6] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => 2
[[1,3,4,5],[2,6]]
 => [2,6,1,3,4,5] => ([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => 3
[[1,2,4,5],[3,6]]
 => [3,6,1,2,4,5] => ([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => 4
[[1,2,3,5],[4,6]]
 => [4,6,1,2,3,5] => ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => 5
[[1,2,3,4],[5,6]]
 => [5,6,1,2,3,4] => ([(0,5),(1,3),(4,2),(5,4)],6)
 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
 => 4
[[1,4,5,6],[2],[3]]
 => [3,2,1,4,5,6] => ([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
 => ([],1)
 => ? ∊ {0,0,3,3,4,4,4,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,3,5,6],[2],[4]]
 => [4,2,1,3,5,6] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
 => ([],1)
 => ? ∊ {0,0,3,3,4,4,4,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,5,6],[3],[4]]
 => [4,3,1,2,5,6] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
 => ([(0,1)],2)
 => 0
[[1,3,4,6],[2],[5]]
 => [5,2,1,3,4,6] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
 => ([],1)
 => ? ∊ {0,0,3,3,4,4,4,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,4,6],[3],[5]]
 => [5,3,1,2,4,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
 => ([(0,1)],2)
 => 0
[[1,2,3,6],[4],[5]]
 => [5,4,1,2,3,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
 => ([(0,2),(2,1)],3)
 => 1
[[1,3,4,5],[2],[6]]
 => [6,2,1,3,4,5] => ([(1,5),(2,5),(3,4),(5,3)],6)
 => ([],1)
 => ? ∊ {0,0,3,3,4,4,4,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,4,5],[3],[6]]
 => [6,3,1,2,4,5] => ([(1,5),(2,3),(3,5),(5,4)],6)
 => ([(0,1)],2)
 => 0
[[1,2,3,5],[4],[6]]
 => [6,4,1,2,3,5] => ([(1,5),(2,3),(3,4),(4,5)],6)
 => ([(0,2),(2,1)],3)
 => 1
[[1,2,3,4],[5],[6]]
 => [6,5,1,2,3,4] => ([(2,3),(3,5),(5,4)],6)
 => ([(0,3),(2,1),(3,2)],4)
 => 2
[[1,3,5],[2,4,6]]
 => [2,4,6,1,3,5] => ([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => 4
[[1,2,5],[3,4,6]]
 => [3,4,6,1,2,5] => ([(0,3),(1,4),(3,5),(4,2),(4,5)],6)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => 5
[[1,3,4],[2,5,6]]
 => [2,5,6,1,3,4] => ([(0,5),(1,4),(1,5),(4,2),(5,3)],6)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => 3
[[1,2,4],[3,5,6]]
 => [3,5,6,1,2,4] => ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
 => ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
 => 4
[[1,2,3],[4,5,6]]
 => [4,5,6,1,2,3] => ([(0,5),(1,4),(4,2),(5,3)],6)
 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
 => 3
[[1,4,6],[2,5],[3]]
 => [3,2,5,1,4,6] => ([(0,5),(1,3),(1,5),(2,3),(2,5),(3,4),(5,4)],6)
 => ([],1)
 => ? ∊ {0,0,3,3,4,4,4,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,3,6],[2,5],[4]]
 => [4,2,5,1,3,6] => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
 => ([],1)
 => ? ∊ {0,0,3,3,4,4,4,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,4,5],[2,6],[3]]
 => [3,2,6,1,4,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(5,3)],6)
 => ([],1)
 => ? ∊ {0,0,3,3,4,4,4,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,3,5],[2,6],[4]]
 => [4,2,6,1,3,5] => ([(0,4),(1,3),(1,5),(2,3),(2,4),(4,5)],6)
 => ([],1)
 => ? ∊ {0,0,3,3,4,4,4,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,3,4],[2,6],[5]]
 => [5,2,6,1,3,4] => ([(0,5),(1,4),(2,4),(2,5),(5,3)],6)
 => ([],1)
 => ? ∊ {0,0,3,3,4,4,4,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,5,6],[2],[3],[4]]
 => [4,3,2,1,5,6] => ([(0,5),(1,5),(2,5),(3,5),(5,4)],6)
 => ([],1)
 => ? ∊ {0,0,3,3,4,4,4,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,4,6],[2],[3],[5]]
 => [5,3,2,1,4,6] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
 => ([],1)
 => ? ∊ {0,0,3,3,4,4,4,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,3,6],[2],[4],[5]]
 => [5,4,2,1,3,6] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
 => ([],1)
 => ? ∊ {0,0,3,3,4,4,4,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,4,5],[2],[3],[6]]
 => [6,3,2,1,4,5] => ([(1,5),(2,5),(3,5),(5,4)],6)
 => ([],1)
 => ? ∊ {0,0,3,3,4,4,4,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,3,5],[2],[4],[6]]
 => [6,4,2,1,3,5] => ([(1,5),(2,4),(3,4),(4,5)],6)
 => ([],1)
 => ? ∊ {0,0,3,3,4,4,4,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,3,4],[2],[5],[6]]
 => [6,5,2,1,3,4] => ([(2,5),(3,5),(5,4)],6)
 => ([],1)
 => ? ∊ {0,0,3,3,4,4,4,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,5],[2,6],[3],[4]]
 => [4,3,2,6,1,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
 => ([],1)
 => ? ∊ {0,0,3,3,4,4,4,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,4],[2,6],[3],[5]]
 => [5,3,2,6,1,4] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
 => ([],1)
 => ? ∊ {0,0,3,3,4,4,4,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,3],[2,6],[4],[5]]
 => [5,4,2,6,1,3] => ([(0,5),(1,5),(2,4),(3,4),(3,5)],6)
 => ([],1)
 => ? ∊ {0,0,3,3,4,4,4,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,4],[2,5],[3],[6]]
 => [6,3,2,5,1,4] => ([(1,5),(2,4),(2,5),(3,4),(3,5)],6)
 => ([],1)
 => ? ∊ {0,0,3,3,4,4,4,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,3],[2,5],[4],[6]]
 => [6,4,2,5,1,3] => ([(1,5),(2,4),(3,4),(3,5)],6)
 => ([],1)
 => ? ∊ {0,0,3,3,4,4,4,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,6],[2],[3],[4],[5]]
 => [5,4,3,2,1,6] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
 => ([],1)
 => ? ∊ {0,0,3,3,4,4,4,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,5],[2],[3],[4],[6]]
 => [6,4,3,2,1,5] => ([(1,5),(2,5),(3,5),(4,5)],6)
 => ([],1)
 => ? ∊ {0,0,3,3,4,4,4,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,4],[2],[3],[5],[6]]
 => [6,5,3,2,1,4] => ([(2,5),(3,5),(4,5)],6)
 => ([],1)
 => ? ∊ {0,0,3,3,4,4,4,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,3],[2],[4],[5],[6]]
 => [6,5,4,2,1,3] => ([(3,5),(4,5)],6)
 => ([],1)
 => ? ∊ {0,0,3,3,4,4,4,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1],[2],[3],[4],[5],[6]]
 => [6,5,4,3,2,1] => ([],6)
 => ([],1)
 => ? ∊ {0,0,3,3,4,4,4,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
Description
The Frankl number of a lattice.
For a lattice $L$ on at least two elements, this is
$$
\max_x(|L|-2|[x, 1]|),
$$
where we maximize over all join irreducible elements and $[x, 1]$ denotes the interval from $x$ to the top element.  Frankl's conjecture asserts that this number is non-negative, and zero if and only if $L$ is a Boolean lattice.
Matching statistic: St000772
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00106: Standard tableaux —catabolism⟶ Standard tableaux
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000772: Graphs ⟶ ℤResult quality: 29% ●values known / values provided: 45%●distinct values known / distinct values provided: 29%
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000772: Graphs ⟶ ℤResult quality: 29% ●values known / values provided: 45%●distinct values known / distinct values provided: 29%
Values
[[1]]
 => [[1]]
 => [1] => ([],1)
 => 1 = 0 + 1
[[1,2]]
 => [[1,2]]
 => [2] => ([],2)
 => ? ∊ {0,0} + 1
[[1],[2]]
 => [[1,2]]
 => [2] => ([],2)
 => ? ∊ {0,0} + 1
[[1,2,3]]
 => [[1,2,3]]
 => [3] => ([],3)
 => ? ∊ {0,1} + 1
[[1,3],[2]]
 => [[1,2],[3]]
 => [2,1] => ([(0,2),(1,2)],3)
 => 1 = 0 + 1
[[1,2],[3]]
 => [[1,2,3]]
 => [3] => ([],3)
 => ? ∊ {0,1} + 1
[[1],[2],[3]]
 => [[1,2],[3]]
 => [2,1] => ([(0,2),(1,2)],3)
 => 1 = 0 + 1
[[1,2,3,4]]
 => [[1,2,3,4]]
 => [4] => ([],4)
 => ? ∊ {0,0,0,0,2,4} + 1
[[1,3,4],[2]]
 => [[1,2,4],[3]]
 => [2,2] => ([(1,3),(2,3)],4)
 => ? ∊ {0,0,0,0,2,4} + 1
[[1,2,4],[3]]
 => [[1,2,3],[4]]
 => [3,1] => ([(0,3),(1,3),(2,3)],4)
 => 2 = 1 + 1
[[1,2,3],[4]]
 => [[1,2,3,4]]
 => [4] => ([],4)
 => ? ∊ {0,0,0,0,2,4} + 1
[[1,3],[2,4]]
 => [[1,2,4],[3]]
 => [2,2] => ([(1,3),(2,3)],4)
 => ? ∊ {0,0,0,0,2,4} + 1
[[1,2],[3,4]]
 => [[1,2,3,4]]
 => [4] => ([],4)
 => ? ∊ {0,0,0,0,2,4} + 1
[[1,4],[2],[3]]
 => [[1,2],[3],[4]]
 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 1 = 0 + 1
[[1,3],[2],[4]]
 => [[1,2,4],[3]]
 => [2,2] => ([(1,3),(2,3)],4)
 => ? ∊ {0,0,0,0,2,4} + 1
[[1,2],[3],[4]]
 => [[1,2,3],[4]]
 => [3,1] => ([(0,3),(1,3),(2,3)],4)
 => 2 = 1 + 1
[[1],[2],[3],[4]]
 => [[1,2],[3],[4]]
 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 1 = 0 + 1
[[1,2,3,4,5]]
 => [[1,2,3,4,5]]
 => [5] => ([],5)
 => ? ∊ {0,0,0,0,1,1,1,3,3,4,4,5,7,10} + 1
[[1,3,4,5],[2]]
 => [[1,2,4,5],[3]]
 => [2,3] => ([(2,4),(3,4)],5)
 => ? ∊ {0,0,0,0,1,1,1,3,3,4,4,5,7,10} + 1
[[1,2,4,5],[3]]
 => [[1,2,3,5],[4]]
 => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ? ∊ {0,0,0,0,1,1,1,3,3,4,4,5,7,10} + 1
[[1,2,3,5],[4]]
 => [[1,2,3,4],[5]]
 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 3 = 2 + 1
[[1,2,3,4],[5]]
 => [[1,2,3,4,5]]
 => [5] => ([],5)
 => ? ∊ {0,0,0,0,1,1,1,3,3,4,4,5,7,10} + 1
[[1,3,5],[2,4]]
 => [[1,2,4],[3,5]]
 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 1 = 0 + 1
[[1,2,5],[3,4]]
 => [[1,2,3,4],[5]]
 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 3 = 2 + 1
[[1,3,4],[2,5]]
 => [[1,2,4,5],[3]]
 => [2,3] => ([(2,4),(3,4)],5)
 => ? ∊ {0,0,0,0,1,1,1,3,3,4,4,5,7,10} + 1
[[1,2,4],[3,5]]
 => [[1,2,3,5],[4]]
 => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ? ∊ {0,0,0,0,1,1,1,3,3,4,4,5,7,10} + 1
[[1,2,3],[4,5]]
 => [[1,2,3,4,5]]
 => [5] => ([],5)
 => ? ∊ {0,0,0,0,1,1,1,3,3,4,4,5,7,10} + 1
[[1,4,5],[2],[3]]
 => [[1,2,5],[3],[4]]
 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {0,0,0,0,1,1,1,3,3,4,4,5,7,10} + 1
[[1,3,5],[2],[4]]
 => [[1,2,4],[3],[5]]
 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 1 = 0 + 1
[[1,2,5],[3],[4]]
 => [[1,2,3],[4],[5]]
 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2 = 1 + 1
[[1,3,4],[2],[5]]
 => [[1,2,4,5],[3]]
 => [2,3] => ([(2,4),(3,4)],5)
 => ? ∊ {0,0,0,0,1,1,1,3,3,4,4,5,7,10} + 1
[[1,2,4],[3],[5]]
 => [[1,2,3,5],[4]]
 => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ? ∊ {0,0,0,0,1,1,1,3,3,4,4,5,7,10} + 1
[[1,2,3],[4],[5]]
 => [[1,2,3,4],[5]]
 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 3 = 2 + 1
[[1,4],[2,5],[3]]
 => [[1,2,5],[3],[4]]
 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {0,0,0,0,1,1,1,3,3,4,4,5,7,10} + 1
[[1,3],[2,5],[4]]
 => [[1,2,4,5],[3]]
 => [2,3] => ([(2,4),(3,4)],5)
 => ? ∊ {0,0,0,0,1,1,1,3,3,4,4,5,7,10} + 1
[[1,2],[3,5],[4]]
 => [[1,2,3,5],[4]]
 => [3,2] => ([(1,4),(2,4),(3,4)],5)
 => ? ∊ {0,0,0,0,1,1,1,3,3,4,4,5,7,10} + 1
[[1,3],[2,4],[5]]
 => [[1,2,4],[3,5]]
 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 1 = 0 + 1
[[1,2],[3,4],[5]]
 => [[1,2,3,4],[5]]
 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 3 = 2 + 1
[[1,5],[2],[3],[4]]
 => [[1,2],[3],[4],[5]]
 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 1 = 0 + 1
[[1,4],[2],[3],[5]]
 => [[1,2,5],[3],[4]]
 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {0,0,0,0,1,1,1,3,3,4,4,5,7,10} + 1
[[1,3],[2],[4],[5]]
 => [[1,2,4],[3],[5]]
 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 1 = 0 + 1
[[1,2],[3],[4],[5]]
 => [[1,2,3],[4],[5]]
 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2 = 1 + 1
[[1],[2],[3],[4],[5]]
 => [[1,2],[3],[4],[5]]
 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 1 = 0 + 1
[[1,2,3,4,5,6]]
 => [[1,2,3,4,5,6]]
 => [6] => ([],6)
 => ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20} + 1
[[1,3,4,5,6],[2]]
 => [[1,2,4,5,6],[3]]
 => [2,4] => ([(3,5),(4,5)],6)
 => ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20} + 1
[[1,2,4,5,6],[3]]
 => [[1,2,3,5,6],[4]]
 => [3,3] => ([(2,5),(3,5),(4,5)],6)
 => ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20} + 1
[[1,2,3,5,6],[4]]
 => [[1,2,3,4,6],[5]]
 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
 => ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20} + 1
[[1,2,3,4,6],[5]]
 => [[1,2,3,4,5],[6]]
 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
 => 4 = 3 + 1
[[1,2,3,4,5],[6]]
 => [[1,2,3,4,5,6]]
 => [6] => ([],6)
 => ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20} + 1
[[1,3,5,6],[2,4]]
 => [[1,2,4,6],[3,5]]
 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20} + 1
[[1,2,5,6],[3,4]]
 => [[1,2,3,4],[5,6]]
 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
 => ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20} + 1
[[1,3,4,6],[2,5]]
 => [[1,2,4,5],[3,6]]
 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 2 = 1 + 1
[[1,2,4,6],[3,5]]
 => [[1,2,3,5],[4,6]]
 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 1 = 0 + 1
[[1,2,3,6],[4,5]]
 => [[1,2,3,4,5],[6]]
 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
 => 4 = 3 + 1
[[1,3,4,5],[2,6]]
 => [[1,2,4,5,6],[3]]
 => [2,4] => ([(3,5),(4,5)],6)
 => ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20} + 1
[[1,2,4,5],[3,6]]
 => [[1,2,3,5,6],[4]]
 => [3,3] => ([(2,5),(3,5),(4,5)],6)
 => ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20} + 1
[[1,2,3,5],[4,6]]
 => [[1,2,3,4,6],[5]]
 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
 => ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20} + 1
[[1,2,3,4],[5,6]]
 => [[1,2,3,4,5,6]]
 => [6] => ([],6)
 => ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20} + 1
[[1,4,5,6],[2],[3]]
 => [[1,2,5,6],[3],[4]]
 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20} + 1
[[1,3,5,6],[2],[4]]
 => [[1,2,4,6],[3],[5]]
 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20} + 1
[[1,2,5,6],[3],[4]]
 => [[1,2,3,6],[4],[5]]
 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20} + 1
[[1,3,4,6],[2],[5]]
 => [[1,2,4,5],[3],[6]]
 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 2 = 1 + 1
[[1,2,4,6],[3],[5]]
 => [[1,2,3,5],[4],[6]]
 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 1 = 0 + 1
[[1,2,3,6],[4],[5]]
 => [[1,2,3,4],[5],[6]]
 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 3 = 2 + 1
[[1,3,4,5],[2],[6]]
 => [[1,2,4,5,6],[3]]
 => [2,4] => ([(3,5),(4,5)],6)
 => ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20} + 1
[[1,2,4,5],[3],[6]]
 => [[1,2,3,5,6],[4]]
 => [3,3] => ([(2,5),(3,5),(4,5)],6)
 => ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20} + 1
[[1,2,3,5],[4],[6]]
 => [[1,2,3,4,6],[5]]
 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
 => ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20} + 1
[[1,2,3,4],[5],[6]]
 => [[1,2,3,4,5],[6]]
 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
 => 4 = 3 + 1
[[1,3,5],[2,4,6]]
 => [[1,2,4,6],[3,5]]
 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20} + 1
[[1,2,5],[3,4,6]]
 => [[1,2,3,4,6],[5]]
 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
 => ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20} + 1
[[1,3,4],[2,5,6]]
 => [[1,2,4,5,6],[3]]
 => [2,4] => ([(3,5),(4,5)],6)
 => ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20} + 1
[[1,2,4],[3,5,6]]
 => [[1,2,3,5,6],[4]]
 => [3,3] => ([(2,5),(3,5),(4,5)],6)
 => ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20} + 1
[[1,2,3],[4,5,6]]
 => [[1,2,3,4,5,6]]
 => [6] => ([],6)
 => ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20} + 1
[[1,4,6],[2,5],[3]]
 => [[1,2,5],[3,6],[4]]
 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 1 = 0 + 1
[[1,3,6],[2,5],[4]]
 => [[1,2,4,5],[3],[6]]
 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 2 = 1 + 1
[[1,2,6],[3,5],[4]]
 => [[1,2,3,5],[4],[6]]
 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 1 = 0 + 1
[[1,3,6],[2,4],[5]]
 => [[1,2,4],[3,5],[6]]
 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 1 = 0 + 1
[[1,2,6],[3,4],[5]]
 => [[1,2,3,4],[5],[6]]
 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 3 = 2 + 1
[[1,4,5],[2,6],[3]]
 => [[1,2,5,6],[3],[4]]
 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20} + 1
[[1,3,5],[2,6],[4]]
 => [[1,2,4,6],[3],[5]]
 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20} + 1
[[1,2,5],[3,6],[4]]
 => [[1,2,3,6],[4],[5]]
 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20} + 1
[[1,3,4],[2,6],[5]]
 => [[1,2,4,5,6],[3]]
 => [2,4] => ([(3,5),(4,5)],6)
 => ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20} + 1
[[1,3,4],[2,5],[6]]
 => [[1,2,4,5],[3,6]]
 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 2 = 1 + 1
[[1,2,4],[3,5],[6]]
 => [[1,2,3,5],[4,6]]
 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 1 = 0 + 1
[[1,2,3],[4,5],[6]]
 => [[1,2,3,4,5],[6]]
 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
 => 4 = 3 + 1
[[1,4,6],[2],[3],[5]]
 => [[1,2,5],[3],[4],[6]]
 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 1 = 0 + 1
[[1,3,6],[2],[4],[5]]
 => [[1,2,4],[3],[5],[6]]
 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 1 = 0 + 1
[[1,2,6],[3],[4],[5]]
 => [[1,2,3],[4],[5],[6]]
 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 2 = 1 + 1
[[1,3,4],[2],[5],[6]]
 => [[1,2,4,5],[3],[6]]
 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 2 = 1 + 1
[[1,2,4],[3],[5],[6]]
 => [[1,2,3,5],[4],[6]]
 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 1 = 0 + 1
[[1,2,3],[4],[5],[6]]
 => [[1,2,3,4],[5],[6]]
 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 3 = 2 + 1
[[1,4],[2,5],[3,6]]
 => [[1,2,5],[3,6],[4]]
 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 1 = 0 + 1
[[1,3],[2,5],[4,6]]
 => [[1,2,4,5],[3,6]]
 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 2 = 1 + 1
[[1,2],[3,5],[4,6]]
 => [[1,2,3,5],[4,6]]
 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 1 = 0 + 1
[[1,4],[2,5],[3],[6]]
 => [[1,2,5],[3,6],[4]]
 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 1 = 0 + 1
[[1,3],[2,5],[4],[6]]
 => [[1,2,4,5],[3],[6]]
 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 2 = 1 + 1
[[1,2],[3,5],[4],[6]]
 => [[1,2,3,5],[4],[6]]
 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 1 = 0 + 1
[[1,3],[2,4],[5],[6]]
 => [[1,2,4],[3,5],[6]]
 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 1 = 0 + 1
[[1,2],[3,4],[5],[6]]
 => [[1,2,3,4],[5],[6]]
 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 3 = 2 + 1
[[1,6],[2],[3],[4],[5]]
 => [[1,2],[3],[4],[5],[6]]
 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 1 = 0 + 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries.  This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $1$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$.
The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Matching statistic: St001876
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001876: Lattices ⟶ ℤResult quality: 36% ●values known / values provided: 45%●distinct values known / distinct values provided: 36%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001876: Lattices ⟶ ℤResult quality: 36% ●values known / values provided: 45%●distinct values known / distinct values provided: 36%
Values
[[1]]
 => [1] => ([],1)
 => ([],1)
 => ? = 0
[[1,2]]
 => [1,2] => ([(0,1)],2)
 => ([(0,1)],2)
 => ? ∊ {0,0}
[[1],[2]]
 => [2,1] => ([],2)
 => ([],1)
 => ? ∊ {0,0}
[[1,2,3]]
 => [1,2,3] => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => 0
[[1,3],[2]]
 => [2,1,3] => ([(0,2),(1,2)],3)
 => ([],1)
 => ? ∊ {0,0,1}
[[1,2],[3]]
 => [3,1,2] => ([(1,2)],3)
 => ([(0,1)],2)
 => ? ∊ {0,0,1}
[[1],[2],[3]]
 => [3,2,1] => ([],3)
 => ([],1)
 => ? ∊ {0,0,1}
[[1,2,3,4]]
 => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => 0
[[1,3,4],[2]]
 => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
 => ([],1)
 => ? ∊ {0,0,0,1,2,4}
[[1,2,4],[3]]
 => [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
 => ([(0,1)],2)
 => ? ∊ {0,0,0,1,2,4}
[[1,2,3],[4]]
 => [4,1,2,3] => ([(1,2),(2,3)],4)
 => ([(0,2),(2,1)],3)
 => 0
[[1,3],[2,4]]
 => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
 => ([(0,2),(2,1)],3)
 => 0
[[1,2],[3,4]]
 => [3,4,1,2] => ([(0,3),(1,2)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 1
[[1,4],[2],[3]]
 => [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
 => ([],1)
 => ? ∊ {0,0,0,1,2,4}
[[1,3],[2],[4]]
 => [4,2,1,3] => ([(1,3),(2,3)],4)
 => ([],1)
 => ? ∊ {0,0,0,1,2,4}
[[1,2],[3],[4]]
 => [4,3,1,2] => ([(2,3)],4)
 => ([(0,1)],2)
 => ? ∊ {0,0,0,1,2,4}
[[1],[2],[3],[4]]
 => [4,3,2,1] => ([],4)
 => ([],1)
 => ? ∊ {0,0,0,1,2,4}
[[1,2,3,4,5]]
 => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => 0
[[1,3,4,5],[2]]
 => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
 => ([],1)
 => ? ∊ {0,0,0,1,1,2,2,2,3,3,4,4,5,7,10}
[[1,2,4,5],[3]]
 => [3,1,2,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
 => ([(0,1)],2)
 => ? ∊ {0,0,0,1,1,2,2,2,3,3,4,4,5,7,10}
[[1,2,3,5],[4]]
 => [4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
 => ([(0,2),(2,1)],3)
 => 0
[[1,2,3,4],[5]]
 => [5,1,2,3,4] => ([(1,4),(3,2),(4,3)],5)
 => ([(0,3),(2,1),(3,2)],4)
 => 0
[[1,3,5],[2,4]]
 => [2,4,1,3,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
 => ([(0,2),(2,1)],3)
 => 0
[[1,2,5],[3,4]]
 => [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 1
[[1,3,4],[2,5]]
 => [2,5,1,3,4] => ([(0,4),(1,2),(1,4),(4,3)],5)
 => ([(0,3),(2,1),(3,2)],4)
 => 0
[[1,2,4],[3,5]]
 => [3,5,1,2,4] => ([(0,3),(1,2),(1,4),(3,4)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => 1
[[1,2,3],[4,5]]
 => [4,5,1,2,3] => ([(0,3),(1,4),(4,2)],5)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => 2
[[1,4,5],[2],[3]]
 => [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
 => ([],1)
 => ? ∊ {0,0,0,1,1,2,2,2,3,3,4,4,5,7,10}
[[1,3,5],[2],[4]]
 => [4,2,1,3,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
 => ([],1)
 => ? ∊ {0,0,0,1,1,2,2,2,3,3,4,4,5,7,10}
[[1,2,5],[3],[4]]
 => [4,3,1,2,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
 => ([(0,1)],2)
 => ? ∊ {0,0,0,1,1,2,2,2,3,3,4,4,5,7,10}
[[1,3,4],[2],[5]]
 => [5,2,1,3,4] => ([(1,4),(2,4),(4,3)],5)
 => ([],1)
 => ? ∊ {0,0,0,1,1,2,2,2,3,3,4,4,5,7,10}
[[1,2,4],[3],[5]]
 => [5,3,1,2,4] => ([(1,4),(2,3),(3,4)],5)
 => ([(0,1)],2)
 => ? ∊ {0,0,0,1,1,2,2,2,3,3,4,4,5,7,10}
[[1,2,3],[4],[5]]
 => [5,4,1,2,3] => ([(2,3),(3,4)],5)
 => ([(0,2),(2,1)],3)
 => 0
[[1,4],[2,5],[3]]
 => [3,2,5,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => ([],1)
 => ? ∊ {0,0,0,1,1,2,2,2,3,3,4,4,5,7,10}
[[1,3],[2,5],[4]]
 => [4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
 => ([],1)
 => ? ∊ {0,0,0,1,1,2,2,2,3,3,4,4,5,7,10}
[[1,2],[3,5],[4]]
 => [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
 => ([(0,1)],2)
 => ? ∊ {0,0,0,1,1,2,2,2,3,3,4,4,5,7,10}
[[1,3],[2,4],[5]]
 => [5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
 => ([(0,2),(2,1)],3)
 => 0
[[1,2],[3,4],[5]]
 => [5,3,4,1,2] => ([(1,4),(2,3)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 1
[[1,5],[2],[3],[4]]
 => [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => ([],1)
 => ? ∊ {0,0,0,1,1,2,2,2,3,3,4,4,5,7,10}
[[1,4],[2],[3],[5]]
 => [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
 => ([],1)
 => ? ∊ {0,0,0,1,1,2,2,2,3,3,4,4,5,7,10}
[[1,3],[2],[4],[5]]
 => [5,4,2,1,3] => ([(2,4),(3,4)],5)
 => ([],1)
 => ? ∊ {0,0,0,1,1,2,2,2,3,3,4,4,5,7,10}
[[1,2],[3],[4],[5]]
 => [5,4,3,1,2] => ([(3,4)],5)
 => ([(0,1)],2)
 => ? ∊ {0,0,0,1,1,2,2,2,3,3,4,4,5,7,10}
[[1],[2],[3],[4],[5]]
 => [5,4,3,2,1] => ([],5)
 => ([],1)
 => ? ∊ {0,0,0,1,1,2,2,2,3,3,4,4,5,7,10}
[[1,2,3,4,5,6]]
 => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => 0
[[1,3,4,5,6],[2]]
 => [2,1,3,4,5,6] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
 => ([],1)
 => ? ∊ {0,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,4,5,6],[3]]
 => [3,1,2,4,5,6] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
 => ([(0,1)],2)
 => ? ∊ {0,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,3,5,6],[4]]
 => [4,1,2,3,5,6] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
 => ([(0,2),(2,1)],3)
 => 0
[[1,2,3,4,6],[5]]
 => [5,1,2,3,4,6] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
 => ([(0,3),(2,1),(3,2)],4)
 => 0
[[1,2,3,4,5],[6]]
 => [6,1,2,3,4,5] => ([(1,5),(3,4),(4,2),(5,3)],6)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => 0
[[1,3,5,6],[2,4]]
 => [2,4,1,3,5,6] => ([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
 => ([(0,2),(2,1)],3)
 => 0
[[1,2,5,6],[3,4]]
 => [3,4,1,2,5,6] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 1
[[1,3,4,6],[2,5]]
 => [2,5,1,3,4,6] => ([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
 => ([(0,3),(2,1),(3,2)],4)
 => 0
[[1,2,4,6],[3,5]]
 => [3,5,1,2,4,6] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => 1
[[1,2,3,6],[4,5]]
 => [4,5,1,2,3,6] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => 2
[[1,3,4,5],[2,6]]
 => [2,6,1,3,4,5] => ([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => 0
[[1,2,4,5],[3,6]]
 => [3,6,1,2,4,5] => ([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => 1
[[1,2,3,5],[4,6]]
 => [4,6,1,2,3,5] => ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => 2
[[1,2,3,4],[5,6]]
 => [5,6,1,2,3,4] => ([(0,5),(1,3),(4,2),(5,4)],6)
 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
 => 3
[[1,4,5,6],[2],[3]]
 => [3,2,1,4,5,6] => ([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
 => ([],1)
 => ? ∊ {0,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,3,5,6],[2],[4]]
 => [4,2,1,3,5,6] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
 => ([],1)
 => ? ∊ {0,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,5,6],[3],[4]]
 => [4,3,1,2,5,6] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
 => ([(0,1)],2)
 => ? ∊ {0,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,3,4,6],[2],[5]]
 => [5,2,1,3,4,6] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
 => ([],1)
 => ? ∊ {0,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,4,6],[3],[5]]
 => [5,3,1,2,4,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
 => ([(0,1)],2)
 => ? ∊ {0,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,3,6],[4],[5]]
 => [5,4,1,2,3,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
 => ([(0,2),(2,1)],3)
 => 0
[[1,3,4,5],[2],[6]]
 => [6,2,1,3,4,5] => ([(1,5),(2,5),(3,4),(5,3)],6)
 => ([],1)
 => ? ∊ {0,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,4,5],[3],[6]]
 => [6,3,1,2,4,5] => ([(1,5),(2,3),(3,5),(5,4)],6)
 => ([(0,1)],2)
 => ? ∊ {0,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,3,5],[4],[6]]
 => [6,4,1,2,3,5] => ([(1,5),(2,3),(3,4),(4,5)],6)
 => ([(0,2),(2,1)],3)
 => 0
[[1,2,3,4],[5],[6]]
 => [6,5,1,2,3,4] => ([(2,3),(3,5),(5,4)],6)
 => ([(0,3),(2,1),(3,2)],4)
 => 0
[[1,3,5],[2,4,6]]
 => [2,4,6,1,3,5] => ([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => 1
[[1,2,5],[3,4,6]]
 => [3,4,6,1,2,5] => ([(0,3),(1,4),(3,5),(4,2),(4,5)],6)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => 2
[[1,3,4],[2,5,6]]
 => [2,5,6,1,3,4] => ([(0,5),(1,4),(1,5),(4,2),(5,3)],6)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => 2
[[1,2,4],[3,5,6]]
 => [3,5,6,1,2,4] => ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
 => ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
 => 3
[[1,2,3],[4,5,6]]
 => [4,5,6,1,2,3] => ([(0,5),(1,4),(4,2),(5,3)],6)
 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
 => 4
[[1,4,6],[2,5],[3]]
 => [3,2,5,1,4,6] => ([(0,5),(1,3),(1,5),(2,3),(2,5),(3,4),(5,4)],6)
 => ([],1)
 => ? ∊ {0,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,3,6],[2,5],[4]]
 => [4,2,5,1,3,6] => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
 => ([],1)
 => ? ∊ {0,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,6],[3,5],[4]]
 => [4,3,5,1,2,6] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
 => ([(0,1)],2)
 => ? ∊ {0,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,3,6],[2,4],[5]]
 => [5,2,4,1,3,6] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
 => ([(0,2),(2,1)],3)
 => 0
[[1,2,6],[3,4],[5]]
 => [5,3,4,1,2,6] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 1
[[1,4,5],[2,6],[3]]
 => [3,2,6,1,4,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(5,3)],6)
 => ([],1)
 => ? ∊ {0,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,3,5],[2,6],[4]]
 => [4,2,6,1,3,5] => ([(0,4),(1,3),(1,5),(2,3),(2,4),(4,5)],6)
 => ([],1)
 => ? ∊ {0,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,5],[3,6],[4]]
 => [4,3,6,1,2,5] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(3,5)],6)
 => ([(0,1)],2)
 => ? ∊ {0,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,3,4],[2,6],[5]]
 => [5,2,6,1,3,4] => ([(0,5),(1,4),(2,4),(2,5),(5,3)],6)
 => ([],1)
 => ? ∊ {0,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,4],[3,6],[5]]
 => [5,3,6,1,2,4] => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6)
 => ([(0,1)],2)
 => ? ∊ {0,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,3],[4,6],[5]]
 => [5,4,6,1,2,3] => ([(0,5),(1,5),(2,3),(3,4)],6)
 => ([(0,2),(2,1)],3)
 => 0
[[1,3,5],[2,4],[6]]
 => [6,2,4,1,3,5] => ([(1,4),(2,3),(2,4),(3,5),(4,5)],6)
 => ([(0,2),(2,1)],3)
 => 0
[[1,2,5],[3,4],[6]]
 => [6,3,4,1,2,5] => ([(1,4),(2,3),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 1
[[1,3,4],[2,5],[6]]
 => [6,2,5,1,3,4] => ([(1,5),(2,3),(2,5),(5,4)],6)
 => ([(0,3),(2,1),(3,2)],4)
 => 0
[[1,2,4],[3,5],[6]]
 => [6,3,5,1,2,4] => ([(1,4),(2,3),(2,5),(4,5)],6)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => 1
[[1,2,3],[4,5],[6]]
 => [6,4,5,1,2,3] => ([(1,3),(2,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => 2
[[1,5,6],[2],[3],[4]]
 => [4,3,2,1,5,6] => ([(0,5),(1,5),(2,5),(3,5),(5,4)],6)
 => ([],1)
 => ? ∊ {0,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,4,6],[2],[3],[5]]
 => [5,3,2,1,4,6] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
 => ([],1)
 => ? ∊ {0,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,3,6],[2],[4],[5]]
 => [5,4,2,1,3,6] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
 => ([],1)
 => ? ∊ {0,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,6],[3],[4],[5]]
 => [5,4,3,1,2,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
 => ([(0,1)],2)
 => ? ∊ {0,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,4,5],[2],[3],[6]]
 => [6,3,2,1,4,5] => ([(1,5),(2,5),(3,5),(5,4)],6)
 => ([],1)
 => ? ∊ {0,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,3,5],[2],[4],[6]]
 => [6,4,2,1,3,5] => ([(1,5),(2,4),(3,4),(4,5)],6)
 => ([],1)
 => ? ∊ {0,1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,3],[4],[5],[6]]
 => [6,5,4,1,2,3] => ([(3,4),(4,5)],6)
 => ([(0,2),(2,1)],3)
 => 0
[[1,4],[2,5],[3,6]]
 => [3,6,2,5,1,4] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
 => ([(0,3),(2,1),(3,2)],4)
 => 0
[[1,3],[2,5],[4,6]]
 => [4,6,2,5,1,3] => ([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
 => ([(0,3),(2,1),(3,2)],4)
 => 0
[[1,2],[3,5],[4,6]]
 => [4,6,3,5,1,2] => ([(0,5),(1,3),(2,4),(2,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => 2
[[1,3],[2,4],[5,6]]
 => [5,6,2,4,1,3] => ([(0,5),(1,3),(2,4),(2,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => 2
Description
The number of 2-regular simple modules in the incidence algebra of the lattice.
Matching statistic: St001877
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001877: Lattices ⟶ ℤResult quality: 21% ●values known / values provided: 41%●distinct values known / distinct values provided: 21%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001877: Lattices ⟶ ℤResult quality: 21% ●values known / values provided: 41%●distinct values known / distinct values provided: 21%
Values
[[1]]
 => [1] => ([],1)
 => ([],1)
 => ? = 0
[[1,2]]
 => [1,2] => ([(0,1)],2)
 => ([(0,1)],2)
 => ? ∊ {0,0}
[[1],[2]]
 => [2,1] => ([],2)
 => ([],1)
 => ? ∊ {0,0}
[[1,2,3]]
 => [1,2,3] => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => 0
[[1,3],[2]]
 => [2,1,3] => ([(0,2),(1,2)],3)
 => ([],1)
 => ? ∊ {0,0,1}
[[1,2],[3]]
 => [3,1,2] => ([(1,2)],3)
 => ([(0,1)],2)
 => ? ∊ {0,0,1}
[[1],[2],[3]]
 => [3,2,1] => ([],3)
 => ([],1)
 => ? ∊ {0,0,1}
[[1,2,3,4]]
 => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => 0
[[1,3,4],[2]]
 => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
 => ([],1)
 => ? ∊ {0,0,0,1,2,4}
[[1,2,4],[3]]
 => [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
 => ([(0,1)],2)
 => ? ∊ {0,0,0,1,2,4}
[[1,2,3],[4]]
 => [4,1,2,3] => ([(1,2),(2,3)],4)
 => ([(0,2),(2,1)],3)
 => 0
[[1,3],[2,4]]
 => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
 => ([(0,2),(2,1)],3)
 => 0
[[1,2],[3,4]]
 => [3,4,1,2] => ([(0,3),(1,2)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 1
[[1,4],[2],[3]]
 => [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
 => ([],1)
 => ? ∊ {0,0,0,1,2,4}
[[1,3],[2],[4]]
 => [4,2,1,3] => ([(1,3),(2,3)],4)
 => ([],1)
 => ? ∊ {0,0,0,1,2,4}
[[1,2],[3],[4]]
 => [4,3,1,2] => ([(2,3)],4)
 => ([(0,1)],2)
 => ? ∊ {0,0,0,1,2,4}
[[1],[2],[3],[4]]
 => [4,3,2,1] => ([],4)
 => ([],1)
 => ? ∊ {0,0,0,1,2,4}
[[1,2,3,4,5]]
 => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => 0
[[1,3,4,5],[2]]
 => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
 => ([],1)
 => ? ∊ {0,0,0,1,1,2,2,2,3,3,4,4,5,7,10}
[[1,2,4,5],[3]]
 => [3,1,2,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
 => ([(0,1)],2)
 => ? ∊ {0,0,0,1,1,2,2,2,3,3,4,4,5,7,10}
[[1,2,3,5],[4]]
 => [4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
 => ([(0,2),(2,1)],3)
 => 0
[[1,2,3,4],[5]]
 => [5,1,2,3,4] => ([(1,4),(3,2),(4,3)],5)
 => ([(0,3),(2,1),(3,2)],4)
 => 0
[[1,3,5],[2,4]]
 => [2,4,1,3,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
 => ([(0,2),(2,1)],3)
 => 0
[[1,2,5],[3,4]]
 => [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 1
[[1,3,4],[2,5]]
 => [2,5,1,3,4] => ([(0,4),(1,2),(1,4),(4,3)],5)
 => ([(0,3),(2,1),(3,2)],4)
 => 0
[[1,2,4],[3,5]]
 => [3,5,1,2,4] => ([(0,3),(1,2),(1,4),(3,4)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => 1
[[1,2,3],[4,5]]
 => [4,5,1,2,3] => ([(0,3),(1,4),(4,2)],5)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => 2
[[1,4,5],[2],[3]]
 => [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
 => ([],1)
 => ? ∊ {0,0,0,1,1,2,2,2,3,3,4,4,5,7,10}
[[1,3,5],[2],[4]]
 => [4,2,1,3,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
 => ([],1)
 => ? ∊ {0,0,0,1,1,2,2,2,3,3,4,4,5,7,10}
[[1,2,5],[3],[4]]
 => [4,3,1,2,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
 => ([(0,1)],2)
 => ? ∊ {0,0,0,1,1,2,2,2,3,3,4,4,5,7,10}
[[1,3,4],[2],[5]]
 => [5,2,1,3,4] => ([(1,4),(2,4),(4,3)],5)
 => ([],1)
 => ? ∊ {0,0,0,1,1,2,2,2,3,3,4,4,5,7,10}
[[1,2,4],[3],[5]]
 => [5,3,1,2,4] => ([(1,4),(2,3),(3,4)],5)
 => ([(0,1)],2)
 => ? ∊ {0,0,0,1,1,2,2,2,3,3,4,4,5,7,10}
[[1,2,3],[4],[5]]
 => [5,4,1,2,3] => ([(2,3),(3,4)],5)
 => ([(0,2),(2,1)],3)
 => 0
[[1,4],[2,5],[3]]
 => [3,2,5,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => ([],1)
 => ? ∊ {0,0,0,1,1,2,2,2,3,3,4,4,5,7,10}
[[1,3],[2,5],[4]]
 => [4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
 => ([],1)
 => ? ∊ {0,0,0,1,1,2,2,2,3,3,4,4,5,7,10}
[[1,2],[3,5],[4]]
 => [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
 => ([(0,1)],2)
 => ? ∊ {0,0,0,1,1,2,2,2,3,3,4,4,5,7,10}
[[1,3],[2,4],[5]]
 => [5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
 => ([(0,2),(2,1)],3)
 => 0
[[1,2],[3,4],[5]]
 => [5,3,4,1,2] => ([(1,4),(2,3)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 1
[[1,5],[2],[3],[4]]
 => [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
 => ([],1)
 => ? ∊ {0,0,0,1,1,2,2,2,3,3,4,4,5,7,10}
[[1,4],[2],[3],[5]]
 => [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
 => ([],1)
 => ? ∊ {0,0,0,1,1,2,2,2,3,3,4,4,5,7,10}
[[1,3],[2],[4],[5]]
 => [5,4,2,1,3] => ([(2,4),(3,4)],5)
 => ([],1)
 => ? ∊ {0,0,0,1,1,2,2,2,3,3,4,4,5,7,10}
[[1,2],[3],[4],[5]]
 => [5,4,3,1,2] => ([(3,4)],5)
 => ([(0,1)],2)
 => ? ∊ {0,0,0,1,1,2,2,2,3,3,4,4,5,7,10}
[[1],[2],[3],[4],[5]]
 => [5,4,3,2,1] => ([],5)
 => ([],1)
 => ? ∊ {0,0,0,1,1,2,2,2,3,3,4,4,5,7,10}
[[1,2,3,4,5,6]]
 => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => 0
[[1,3,4,5,6],[2]]
 => [2,1,3,4,5,6] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
 => ([],1)
 => ? ∊ {0,0,1,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,4,5,6],[3]]
 => [3,1,2,4,5,6] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
 => ([(0,1)],2)
 => ? ∊ {0,0,1,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,3,5,6],[4]]
 => [4,1,2,3,5,6] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
 => ([(0,2),(2,1)],3)
 => 0
[[1,2,3,4,6],[5]]
 => [5,1,2,3,4,6] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
 => ([(0,3),(2,1),(3,2)],4)
 => 0
[[1,2,3,4,5],[6]]
 => [6,1,2,3,4,5] => ([(1,5),(3,4),(4,2),(5,3)],6)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => 0
[[1,3,5,6],[2,4]]
 => [2,4,1,3,5,6] => ([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
 => ([(0,2),(2,1)],3)
 => 0
[[1,2,5,6],[3,4]]
 => [3,4,1,2,5,6] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 1
[[1,3,4,6],[2,5]]
 => [2,5,1,3,4,6] => ([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
 => ([(0,3),(2,1),(3,2)],4)
 => 0
[[1,2,4,6],[3,5]]
 => [3,5,1,2,4,6] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => 1
[[1,2,3,6],[4,5]]
 => [4,5,1,2,3,6] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => 2
[[1,3,4,5],[2,6]]
 => [2,6,1,3,4,5] => ([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => 0
[[1,2,4,5],[3,6]]
 => [3,6,1,2,4,5] => ([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => 1
[[1,2,3,5],[4,6]]
 => [4,6,1,2,3,5] => ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => 2
[[1,2,3,4],[5,6]]
 => [5,6,1,2,3,4] => ([(0,5),(1,3),(4,2),(5,4)],6)
 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
 => ? ∊ {0,0,1,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,4,5,6],[2],[3]]
 => [3,2,1,4,5,6] => ([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
 => ([],1)
 => ? ∊ {0,0,1,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,3,5,6],[2],[4]]
 => [4,2,1,3,5,6] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
 => ([],1)
 => ? ∊ {0,0,1,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,5,6],[3],[4]]
 => [4,3,1,2,5,6] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
 => ([(0,1)],2)
 => ? ∊ {0,0,1,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,3,4,6],[2],[5]]
 => [5,2,1,3,4,6] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
 => ([],1)
 => ? ∊ {0,0,1,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,4,6],[3],[5]]
 => [5,3,1,2,4,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
 => ([(0,1)],2)
 => ? ∊ {0,0,1,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,3,6],[4],[5]]
 => [5,4,1,2,3,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
 => ([(0,2),(2,1)],3)
 => 0
[[1,3,4,5],[2],[6]]
 => [6,2,1,3,4,5] => ([(1,5),(2,5),(3,4),(5,3)],6)
 => ([],1)
 => ? ∊ {0,0,1,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,4,5],[3],[6]]
 => [6,3,1,2,4,5] => ([(1,5),(2,3),(3,5),(5,4)],6)
 => ([(0,1)],2)
 => ? ∊ {0,0,1,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,3,5],[4],[6]]
 => [6,4,1,2,3,5] => ([(1,5),(2,3),(3,4),(4,5)],6)
 => ([(0,2),(2,1)],3)
 => 0
[[1,2,3,4],[5],[6]]
 => [6,5,1,2,3,4] => ([(2,3),(3,5),(5,4)],6)
 => ([(0,3),(2,1),(3,2)],4)
 => 0
[[1,3,5],[2,4,6]]
 => [2,4,6,1,3,5] => ([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => 1
[[1,2,5],[3,4,6]]
 => [3,4,6,1,2,5] => ([(0,3),(1,4),(3,5),(4,2),(4,5)],6)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => 2
[[1,3,4],[2,5,6]]
 => [2,5,6,1,3,4] => ([(0,5),(1,4),(1,5),(4,2),(5,3)],6)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => 2
[[1,2,4],[3,5,6]]
 => [3,5,6,1,2,4] => ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
 => ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
 => ? ∊ {0,0,1,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,3],[4,5,6]]
 => [4,5,6,1,2,3] => ([(0,5),(1,4),(4,2),(5,3)],6)
 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
 => ? ∊ {0,0,1,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,4,6],[2,5],[3]]
 => [3,2,5,1,4,6] => ([(0,5),(1,3),(1,5),(2,3),(2,5),(3,4),(5,4)],6)
 => ([],1)
 => ? ∊ {0,0,1,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,3,6],[2,5],[4]]
 => [4,2,5,1,3,6] => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
 => ([],1)
 => ? ∊ {0,0,1,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,6],[3,5],[4]]
 => [4,3,5,1,2,6] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
 => ([(0,1)],2)
 => ? ∊ {0,0,1,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,3,6],[2,4],[5]]
 => [5,2,4,1,3,6] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
 => ([(0,2),(2,1)],3)
 => 0
[[1,2,6],[3,4],[5]]
 => [5,3,4,1,2,6] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 1
[[1,4,5],[2,6],[3]]
 => [3,2,6,1,4,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(5,3)],6)
 => ([],1)
 => ? ∊ {0,0,1,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,3,5],[2,6],[4]]
 => [4,2,6,1,3,5] => ([(0,4),(1,3),(1,5),(2,3),(2,4),(4,5)],6)
 => ([],1)
 => ? ∊ {0,0,1,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,5],[3,6],[4]]
 => [4,3,6,1,2,5] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(3,5)],6)
 => ([(0,1)],2)
 => ? ∊ {0,0,1,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,3,4],[2,6],[5]]
 => [5,2,6,1,3,4] => ([(0,5),(1,4),(2,4),(2,5),(5,3)],6)
 => ([],1)
 => ? ∊ {0,0,1,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,4],[3,6],[5]]
 => [5,3,6,1,2,4] => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6)
 => ([(0,1)],2)
 => ? ∊ {0,0,1,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,3],[4,6],[5]]
 => [5,4,6,1,2,3] => ([(0,5),(1,5),(2,3),(3,4)],6)
 => ([(0,2),(2,1)],3)
 => 0
[[1,3,5],[2,4],[6]]
 => [6,2,4,1,3,5] => ([(1,4),(2,3),(2,4),(3,5),(4,5)],6)
 => ([(0,2),(2,1)],3)
 => 0
[[1,2,5],[3,4],[6]]
 => [6,3,4,1,2,5] => ([(1,4),(2,3),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 1
[[1,3,4],[2,5],[6]]
 => [6,2,5,1,3,4] => ([(1,5),(2,3),(2,5),(5,4)],6)
 => ([(0,3),(2,1),(3,2)],4)
 => 0
[[1,2,4],[3,5],[6]]
 => [6,3,5,1,2,4] => ([(1,4),(2,3),(2,5),(4,5)],6)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => 1
[[1,2,3],[4,5],[6]]
 => [6,4,5,1,2,3] => ([(1,3),(2,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => 2
[[1,5,6],[2],[3],[4]]
 => [4,3,2,1,5,6] => ([(0,5),(1,5),(2,5),(3,5),(5,4)],6)
 => ([],1)
 => ? ∊ {0,0,1,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,4,6],[2],[3],[5]]
 => [5,3,2,1,4,6] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
 => ([],1)
 => ? ∊ {0,0,1,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,3,6],[2],[4],[5]]
 => [5,4,2,1,3,6] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
 => ([],1)
 => ? ∊ {0,0,1,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,3],[4],[5],[6]]
 => [6,5,4,1,2,3] => ([(3,4),(4,5)],6)
 => ([(0,2),(2,1)],3)
 => 0
[[1,4],[2,5],[3,6]]
 => [3,6,2,5,1,4] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
 => ([(0,3),(2,1),(3,2)],4)
 => 0
[[1,3],[2,5],[4,6]]
 => [4,6,2,5,1,3] => ([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
 => ([(0,3),(2,1),(3,2)],4)
 => 0
[[1,2],[3,5],[4,6]]
 => [4,6,3,5,1,2] => ([(0,5),(1,3),(2,4),(2,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => 2
[[1,3],[2,4],[5,6]]
 => [5,6,2,4,1,3] => ([(0,5),(1,3),(2,4),(2,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => 2
[[1,3],[2,4],[5],[6]]
 => [6,5,2,4,1,3] => ([(2,5),(3,4),(3,5)],6)
 => ([(0,2),(2,1)],3)
 => 0
[[1,2],[3,4],[5],[6]]
 => [6,5,3,4,1,2] => ([(2,5),(3,4)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 1
Description
Number of indecomposable injective modules with projective dimension 2.
Matching statistic: St001604
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001604: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 31%●distinct values known / distinct values provided: 14%
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001604: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 31%●distinct values known / distinct values provided: 14%
Values
[[1]]
 => [1] => [1]
 => []
 => ? = 0
[[1,2]]
 => [1,2] => [1,1]
 => [1]
 => ? ∊ {0,0}
[[1],[2]]
 => [2,1] => [2]
 => []
 => ? ∊ {0,0}
[[1,2,3]]
 => [1,2,3] => [1,1,1]
 => [1,1]
 => ? ∊ {0,0,0,1}
[[1,3],[2]]
 => [2,1,3] => [2,1]
 => [1]
 => ? ∊ {0,0,0,1}
[[1,2],[3]]
 => [3,1,2] => [3]
 => []
 => ? ∊ {0,0,0,1}
[[1],[2],[3]]
 => [3,2,1] => [2,1]
 => [1]
 => ? ∊ {0,0,0,1}
[[1,2,3,4]]
 => [1,2,3,4] => [1,1,1,1]
 => [1,1,1]
 => 0
[[1,3,4],[2]]
 => [2,1,3,4] => [2,1,1]
 => [1,1]
 => ? ∊ {0,0,0,0,0,1,1,2,4}
[[1,2,4],[3]]
 => [3,1,2,4] => [3,1]
 => [1]
 => ? ∊ {0,0,0,0,0,1,1,2,4}
[[1,2,3],[4]]
 => [4,1,2,3] => [4]
 => []
 => ? ∊ {0,0,0,0,0,1,1,2,4}
[[1,3],[2,4]]
 => [2,4,1,3] => [4]
 => []
 => ? ∊ {0,0,0,0,0,1,1,2,4}
[[1,2],[3,4]]
 => [3,4,1,2] => [2,2]
 => [2]
 => ? ∊ {0,0,0,0,0,1,1,2,4}
[[1,4],[2],[3]]
 => [3,2,1,4] => [2,1,1]
 => [1,1]
 => ? ∊ {0,0,0,0,0,1,1,2,4}
[[1,3],[2],[4]]
 => [4,2,1,3] => [3,1]
 => [1]
 => ? ∊ {0,0,0,0,0,1,1,2,4}
[[1,2],[3],[4]]
 => [4,3,1,2] => [4]
 => []
 => ? ∊ {0,0,0,0,0,1,1,2,4}
[[1],[2],[3],[4]]
 => [4,3,2,1] => [2,2]
 => [2]
 => ? ∊ {0,0,0,0,0,1,1,2,4}
[[1,2,3,4,5]]
 => [1,2,3,4,5] => [1,1,1,1,1]
 => [1,1,1,1]
 => 0
[[1,3,4,5],[2]]
 => [2,1,3,4,5] => [2,1,1,1]
 => [1,1,1]
 => 0
[[1,2,4,5],[3]]
 => [3,1,2,4,5] => [3,1,1]
 => [1,1]
 => ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,5,7,10}
[[1,2,3,5],[4]]
 => [4,1,2,3,5] => [4,1]
 => [1]
 => ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,5,7,10}
[[1,2,3,4],[5]]
 => [5,1,2,3,4] => [5]
 => []
 => ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,5,7,10}
[[1,3,5],[2,4]]
 => [2,4,1,3,5] => [4,1]
 => [1]
 => ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,5,7,10}
[[1,2,5],[3,4]]
 => [3,4,1,2,5] => [2,2,1]
 => [2,1]
 => 0
[[1,3,4],[2,5]]
 => [2,5,1,3,4] => [5]
 => []
 => ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,5,7,10}
[[1,2,4],[3,5]]
 => [3,5,1,2,4] => [3,2]
 => [2]
 => ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,5,7,10}
[[1,2,3],[4,5]]
 => [4,5,1,2,3] => [5]
 => []
 => ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,5,7,10}
[[1,4,5],[2],[3]]
 => [3,2,1,4,5] => [2,1,1,1]
 => [1,1,1]
 => 0
[[1,3,5],[2],[4]]
 => [4,2,1,3,5] => [3,1,1]
 => [1,1]
 => ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,5,7,10}
[[1,2,5],[3],[4]]
 => [4,3,1,2,5] => [4,1]
 => [1]
 => ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,5,7,10}
[[1,3,4],[2],[5]]
 => [5,2,1,3,4] => [4,1]
 => [1]
 => ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,5,7,10}
[[1,2,4],[3],[5]]
 => [5,3,1,2,4] => [5]
 => []
 => ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,5,7,10}
[[1,2,3],[4],[5]]
 => [5,4,1,2,3] => [3,2]
 => [2]
 => ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,5,7,10}
[[1,4],[2,5],[3]]
 => [3,2,5,1,4] => [4,1]
 => [1]
 => ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,5,7,10}
[[1,3],[2,5],[4]]
 => [4,2,5,1,3] => [2,2,1]
 => [2,1]
 => 0
[[1,2],[3,5],[4]]
 => [4,3,5,1,2] => [3,2]
 => [2]
 => ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,5,7,10}
[[1,3],[2,4],[5]]
 => [5,2,4,1,3] => [4,1]
 => [1]
 => ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,5,7,10}
[[1,2],[3,4],[5]]
 => [5,3,4,1,2] => [5]
 => []
 => ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,5,7,10}
[[1,5],[2],[3],[4]]
 => [4,3,2,1,5] => [2,2,1]
 => [2,1]
 => 0
[[1,4],[2],[3],[5]]
 => [5,3,2,1,4] => [3,2]
 => [2]
 => ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,5,7,10}
[[1,3],[2],[4],[5]]
 => [5,4,2,1,3] => [5]
 => []
 => ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,5,7,10}
[[1,2],[3],[4],[5]]
 => [5,4,3,1,2] => [4,1]
 => [1]
 => ? ∊ {0,0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,5,7,10}
[[1],[2],[3],[4],[5]]
 => [5,4,3,2,1] => [2,2,1]
 => [2,1]
 => 0
[[1,2,3,4,5,6]]
 => [1,2,3,4,5,6] => [1,1,1,1,1,1]
 => [1,1,1,1,1]
 => 1
[[1,3,4,5,6],[2]]
 => [2,1,3,4,5,6] => [2,1,1,1,1]
 => [1,1,1,1]
 => 0
[[1,2,4,5,6],[3]]
 => [3,1,2,4,5,6] => [3,1,1,1]
 => [1,1,1]
 => 0
[[1,2,3,5,6],[4]]
 => [4,1,2,3,5,6] => [4,1,1]
 => [1,1]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,3,4,6],[5]]
 => [5,1,2,3,4,6] => [5,1]
 => [1]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,3,4,5],[6]]
 => [6,1,2,3,4,5] => [6]
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,3,5,6],[2,4]]
 => [2,4,1,3,5,6] => [4,1,1]
 => [1,1]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,5,6],[3,4]]
 => [3,4,1,2,5,6] => [2,2,1,1]
 => [2,1,1]
 => 0
[[1,3,4,6],[2,5]]
 => [2,5,1,3,4,6] => [5,1]
 => [1]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,4,6],[3,5]]
 => [3,5,1,2,4,6] => [3,2,1]
 => [2,1]
 => 0
[[1,2,3,6],[4,5]]
 => [4,5,1,2,3,6] => [5,1]
 => [1]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,3,4,5],[2,6]]
 => [2,6,1,3,4,5] => [6]
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,4,5],[3,6]]
 => [3,6,1,2,4,5] => [4,2]
 => [2]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,3,5],[4,6]]
 => [4,6,1,2,3,5] => [6]
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,3,4],[5,6]]
 => [5,6,1,2,3,4] => [3,3]
 => [3]
 => 1
[[1,4,5,6],[2],[3]]
 => [3,2,1,4,5,6] => [2,1,1,1,1]
 => [1,1,1,1]
 => 0
[[1,3,5,6],[2],[4]]
 => [4,2,1,3,5,6] => [3,1,1,1]
 => [1,1,1]
 => 0
[[1,2,5,6],[3],[4]]
 => [4,3,1,2,5,6] => [4,1,1]
 => [1,1]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,3,4,6],[2],[5]]
 => [5,2,1,3,4,6] => [4,1,1]
 => [1,1]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,4,6],[3],[5]]
 => [5,3,1,2,4,6] => [5,1]
 => [1]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,3,6],[4],[5]]
 => [5,4,1,2,3,6] => [3,2,1]
 => [2,1]
 => 0
[[1,3,4,5],[2],[6]]
 => [6,2,1,3,4,5] => [5,1]
 => [1]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,4,5],[3],[6]]
 => [6,3,1,2,4,5] => [6]
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,2,3,5],[4],[6]]
 => [6,4,1,2,3,5] => [4,2]
 => [2]
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8,8,10,10,10,10,11,13,16,20}
[[1,3,5],[2,4,6]]
 => [2,4,6,1,3,5] => [3,3]
 => [3]
 => 1
[[1,2,3],[4,5,6]]
 => [4,5,6,1,2,3] => [2,2,2]
 => [2,2]
 => 1
[[1,3,6],[2,5],[4]]
 => [4,2,5,1,3,6] => [2,2,1,1]
 => [2,1,1]
 => 0
[[1,2,6],[3,5],[4]]
 => [4,3,5,1,2,6] => [3,2,1]
 => [2,1]
 => 0
[[1,3,5],[2,6],[4]]
 => [4,2,6,1,3,5] => [3,2,1]
 => [2,1]
 => 0
[[1,3,4],[2,5],[6]]
 => [6,2,5,1,3,4] => [3,2,1]
 => [2,1]
 => 0
[[1,2,4],[3,5],[6]]
 => [6,3,5,1,2,4] => [3,3]
 => [3]
 => 1
[[1,5,6],[2],[3],[4]]
 => [4,3,2,1,5,6] => [2,2,1,1]
 => [2,1,1]
 => 0
[[1,4,6],[2],[3],[5]]
 => [5,3,2,1,4,6] => [3,2,1]
 => [2,1]
 => 0
[[1,3,4],[2],[5],[6]]
 => [6,5,2,1,3,4] => [3,3]
 => [3]
 => 1
[[1,2,4],[3],[5],[6]]
 => [6,5,3,1,2,4] => [3,2,1]
 => [2,1]
 => 0
[[1,3],[2,5],[4,6]]
 => [4,6,2,5,1,3] => [3,3]
 => [3]
 => 1
[[1,2],[3,5],[4,6]]
 => [4,6,3,5,1,2] => [3,2,1]
 => [2,1]
 => 0
[[1,3],[2,4],[5,6]]
 => [5,6,2,4,1,3] => [3,2,1]
 => [2,1]
 => 0
[[1,2],[3,4],[5,6]]
 => [5,6,3,4,1,2] => [2,2,1,1]
 => [2,1,1]
 => 0
[[1,4],[2,6],[3],[5]]
 => [5,3,2,6,1,4] => [2,2,2]
 => [2,2]
 => 1
[[1,2],[3,6],[4],[5]]
 => [5,4,3,6,1,2] => [3,2,1]
 => [2,1]
 => 0
[[1,6],[2],[3],[4],[5]]
 => [5,4,3,2,1,6] => [2,2,1,1]
 => [2,1,1]
 => 0
[[1,5],[2],[3],[4],[6]]
 => [6,4,3,2,1,5] => [3,2,1]
 => [2,1]
 => 0
[[1],[2],[3],[4],[5],[6]]
 => [6,5,4,3,2,1] => [2,2,2]
 => [2,2]
 => 1
Description
The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons.
Equivalently, this is the multiplicity of the irreducible representation corresponding to a partition in the cycle index of the dihedral group.
This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
The following 18 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000454The largest eigenvalue of a graph if it is integral. St001846The number of elements which do not have a complement in the lattice. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000632The jump number of the poset. St001397Number of pairs of incomparable elements in a finite poset. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000298The order dimension or Dushnik-Miller dimension of a poset. St000307The number of rowmotion orbits of a poset. St001268The size of the largest ordinal summand in the poset. St001399The distinguishing number of a poset. St001779The order of promotion on the set of linear extensions of a poset. St001964The interval resolution global dimension of a poset. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000850The number of 1/2-balanced pairs in a poset. St001095The number of non-isomorphic posets with precisely one further covering relation.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!