edit this statistic or download as text // json
Identifier
  • St001877: Lattices ⟶ ℤ (values match St001876The number of 2-regular simple modules in the incidence algebra of the lattice.)
Values
=>
Cc0029;cc-rep
([(0,2),(2,1)],3)=>0 ([(0,1),(0,2),(1,3),(2,3)],4)=>1 ([(0,3),(2,1),(3,2)],4)=>0 ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)=>4 ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)=>2 ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)=>1 ([(0,4),(2,3),(3,1),(4,2)],5)=>0 ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)=>1 ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)=>5 ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)=>5 ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)=>4 ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)=>4 ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)=>2 ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)=>1 ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)=>3 ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)=>1 ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)=>4 ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)=>1 ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)=>4 ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)=>3 ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)=>2 ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)=>0 ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)=>2 ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>6 ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)=>6 ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)=>6 ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)=>5 ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)=>5 ([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)=>5 ([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)=>4 ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)=>4 ([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)=>5 ([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)=>4 ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)=>4 ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)=>1 ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)=>3 ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)=>2 ([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)=>6 ([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)=>5 ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)=>4 ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>6 ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)=>5 ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)=>2 ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)=>5 ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)=>4 ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)=>5 ([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)=>5 ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)=>4 ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)=>1 ([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)=>4 ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)=>5 ([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)=>5 ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)=>6 ([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)=>6 ([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)=>3 ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)=>2 ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)=>3 ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)=>5 ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)=>5 ([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)=>3 ([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)=>4 ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)=>2 ([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)=>4 ([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)=>4 ([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)=>3 ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)=>4 ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)=>1 ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)=>5 ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)=>2 ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)=>4 ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)=>2 ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)=>3 ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)=>0 ([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)=>3 ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)=>3 ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)=>1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
Number of indecomposable injective modules with projective dimension 2.
Code

DeclareOperation("indinjprojdim2",[IsList]);

InstallMethod(indinjprojdim2, "for a representation of a quiver", [IsList],0,function(LIST)

local A,L,LL,M,B,n,T,D,injA,W,simA;

A:=LIST[1];
injA:=IndecInjectiveModules(A);
W:=Filtered(injA,x->ProjDimensionOfModule(x,33)=2);
return(Size(W));

end);
Created
Oct 03, 2020 at 20:07 by Rene Marczinzik
Updated
Oct 03, 2020 at 20:07 by Rene Marczinzik