searching the database
Your data matches 13 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000029
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00080: Set partitions —to permutation⟶ Permutations
St000029: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000029: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => 0
{{1,2}}
=> [2,1] => 1
{{1},{2}}
=> [1,2] => 0
{{1,2,3}}
=> [2,3,1] => 2
{{1,2},{3}}
=> [2,1,3] => 1
{{1,3},{2}}
=> [3,2,1] => 2
{{1},{2,3}}
=> [1,3,2] => 1
{{1},{2},{3}}
=> [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => 3
{{1,2,3},{4}}
=> [2,3,1,4] => 2
{{1,2,4},{3}}
=> [2,4,3,1] => 3
{{1,2},{3,4}}
=> [2,1,4,3] => 2
{{1,2},{3},{4}}
=> [2,1,3,4] => 1
{{1,3,4},{2}}
=> [3,2,4,1] => 3
{{1,3},{2,4}}
=> [3,4,1,2] => 4
{{1,3},{2},{4}}
=> [3,2,1,4] => 2
{{1,4},{2,3}}
=> [4,3,2,1] => 4
{{1},{2,3,4}}
=> [1,3,4,2] => 2
{{1},{2,3},{4}}
=> [1,3,2,4] => 1
{{1,4},{2},{3}}
=> [4,2,3,1] => 3
{{1},{2,4},{3}}
=> [1,4,3,2] => 2
{{1},{2},{3,4}}
=> [1,2,4,3] => 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => 4
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => 3
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => 4
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => 3
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => 2
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => 4
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => 5
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => 3
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => 5
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => 3
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => 2
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => 4
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => 3
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => 2
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => 4
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => 6
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => 3
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => 6
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => 5
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => 4
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => 4
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => 5
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => 3
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => 5
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => 6
Description
The depth of a permutation.
This is given by
dp(σ)=∑σi>i(σi−i)=|{i≤j:σi>j}|.
The depth is half of the total displacement [4], Problem 5.1.1.28, or Spearman’s disarray [3] ∑i|σi−i|.
Permutations with depth at most 1 are called ''almost-increasing'' in [5].
Matching statistic: St000224
Mp00080: Set partitions —to permutation⟶ Permutations
St000224: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000224: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => 0
{{1,2}}
=> [2,1] => 1
{{1},{2}}
=> [1,2] => 0
{{1,2,3}}
=> [2,3,1] => 2
{{1,2},{3}}
=> [2,1,3] => 1
{{1,3},{2}}
=> [3,2,1] => 2
{{1},{2,3}}
=> [1,3,2] => 1
{{1},{2},{3}}
=> [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => 3
{{1,2,3},{4}}
=> [2,3,1,4] => 2
{{1,2,4},{3}}
=> [2,4,3,1] => 3
{{1,2},{3,4}}
=> [2,1,4,3] => 2
{{1,2},{3},{4}}
=> [2,1,3,4] => 1
{{1,3,4},{2}}
=> [3,2,4,1] => 3
{{1,3},{2,4}}
=> [3,4,1,2] => 4
{{1,3},{2},{4}}
=> [3,2,1,4] => 2
{{1,4},{2,3}}
=> [4,3,2,1] => 4
{{1},{2,3,4}}
=> [1,3,4,2] => 2
{{1},{2,3},{4}}
=> [1,3,2,4] => 1
{{1,4},{2},{3}}
=> [4,2,3,1] => 3
{{1},{2,4},{3}}
=> [1,4,3,2] => 2
{{1},{2},{3,4}}
=> [1,2,4,3] => 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => 4
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => 3
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => 4
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => 3
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => 2
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => 4
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => 5
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => 3
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => 5
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => 3
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => 2
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => 4
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => 3
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => 2
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => 4
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => 6
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => 3
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => 6
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => 5
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => 4
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => 4
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => 5
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => 3
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => 5
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => 6
Description
The sorting index of a permutation.
The sorting index counts the total distance that symbols move during a selection sort of a permutation. This sorting algorithm swaps symbol n into index n and then recursively sorts the first n-1 symbols.
Compare this to [[St000018]], the number of inversions of a permutation, which is also the total distance that elements move during a bubble sort.
Matching statistic: St000030
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
St000030: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
St000030: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => 0
{{1,2}}
=> [2,1] => [2,1] => 1
{{1},{2}}
=> [1,2] => [1,2] => 0
{{1,2,3}}
=> [2,3,1] => [3,2,1] => 2
{{1,2},{3}}
=> [2,1,3] => [2,1,3] => 1
{{1,3},{2}}
=> [3,2,1] => [2,3,1] => 2
{{1},{2,3}}
=> [1,3,2] => [1,3,2] => 1
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [4,3,2,1] => 3
{{1,2,3},{4}}
=> [2,3,1,4] => [3,2,1,4] => 2
{{1,2,4},{3}}
=> [2,4,3,1] => [3,4,2,1] => 3
{{1,2},{3,4}}
=> [2,1,4,3] => [2,1,4,3] => 2
{{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,3,4] => 1
{{1,3,4},{2}}
=> [3,2,4,1] => [2,4,3,1] => 3
{{1,3},{2,4}}
=> [3,4,1,2] => [4,1,3,2] => 4
{{1,3},{2},{4}}
=> [3,2,1,4] => [2,3,1,4] => 2
{{1,4},{2,3}}
=> [4,3,2,1] => [3,2,4,1] => 4
{{1},{2,3,4}}
=> [1,3,4,2] => [1,4,3,2] => 2
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,3,2,4] => 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [2,3,4,1] => 3
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,3,4,2] => 2
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,4,3] => 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [5,4,3,2,1] => 4
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [4,3,2,1,5] => 3
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [4,5,3,2,1] => 4
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [3,2,1,5,4] => 3
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [3,2,1,4,5] => 2
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [3,5,4,2,1] => 4
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [5,2,1,4,3] => 5
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [3,4,2,1,5] => 3
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [4,3,5,2,1] => 5
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [2,1,5,4,3] => 3
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [2,1,4,3,5] => 2
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [3,4,5,2,1] => 4
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [2,1,4,5,3] => 3
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [2,1,3,5,4] => 2
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [2,1,3,4,5] => 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [2,5,4,3,1] => 4
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [4,1,5,3,2] => 6
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [2,4,3,1,5] => 3
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [5,2,4,3,1] => 6
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [5,4,1,3,2] => 5
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [4,1,3,2,5] => 4
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [2,4,5,3,1] => 4
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [4,5,1,3,2] => 5
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [2,3,1,5,4] => 3
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [2,3,1,4,5] => 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [3,2,5,4,1] => 5
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [5,3,1,4,2] => 6
Description
The sum of the descent differences of a permutations.
This statistic is given by
π↦∑i∈Des(π)(πi−πi+1).
See [[St000111]] and [[St000154]] for the sum of the descent tops and the descent bottoms, respectively. This statistic was studied in [1] and [2] where is was called the ''drop'' of a permutation.
Matching statistic: St000728
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
St000728: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1}}
=> ? = 0
{{1,2}}
=> 1
{{1},{2}}
=> 0
{{1,2,3}}
=> 2
{{1,2},{3}}
=> 1
{{1,3},{2}}
=> 2
{{1},{2,3}}
=> 1
{{1},{2},{3}}
=> 0
{{1,2,3,4}}
=> 3
{{1,2,3},{4}}
=> 2
{{1,2,4},{3}}
=> 3
{{1,2},{3,4}}
=> 2
{{1,2},{3},{4}}
=> 1
{{1,3,4},{2}}
=> 3
{{1,3},{2,4}}
=> 4
{{1,3},{2},{4}}
=> 2
{{1,4},{2,3}}
=> 4
{{1},{2,3,4}}
=> 2
{{1},{2,3},{4}}
=> 1
{{1,4},{2},{3}}
=> 3
{{1},{2,4},{3}}
=> 2
{{1},{2},{3,4}}
=> 1
{{1},{2},{3},{4}}
=> 0
{{1,2,3,4,5}}
=> 4
{{1,2,3,4},{5}}
=> 3
{{1,2,3,5},{4}}
=> 4
{{1,2,3},{4,5}}
=> 3
{{1,2,3},{4},{5}}
=> 2
{{1,2,4,5},{3}}
=> 4
{{1,2,4},{3,5}}
=> 5
{{1,2,4},{3},{5}}
=> 3
{{1,2,5},{3,4}}
=> 5
{{1,2},{3,4,5}}
=> 3
{{1,2},{3,4},{5}}
=> 2
{{1,2,5},{3},{4}}
=> 4
{{1,2},{3,5},{4}}
=> 3
{{1,2},{3},{4,5}}
=> 2
{{1,2},{3},{4},{5}}
=> 1
{{1,3,4,5},{2}}
=> 4
{{1,3,4},{2,5}}
=> 6
{{1,3,4},{2},{5}}
=> 3
{{1,3,5},{2,4}}
=> 6
{{1,3},{2,4,5}}
=> 5
{{1,3},{2,4},{5}}
=> 4
{{1,3,5},{2},{4}}
=> 4
{{1,3},{2,5},{4}}
=> 5
{{1,3},{2},{4,5}}
=> 3
{{1,3},{2},{4},{5}}
=> 2
{{1,4,5},{2,3}}
=> 5
{{1,4},{2,3,5}}
=> 6
{{1,4},{2,3},{5}}
=> 4
Description
The dimension of a set partition.
This is the sum of the lengths of the arcs of a set partition. Equivalently, one obtains that this is the sum of the maximal entries of the blocks minus the sum of the minimal entries of the blocks.
A slightly shifted definition of the dimension is [[St000572]].
Matching statistic: St000777
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00239: Permutations —Corteel⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000777: Graphs ⟶ ℤResult quality: 45% ●values known / values provided: 45%●distinct values known / distinct values provided: 60%
Mp00239: Permutations —Corteel⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000777: Graphs ⟶ ℤResult quality: 45% ●values known / values provided: 45%●distinct values known / distinct values provided: 60%
Values
{{1}}
=> [1] => [1] => ([],1)
=> 1 = 0 + 1
{{1,2}}
=> [2,1] => [2,1] => ([(0,1)],2)
=> 2 = 1 + 1
{{1},{2}}
=> [1,2] => [1,2] => ([],2)
=> ? = 0 + 1
{{1,2,3}}
=> [2,3,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
{{1,2},{3}}
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {0,1,2} + 1
{{1,3},{2}}
=> [3,2,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
{{1},{2,3}}
=> [1,3,2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {0,1,2} + 1
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {0,1,2} + 1
{{1,2,3,4}}
=> [2,3,4,1] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
{{1,2,3},{4}}
=> [2,3,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,2,2,3,3,4,4} + 1
{{1,2,4},{3}}
=> [2,4,3,1] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
{{1,2},{3,4}}
=> [2,1,4,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {0,1,1,2,2,3,3,4,4} + 1
{{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {0,1,1,2,2,3,3,4,4} + 1
{{1,3,4},{2}}
=> [3,2,4,1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
{{1,3},{2,4}}
=> [3,4,1,2] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,2,2,3,3,4,4} + 1
{{1,4},{2,3}}
=> [4,3,2,1] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3 = 2 + 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,2,2,3,3,4,4} + 1
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {0,1,1,2,2,3,3,4,4} + 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,2,2,3,3,4,4} + 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {0,1,1,2,2,3,3,4,4} + 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {0,1,1,2,2,3,3,4,4} + 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 4 = 3 + 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => [3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 5 = 4 + 1
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 3 + 1
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
{{1},{2,5},{3,4}}
=> [1,5,4,3,2] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1},{2},{3,4,5}}
=> [1,2,4,5,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
{{1},{2,5},{3},{4}}
=> [1,5,3,4,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,2,3,4,5,6}}
=> [2,3,4,5,6,1] => [6,2,3,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
{{1,2,3,4,5},{6}}
=> [2,3,4,5,1,6] => [5,2,3,4,1,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,3,3,3,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9} + 1
{{1,2,3,4,6},{5}}
=> [2,3,4,6,5,1] => [5,2,3,4,6,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
{{1,2,3,4},{5,6}}
=> [2,3,4,1,6,5] => [4,2,3,1,6,5] => ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,3,3,3,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9} + 1
{{1,2,3,4},{5},{6}}
=> [2,3,4,1,5,6] => [4,2,3,1,5,6] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,3,3,3,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9} + 1
{{1,2,3,5,6},{4}}
=> [2,3,5,4,6,1] => [4,2,3,6,5,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
{{1,2,3,5},{4,6}}
=> [2,3,5,6,1,4] => [6,2,3,5,4,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
{{1,2,3,5},{4},{6}}
=> [2,3,5,4,1,6] => [4,2,3,5,1,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,3,3,3,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9} + 1
{{1,2,3,6},{4,5}}
=> [2,3,6,5,4,1] => [5,2,3,6,1,4] => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
{{1,2,3},{4,5,6}}
=> [2,3,1,5,6,4] => [3,2,1,6,5,4] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,3,3,3,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9} + 1
{{1,2,3},{4,5},{6}}
=> [2,3,1,5,4,6] => [3,2,1,5,4,6] => ([(1,2),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,3,3,3,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9} + 1
{{1,2,3,6},{4},{5}}
=> [2,3,6,4,5,1] => [4,2,3,5,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
{{1,2,3},{4,6},{5}}
=> [2,3,1,6,5,4] => [3,2,1,5,6,4] => ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,3,3,3,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9} + 1
{{1,2,4,5,6},{3}}
=> [2,4,3,5,6,1] => [3,2,6,4,5,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
{{1,2,4,5},{3,6}}
=> [2,4,6,5,1,3] => [6,2,4,5,3,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
{{1,2,4,6},{3,5}}
=> [2,4,5,6,3,1] => [6,2,5,4,1,3] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
{{1,2,4},{3,5,6}}
=> [2,4,5,1,6,3] => [6,2,4,3,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
{{1,2,4,6},{3},{5}}
=> [2,4,3,6,5,1] => [3,2,5,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 4 = 3 + 1
{{1,2,4},{3,6},{5}}
=> [2,4,6,1,5,3] => [5,2,4,3,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
{{1,2,5,6},{3,4}}
=> [2,5,4,3,6,1] => [4,2,6,1,5,3] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> 5 = 4 + 1
{{1,2,5},{3,4,6}}
=> [2,5,4,6,1,3] => [5,2,6,4,3,1] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
{{1,2,6},{3,4,5}}
=> [2,6,4,5,3,1] => [4,2,6,5,1,3] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 5 = 4 + 1
{{1,2,6},{3,4},{5}}
=> [2,6,4,3,5,1] => [4,2,5,1,6,3] => ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 5 = 4 + 1
{{1,2,5,6},{3},{4}}
=> [2,5,3,4,6,1] => [3,2,4,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 4 = 3 + 1
{{1,2,5},{3,6},{4}}
=> [2,5,6,4,1,3] => [5,2,4,6,3,1] => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Matching statistic: St001232
(load all 18 compositions to match this statistic)
(load all 18 compositions to match this statistic)
Mp00128: Set partitions —to composition⟶ Integer compositions
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 43% ●values known / values provided: 43%●distinct values known / distinct values provided: 60%
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 43% ●values known / values provided: 43%●distinct values known / distinct values provided: 60%
Values
{{1}}
=> [1] => [1] => [1,0]
=> 0
{{1,2}}
=> [2] => [1,1] => [1,0,1,0]
=> 1
{{1},{2}}
=> [1,1] => [2] => [1,1,0,0]
=> 0
{{1,2,3}}
=> [3] => [1,1,1] => [1,0,1,0,1,0]
=> ? = 2
{{1,2},{3}}
=> [2,1] => [2,1] => [1,1,0,0,1,0]
=> 1
{{1,3},{2}}
=> [2,1] => [2,1] => [1,1,0,0,1,0]
=> 1
{{1},{2,3}}
=> [1,2] => [1,2] => [1,0,1,1,0,0]
=> 2
{{1},{2},{3}}
=> [1,1,1] => [3] => [1,1,1,0,0,0]
=> 0
{{1,2,3,4}}
=> [4] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,4,4}
{{1,2,3},{4}}
=> [3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,4,4}
{{1,2,4},{3}}
=> [3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,4,4}
{{1,2},{3,4}}
=> [2,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 3
{{1,2},{3},{4}}
=> [2,1,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1
{{1,3,4},{2}}
=> [3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,4,4}
{{1,3},{2,4}}
=> [2,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 3
{{1,3},{2},{4}}
=> [2,1,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1
{{1,4},{2,3}}
=> [2,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 3
{{1},{2,3,4}}
=> [1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> ? ∊ {2,2,2,4,4}
{{1},{2,3},{4}}
=> [1,2,1] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
{{1,4},{2},{3}}
=> [2,1,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1
{{1},{2,4},{3}}
=> [1,2,1] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
{{1},{2},{3,4}}
=> [1,1,2] => [1,3] => [1,0,1,1,1,0,0,0]
=> 3
{{1},{2},{3},{4}}
=> [1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> 0
{{1,2,3,4,5}}
=> [5] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2,3,4},{5}}
=> [4,1] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2,3,5},{4}}
=> [4,1] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2,3},{4,5}}
=> [3,2] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2,3},{4},{5}}
=> [3,1,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2,4,5},{3}}
=> [4,1] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2,4},{3,5}}
=> [3,2] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2,4},{3},{5}}
=> [3,1,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2,5},{3,4}}
=> [3,2] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2},{3,4,5}}
=> [2,3] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2},{3,4},{5}}
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 3
{{1,2,5},{3},{4}}
=> [3,1,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2},{3,5},{4}}
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 3
{{1,2},{3},{4,5}}
=> [2,1,2] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 4
{{1,2},{3},{4},{5}}
=> [2,1,1,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1
{{1,3,4,5},{2}}
=> [4,1] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3,4},{2,5}}
=> [3,2] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3,4},{2},{5}}
=> [3,1,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3,5},{2,4}}
=> [3,2] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3},{2,4,5}}
=> [2,3] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3},{2,4},{5}}
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 3
{{1,3,5},{2},{4}}
=> [3,1,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3},{2,5},{4}}
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 3
{{1,3},{2},{4,5}}
=> [2,1,2] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 4
{{1,3},{2},{4},{5}}
=> [2,1,1,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1
{{1,4,5},{2,3}}
=> [3,2] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,4},{2,3,5}}
=> [2,3] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,4},{2,3},{5}}
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 3
{{1,5},{2,3,4}}
=> [2,3] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1},{2,3,4,5}}
=> [1,4] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1},{2,3,4},{5}}
=> [1,3,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,5},{2,3},{4}}
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 3
{{1},{2,3,5},{4}}
=> [1,3,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1},{2,3},{4,5}}
=> [1,2,2] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
{{1},{2,3},{4},{5}}
=> [1,2,1,1] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 2
{{1,4,5},{2},{3}}
=> [3,1,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,4},{2,5},{3}}
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 3
{{1,4},{2},{3,5}}
=> [2,1,2] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 4
{{1,4},{2},{3},{5}}
=> [2,1,1,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1
{{1,5},{2,4},{3}}
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 3
{{1},{2,4,5},{3}}
=> [1,3,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1},{2,4},{3,5}}
=> [1,2,2] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
{{1},{2,4},{3},{5}}
=> [1,2,1,1] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 2
{{1,5},{2},{3,4}}
=> [2,1,2] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 4
{{1},{2,5},{3,4}}
=> [1,2,2] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
{{1},{2},{3,4,5}}
=> [1,1,3] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1},{2},{3,4},{5}}
=> [1,1,2,1] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 3
{{1,5},{2},{3},{4}}
=> [2,1,1,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1
{{1},{2,5},{3},{4}}
=> [1,2,1,1] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 2
{{1},{2},{3,5},{4}}
=> [1,1,2,1] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 3
{{1},{2},{3},{4,5}}
=> [1,1,1,2] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 4
{{1},{2},{3},{4},{5}}
=> [1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
{{1,2,3,4,5,6}}
=> [6] => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3,4,5},{6}}
=> [5,1] => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3,4,6},{5}}
=> [5,1] => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3,4},{5,6}}
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3,4},{5},{6}}
=> [4,1,1] => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3,5,6},{4}}
=> [5,1] => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3,5},{4,6}}
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3,5},{4},{6}}
=> [4,1,1] => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3,6},{4,5}}
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3},{4,5,6}}
=> [3,3] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3},{4,5},{6}}
=> [3,2,1] => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3,6},{4},{5}}
=> [4,1,1] => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3},{4,6},{5}}
=> [3,2,1] => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3},{4},{5,6}}
=> [3,1,2] => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3},{4},{5},{6}}
=> [3,1,1,1] => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,4,5,6},{3}}
=> [5,1] => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,4,5},{3,6}}
=> [4,2] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,4,5},{3},{6}}
=> [4,1,1] => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2},{3,4},{5,6}}
=> [2,2,2] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5
{{1,2},{3,4},{5},{6}}
=> [2,2,1,1] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> 3
{{1,2},{3,5},{4,6}}
=> [2,2,2] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5
{{1,2},{3,5},{4},{6}}
=> [2,2,1,1] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> 3
{{1,2},{3,6},{4,5}}
=> [2,2,2] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5
{{1,2},{3},{4,5},{6}}
=> [2,1,2,1] => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> 4
{{1,2},{3,6},{4},{5}}
=> [2,2,1,1] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> 3
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St000454
(load all 14 compositions to match this statistic)
(load all 14 compositions to match this statistic)
Mp00128: Set partitions —to composition⟶ Integer compositions
Mp00039: Integer compositions —complement⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 25% ●values known / values provided: 25%●distinct values known / distinct values provided: 60%
Mp00039: Integer compositions —complement⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 25% ●values known / values provided: 25%●distinct values known / distinct values provided: 60%
Values
{{1}}
=> [1] => [1] => ([],1)
=> 0
{{1,2}}
=> [2] => [1,1] => ([(0,1)],2)
=> 1
{{1},{2}}
=> [1,1] => [2] => ([],2)
=> 0
{{1,2,3}}
=> [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
{{1,2},{3}}
=> [2,1] => [1,2] => ([(1,2)],3)
=> 1
{{1,3},{2}}
=> [2,1] => [1,2] => ([(1,2)],3)
=> 1
{{1},{2,3}}
=> [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> ? = 2
{{1},{2},{3}}
=> [1,1,1] => [3] => ([],3)
=> 0
{{1,2,3,4}}
=> [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
{{1,2,3},{4}}
=> [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
{{1,2,4},{3}}
=> [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
{{1,2},{3,4}}
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3,4,4}
{{1,2},{3},{4}}
=> [2,1,1] => [1,3] => ([(2,3)],4)
=> 1
{{1,3,4},{2}}
=> [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
{{1,3},{2,4}}
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3,4,4}
{{1,3},{2},{4}}
=> [2,1,1] => [1,3] => ([(2,3)],4)
=> 1
{{1,4},{2,3}}
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3,4,4}
{{1},{2,3,4}}
=> [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3,4,4}
{{1},{2,3},{4}}
=> [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3,4,4}
{{1,4},{2},{3}}
=> [2,1,1] => [1,3] => ([(2,3)],4)
=> 1
{{1},{2,4},{3}}
=> [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3,4,4}
{{1},{2},{3,4}}
=> [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3,4,4}
{{1},{2},{3},{4}}
=> [1,1,1,1] => [4] => ([],4)
=> 0
{{1,2,3,4,5}}
=> [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
{{1,2,3,4},{5}}
=> [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
{{1,2,3,5},{4}}
=> [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
{{1,2,3},{4,5}}
=> [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2,3},{4},{5}}
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
{{1,2,4,5},{3}}
=> [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
{{1,2,4},{3,5}}
=> [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2,4},{3},{5}}
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
{{1,2,5},{3,4}}
=> [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2},{3,4,5}}
=> [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2},{3,4},{5}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2,5},{3},{4}}
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
{{1,2},{3,5},{4}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2},{3},{4,5}}
=> [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2},{3},{4},{5}}
=> [2,1,1,1] => [1,4] => ([(3,4)],5)
=> 1
{{1,3,4,5},{2}}
=> [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
{{1,3,4},{2,5}}
=> [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3,4},{2},{5}}
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
{{1,3,5},{2,4}}
=> [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3},{2,4,5}}
=> [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3},{2,4},{5}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3,5},{2},{4}}
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
{{1,3},{2,5},{4}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3},{2},{4,5}}
=> [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3},{2},{4},{5}}
=> [2,1,1,1] => [1,4] => ([(3,4)],5)
=> 1
{{1,4,5},{2,3}}
=> [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,4},{2,3,5}}
=> [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,4},{2,3},{5}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,5},{2,3,4}}
=> [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1},{2,3,4,5}}
=> [1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1},{2,3,4},{5}}
=> [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,5},{2,3},{4}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1},{2,3,5},{4}}
=> [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1},{2,3},{4,5}}
=> [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1},{2,3},{4},{5}}
=> [1,2,1,1] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,4,5},{2},{3}}
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
{{1,4},{2,5},{3}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,4},{2},{3,5}}
=> [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,4},{2},{3},{5}}
=> [2,1,1,1] => [1,4] => ([(3,4)],5)
=> 1
{{1,5},{2,4},{3}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1},{2,4,5},{3}}
=> [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1},{2,4},{3,5}}
=> [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1},{2,4},{3},{5}}
=> [1,2,1,1] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,5},{2},{3,4}}
=> [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1},{2,5},{3,4}}
=> [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1},{2},{3,4,5}}
=> [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
{{1},{2},{3,4},{5}}
=> [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,5},{2},{3},{4}}
=> [2,1,1,1] => [1,4] => ([(3,4)],5)
=> 1
{{1},{2,5},{3},{4}}
=> [1,2,1,1] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1},{2},{3,5},{4}}
=> [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1},{2},{3},{4,5}}
=> [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
{{1},{2},{3},{4},{5}}
=> [1,1,1,1,1] => [5] => ([],5)
=> 0
{{1,2,3,4,5,6}}
=> [6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
{{1,2,3,4,5},{6}}
=> [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
{{1,2,3,4,6},{5}}
=> [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
{{1,2,3,4},{5,6}}
=> [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3,4},{5},{6}}
=> [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,2,3,5,6},{4}}
=> [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
{{1,2,3,5},{4,6}}
=> [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3,5},{4},{6}}
=> [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,2,3,6},{4,5}}
=> [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3},{4,5,6}}
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3},{4,5},{6}}
=> [3,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3,6},{4},{5}}
=> [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,2,3},{4,6},{5}}
=> [3,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3},{4},{5,6}}
=> [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3},{4},{5},{6}}
=> [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
{{1,2,4,5,6},{3}}
=> [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
{{1,2,4,5},{3,6}}
=> [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,4,5},{3},{6}}
=> [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,2,4,6},{3},{5}}
=> [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,2,4},{3},{5},{6}}
=> [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
{{1,2,5,6},{3},{4}}
=> [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,2,5},{3},{4},{6}}
=> [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
{{1,2,6},{3},{4},{5}}
=> [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
{{1,2},{3},{4},{5},{6}}
=> [2,1,1,1,1] => [1,5] => ([(4,5)],6)
=> 1
{{1,3,4,5,6},{2}}
=> [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
Description
The largest eigenvalue of a graph if it is integral.
If a graph is d-regular, then its largest eigenvalue equals d. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001645
Mp00128: Set partitions —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 24% ●values known / values provided: 24%●distinct values known / distinct values provided: 60%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 24% ●values known / values provided: 24%●distinct values known / distinct values provided: 60%
Values
{{1}}
=> [1] => ([],1)
=> ([],1)
=> 1 = 0 + 1
{{1,2}}
=> [2] => ([],2)
=> ([],1)
=> 1 = 0 + 1
{{1},{2}}
=> [1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
{{1,2,3}}
=> [3] => ([],3)
=> ([],1)
=> 1 = 0 + 1
{{1,2},{3}}
=> [2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 1 + 1
{{1,3},{2}}
=> [2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 1 + 1
{{1},{2,3}}
=> [1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 2 + 1
{{1},{2},{3}}
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
{{1,2,3,4}}
=> [4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
{{1,2,3},{4}}
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2 = 1 + 1
{{1,2,4},{3}}
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2 = 1 + 1
{{1,2},{3,4}}
=> [2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,3,3,3,4,4} + 1
{{1,2},{3},{4}}
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
{{1,3,4},{2}}
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2 = 1 + 1
{{1,3},{2,4}}
=> [2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,3,3,3,4,4} + 1
{{1,3},{2},{4}}
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
{{1,4},{2,3}}
=> [2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,3,3,3,4,4} + 1
{{1},{2,3,4}}
=> [1,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,3,3,3,4,4} + 1
{{1},{2,3},{4}}
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3,4,4} + 1
{{1,4},{2},{3}}
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
{{1},{2,4},{3}}
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3,4,4} + 1
{{1},{2},{3,4}}
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3,4,4} + 1
{{1},{2},{3},{4}}
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
{{1,2,3,4,5}}
=> [5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
{{1,2,3,4},{5}}
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2 = 1 + 1
{{1,2,3,5},{4}}
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2 = 1 + 1
{{1,2,3},{4,5}}
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,2,3},{4},{5}}
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
{{1,2,4,5},{3}}
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2 = 1 + 1
{{1,2,4},{3,5}}
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,2,4},{3},{5}}
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
{{1,2,5},{3,4}}
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,2},{3,4,5}}
=> [2,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,2},{3,4},{5}}
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,2,5},{3},{4}}
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
{{1,2},{3,5},{4}}
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,2},{3},{4,5}}
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,2},{3},{4},{5}}
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
{{1,3,4,5},{2}}
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2 = 1 + 1
{{1,3,4},{2,5}}
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,3,4},{2},{5}}
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
{{1,3,5},{2,4}}
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,3},{2,4,5}}
=> [2,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,3},{2,4},{5}}
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,3,5},{2},{4}}
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
{{1,3},{2,5},{4}}
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,3},{2},{4,5}}
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,3},{2},{4},{5}}
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
{{1,4,5},{2,3}}
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,4},{2,3,5}}
=> [2,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,4},{2,3},{5}}
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,5},{2,3,4}}
=> [2,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1},{2,3,4,5}}
=> [1,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1},{2,3,4},{5}}
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,5},{2,3},{4}}
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1},{2,3,5},{4}}
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1},{2,3},{4,5}}
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1},{2,3},{4},{5}}
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,4,5},{2},{3}}
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
{{1,4},{2,5},{3}}
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,4},{2},{3,5}}
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,4},{2},{3},{5}}
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
{{1,5},{2,4},{3}}
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1},{2,4,5},{3}}
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1},{2,4},{3,5}}
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1},{2,4},{3},{5}}
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,5},{2},{3,4}}
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1},{2,5},{3,4}}
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1},{2},{3,4,5}}
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1},{2},{3,4},{5}}
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1,5},{2},{3},{4}}
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
{{1},{2,5},{3},{4}}
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1},{2},{3,5},{4}}
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1},{2},{3},{4,5}}
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6} + 1
{{1},{2},{3},{4},{5}}
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
{{1,2,3,4,5,6}}
=> [6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
{{1,2,3,4,5},{6}}
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 2 = 1 + 1
{{1,2,3,4,6},{5}}
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 2 = 1 + 1
{{1,2,3,4},{5,6}}
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9} + 1
{{1,2,3,4},{5},{6}}
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
{{1,2,3,5,6},{4}}
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 2 = 1 + 1
{{1,2,3,5},{4,6}}
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9} + 1
{{1,2,3,5},{4},{6}}
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
{{1,2,3,6},{4,5}}
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9} + 1
{{1,2,3},{4,5,6}}
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9} + 1
{{1,2,3},{4,5},{6}}
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9} + 1
{{1,2,3,6},{4},{5}}
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
{{1,2,3},{4,6},{5}}
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9} + 1
{{1,2,3},{4},{5},{6}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
{{1,2,4,5,6},{3}}
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 2 = 1 + 1
{{1,2,4,5},{3},{6}}
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
{{1,2,4,6},{3},{5}}
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
{{1,2,4},{3},{5},{6}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
{{1,2,5,6},{3},{4}}
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
{{1,2,5},{3},{4},{6}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
{{1,2,6},{3},{4},{5}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
{{1,2},{3},{4},{5},{6}}
=> [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
{{1,3,4,5,6},{2}}
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 2 = 1 + 1
{{1,3,4,5},{2},{6}}
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
{{1,3,4,6},{2},{5}}
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
Description
The pebbling number of a connected graph.
Matching statistic: St000264
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 20%
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 20%
Values
{{1}}
=> [1] => [1] => ([],1)
=> ? = 0
{{1,2}}
=> [2,1] => [1,2] => ([],2)
=> ? ∊ {0,1}
{{1},{2}}
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {0,1}
{{1,2,3}}
=> [2,3,1] => [1,2,3] => ([],3)
=> ? ∊ {0,1,1,2,2}
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => ([],3)
=> ? ∊ {0,1,1,2,2}
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {0,1,1,2,2}
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => ([],3)
=> ? ∊ {0,1,1,2,2}
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {0,1,1,2,2}
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => ([],4)
=> ? ∊ {0,1,1,1,2,2,2,2,2,3,3,3,3,4,4}
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => ([],4)
=> ? ∊ {0,1,1,1,2,2,2,2,2,3,3,3,3,4,4}
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,2,2,2,2,2,3,3,3,3,4,4}
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => ([],4)
=> ? ∊ {0,1,1,1,2,2,2,2,2,3,3,3,3,4,4}
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {0,1,1,1,2,2,2,2,2,3,3,3,3,4,4}
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,2,2,2,2,2,3,3,3,3,4,4}
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,2,2,2,2,2,3,3,3,3,4,4}
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,2,2,2,2,2,3,3,3,3,4,4}
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,2,2,2,2,2,3,3,3,3,4,4}
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => ([],4)
=> ? ∊ {0,1,1,1,2,2,2,2,2,3,3,3,3,4,4}
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => ([],4)
=> ? ∊ {0,1,1,1,2,2,2,2,2,3,3,3,3,4,4}
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,2,2,2,2,2,3,3,3,3,4,4}
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,2,2,2,2,2,3,3,3,3,4,4}
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => ([],4)
=> ? ∊ {0,1,1,1,2,2,2,2,2,3,3,3,3,4,4}
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {0,1,1,1,2,2,2,2,2,3,3,3,3,4,4}
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => ([(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => ([(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => ([(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => [1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
{{1,2,5,6},{3,4}}
=> [2,5,4,3,6,1] => [1,2,5,6,3,4] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> 4
{{1,2,5,6},{3},{4}}
=> [2,5,3,4,6,1] => [1,2,5,6,3,4] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> 4
{{1,2,6},{3,5},{4}}
=> [2,6,5,4,3,1] => [1,2,6,3,5,4] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,3,5,6},{2,4}}
=> [3,4,5,2,6,1] => [1,3,5,6,2,4] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
{{1,3,5,6},{2},{4}}
=> [3,2,5,4,6,1] => [1,3,5,6,2,4] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
{{1,3,6},{2,5},{4}}
=> [3,5,6,4,2,1] => [1,3,6,2,5,4] => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 3
{{1,4,5,6},{2,3}}
=> [4,3,2,5,6,1] => [1,4,5,6,2,3] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
{{1,4,5},{2,3,6}}
=> [4,3,6,5,1,2] => [1,4,5,2,3,6] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> 4
{{1,4,5},{2,3},{6}}
=> [4,3,2,5,1,6] => [1,4,5,2,3,6] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> 4
{{1,4,6},{2,3,5}}
=> [4,3,5,6,2,1] => [1,4,6,2,3,5] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
{{1,4,6},{2,3},{5}}
=> [4,3,2,6,5,1] => [1,4,6,2,3,5] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
{{1,5,6},{2,3,4}}
=> [5,3,4,2,6,1] => [1,5,6,2,3,4] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
{{1,5,6},{2,3},{4}}
=> [5,3,2,4,6,1] => [1,5,6,2,3,4] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
{{1,6},{2,3,5},{4}}
=> [6,3,5,4,2,1] => [1,6,2,3,5,4] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,4,5,6},{2},{3}}
=> [4,2,3,5,6,1] => [1,4,5,6,2,3] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
{{1,4,5},{2,6},{3}}
=> [4,6,3,5,1,2] => [1,4,5,2,6,3] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
{{1,4,5},{2},{3,6}}
=> [4,2,6,5,1,3] => [1,4,5,2,3,6] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> 4
{{1,4,5},{2},{3},{6}}
=> [4,2,3,5,1,6] => [1,4,5,2,3,6] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> 4
{{1,4,6},{2,5},{3}}
=> [4,5,3,6,2,1] => [1,4,6,2,5,3] => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
{{1,4,6},{2},{3,5}}
=> [4,2,5,6,3,1] => [1,4,6,2,3,5] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
{{1,4,6},{2},{3},{5}}
=> [4,2,3,6,5,1] => [1,4,6,2,3,5] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
{{1,5,6},{2,4},{3}}
=> [5,4,3,2,6,1] => [1,5,6,2,4,3] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
{{1,5},{2,4,6},{3}}
=> [5,4,3,6,1,2] => [1,5,2,4,6,3] => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
{{1,5},{2,4},{3,6}}
=> [5,4,6,2,1,3] => [1,5,2,4,3,6] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,5},{2,4},{3},{6}}
=> [5,4,3,2,1,6] => [1,5,2,4,3,6] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,6},{2,4,5},{3}}
=> [6,4,3,5,2,1] => [1,6,2,4,5,3] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,6},{2,4},{3,5}}
=> [6,4,5,2,3,1] => [1,6,2,4,3,5] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,6},{2,4},{3},{5}}
=> [6,4,3,2,5,1] => [1,6,2,4,3,5] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,5,6},{2},{3,4}}
=> [5,2,4,3,6,1] => [1,5,6,2,3,4] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
{{1,5},{2,6},{3,4}}
=> [5,6,4,3,1,2] => [1,5,2,6,3,4] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
{{1,6},{2,5},{3,4}}
=> [6,5,4,3,2,1] => [1,6,2,5,3,4] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1},{2,5,6},{3,4}}
=> [1,5,4,3,6,2] => [1,2,5,6,3,4] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> 4
{{1,5,6},{2},{3},{4}}
=> [5,2,3,4,6,1] => [1,5,6,2,3,4] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
{{1,5},{2,6},{3},{4}}
=> [5,6,3,4,1,2] => [1,5,2,6,3,4] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
{{1,6},{2,5},{3},{4}}
=> [6,5,3,4,2,1] => [1,6,2,5,3,4] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1},{2,5,6},{3},{4}}
=> [1,5,3,4,6,2] => [1,2,5,6,3,4] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> 4
{{1,6},{2},{3,5},{4}}
=> [6,2,5,4,3,1] => [1,6,2,3,5,4] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1},{2,6},{3,5},{4}}
=> [1,6,5,4,3,2] => [1,2,6,3,5,4] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 3
Description
The girth of a graph, which is not a tree.
This is the length of the shortest cycle in the graph.
Matching statistic: St001861
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001861: Signed permutations ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 50%
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001861: Signed permutations ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 50%
Values
{{1}}
=> [1] => [1] => 0
{{1,2}}
=> [2,1] => [2,1] => 1
{{1},{2}}
=> [1,2] => [1,2] => 0
{{1,2,3}}
=> [2,3,1] => [2,3,1] => 2
{{1,2},{3}}
=> [2,1,3] => [2,1,3] => 1
{{1,3},{2}}
=> [3,2,1] => [3,2,1] => 2
{{1},{2,3}}
=> [1,3,2] => [1,3,2] => 1
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [2,3,4,1] => 3
{{1,2,3},{4}}
=> [2,3,1,4] => [2,3,1,4] => 2
{{1,2,4},{3}}
=> [2,4,3,1] => [2,4,3,1] => 3
{{1,2},{3,4}}
=> [2,1,4,3] => [2,1,4,3] => 2
{{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,3,4] => 1
{{1,3,4},{2}}
=> [3,2,4,1] => [3,2,4,1] => 3
{{1,3},{2,4}}
=> [3,4,1,2] => [3,4,1,2] => 4
{{1,3},{2},{4}}
=> [3,2,1,4] => [3,2,1,4] => 2
{{1,4},{2,3}}
=> [4,3,2,1] => [4,3,2,1] => 3
{{1},{2,3,4}}
=> [1,3,4,2] => [1,3,4,2] => 2
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,3,2,4] => 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [4,2,3,1] => 4
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,4,3,2] => 2
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,4,3] => 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [2,3,4,5,1] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [2,3,4,1,5] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [2,3,5,4,1] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [2,3,1,5,4] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [2,3,1,4,5] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [2,4,3,5,1] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [2,4,5,1,3] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [2,4,3,1,5] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [2,5,4,3,1] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [2,1,4,5,3] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [2,1,4,3,5] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [2,5,3,4,1] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [2,1,5,4,3] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [2,1,3,5,4] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [2,1,3,4,5] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [3,2,4,5,1] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [3,5,4,1,2] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [3,2,4,1,5] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [3,4,5,2,1] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [3,4,1,5,2] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [3,4,1,2,5] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [3,2,5,4,1] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [3,5,1,4,2] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [3,2,1,5,4] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [3,2,1,4,5] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [4,3,2,5,1] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [4,3,5,1,2] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [4,3,2,1,5] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => [5,3,4,2,1] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => [1,3,4,5,2] => 3
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => [1,3,4,2,5] => 2
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => [5,3,2,4,1] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => [1,3,5,4,2] => 3
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => [1,3,2,5,4] => 2
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => [1,3,2,4,5] => 1
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => [4,2,3,5,1] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => [4,5,3,1,2] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => [4,2,5,1,3] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => [4,2,3,1,5] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => [5,4,3,2,1] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => [1,4,3,5,2] => 3
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => [1,4,5,2,3] => 4
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [1,4,3,2,5] => 2
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => [5,2,4,3,1] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1},{2,5},{3,4}}
=> [1,5,4,3,2] => [1,5,4,3,2] => 3
{{1},{2},{3,4,5}}
=> [1,2,4,5,3] => [1,2,4,5,3] => 2
{{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => [1,2,4,3,5] => 1
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => [5,2,3,4,1] => ? ∊ {1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
{{1},{2,5},{3},{4}}
=> [1,5,3,4,2] => [1,5,3,4,2] => 4
{{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => [1,2,5,4,3] => 2
{{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => [1,2,3,5,4] => 1
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,3,4,5,6}}
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3,4,5},{6}}
=> [2,3,4,5,1,6] => [2,3,4,5,1,6] => ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3,4,6},{5}}
=> [2,3,4,6,5,1] => [2,3,4,6,5,1] => ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3,4},{5,6}}
=> [2,3,4,1,6,5] => [2,3,4,1,6,5] => ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3,4},{5},{6}}
=> [2,3,4,1,5,6] => [2,3,4,1,5,6] => ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3,5,6},{4}}
=> [2,3,5,4,6,1] => [2,3,5,4,6,1] => ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3,5},{4,6}}
=> [2,3,5,6,1,4] => [2,3,5,6,1,4] => ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3,5},{4},{6}}
=> [2,3,5,4,1,6] => [2,3,5,4,1,6] => ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3,6},{4,5}}
=> [2,3,6,5,4,1] => [2,3,6,5,4,1] => ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3},{4,5,6}}
=> [2,3,1,5,6,4] => [2,3,1,5,6,4] => ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3},{4,5},{6}}
=> [2,3,1,5,4,6] => [2,3,1,5,4,6] => ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3,6},{4},{5}}
=> [2,3,6,4,5,1] => [2,3,6,4,5,1] => ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
{{1,2,3},{4,6},{5}}
=> [2,3,1,6,5,4] => [2,3,1,6,5,4] => ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9}
Description
The number of Bruhat lower covers of a permutation.
This is, for a signed permutation π, the number of signed permutations τ having a reduced word which is obtained by deleting a letter from a reduced word from π.
The following 3 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!