Identifier
Values
{{1}} => [1] => [1] => ([],1) => 0
{{1,2}} => [2] => [1,1] => ([(0,1)],2) => 1
{{1},{2}} => [1,1] => [2] => ([],2) => 0
{{1,2,3}} => [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 2
{{1,2},{3}} => [2,1] => [1,2] => ([(1,2)],3) => 1
{{1,3},{2}} => [2,1] => [1,2] => ([(1,2)],3) => 1
{{1},{2},{3}} => [1,1,1] => [3] => ([],3) => 0
{{1,2,3,4}} => [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
{{1,2,3},{4}} => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 2
{{1,2,4},{3}} => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 2
{{1,2},{3},{4}} => [2,1,1] => [1,3] => ([(2,3)],4) => 1
{{1,3,4},{2}} => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 2
{{1,3},{2},{4}} => [2,1,1] => [1,3] => ([(2,3)],4) => 1
{{1,4},{2},{3}} => [2,1,1] => [1,3] => ([(2,3)],4) => 1
{{1},{2},{3},{4}} => [1,1,1,1] => [4] => ([],4) => 0
{{1,2,3,4,5}} => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
{{1,2,3,4},{5}} => [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
{{1,2,3,5},{4}} => [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
{{1,2,3},{4},{5}} => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
{{1,2,4,5},{3}} => [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
{{1,2,4},{3},{5}} => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
{{1,2,5},{3},{4}} => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
{{1,2},{3},{4},{5}} => [2,1,1,1] => [1,4] => ([(3,4)],5) => 1
{{1,3,4,5},{2}} => [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
{{1,3,4},{2},{5}} => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
{{1,3,5},{2},{4}} => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
{{1,3},{2},{4},{5}} => [2,1,1,1] => [1,4] => ([(3,4)],5) => 1
{{1,4,5},{2},{3}} => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
{{1,4},{2},{3},{5}} => [2,1,1,1] => [1,4] => ([(3,4)],5) => 1
{{1},{2},{3,4,5}} => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
{{1,5},{2},{3},{4}} => [2,1,1,1] => [1,4] => ([(3,4)],5) => 1
{{1},{2},{3},{4,5}} => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
{{1},{2},{3},{4},{5}} => [1,1,1,1,1] => [5] => ([],5) => 0
{{1,2,3,4,5,6}} => [6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
{{1,2,3,4,5},{6}} => [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
{{1,2,3,4,6},{5}} => [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
{{1,2,3,4},{5},{6}} => [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
{{1,2,3,5,6},{4}} => [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
{{1,2,3,5},{4},{6}} => [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
{{1,2,3,6},{4},{5}} => [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
{{1,2,3},{4},{5},{6}} => [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
{{1,2,4,5,6},{3}} => [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
{{1,2,4,5},{3},{6}} => [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
{{1,2,4,6},{3},{5}} => [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
{{1,2,4},{3},{5},{6}} => [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
{{1,2,5,6},{3},{4}} => [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
{{1,2,5},{3},{4},{6}} => [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
{{1,2,6},{3},{4},{5}} => [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
{{1,2},{3},{4},{5},{6}} => [2,1,1,1,1] => [1,5] => ([(4,5)],6) => 1
{{1,3,4,5,6},{2}} => [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
{{1,3,4,5},{2},{6}} => [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
{{1,3,4,6},{2},{5}} => [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
{{1,3,4},{2},{5},{6}} => [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
{{1,3,5,6},{2},{4}} => [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
{{1,3,5},{2},{4},{6}} => [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
{{1,3,6},{2},{4},{5}} => [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
{{1,3},{2},{4},{5},{6}} => [2,1,1,1,1] => [1,5] => ([(4,5)],6) => 1
{{1,4,5,6},{2},{3}} => [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
{{1,4,5},{2},{3},{6}} => [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
{{1,4,6},{2},{3},{5}} => [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
{{1,4},{2},{3},{5},{6}} => [2,1,1,1,1] => [1,5] => ([(4,5)],6) => 1
{{1},{2},{3,4,5},{6}} => [1,1,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
{{1},{2},{3,4,6},{5}} => [1,1,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
{{1,5,6},{2},{3},{4}} => [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
{{1,5},{2},{3},{4},{6}} => [2,1,1,1,1] => [1,5] => ([(4,5)],6) => 1
{{1},{2},{3,5,6},{4}} => [1,1,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
{{1},{2},{3},{4,5},{6}} => [1,1,1,2,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 2
{{1,6},{2},{3},{4},{5}} => [2,1,1,1,1] => [1,5] => ([(4,5)],6) => 1
{{1},{2},{3},{4,6},{5}} => [1,1,1,2,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 2
{{1},{2},{3},{4},{5},{6}} => [1,1,1,1,1,1] => [6] => ([],6) => 0
{{1,2,3,4,5,6,7}} => [7] => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
{{1,2,3,4,5,6},{7}} => [6,1] => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
{{1,2,3,4,5,7},{6}} => [6,1] => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
{{1,2,3,4,5},{6},{7}} => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
{{1,2,3,4,6,7},{5}} => [6,1] => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
{{1,2,3,4,6},{5},{7}} => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
{{1,2,3,4,7},{5},{6}} => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
{{1,2,3,4},{5},{6},{7}} => [4,1,1,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
{{1,2,3,5,6,7},{4}} => [6,1] => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
{{1,2,3,5,6},{4},{7}} => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
{{1,2,3,5,7},{4},{6}} => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
{{1,2,3,5},{4},{6},{7}} => [4,1,1,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
{{1,2,3,6,7},{4},{5}} => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
{{1,2,3,6},{4},{5},{7}} => [4,1,1,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
{{1,2,3,7},{4},{5},{6}} => [4,1,1,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
{{1,2,3},{4},{5},{6},{7}} => [3,1,1,1,1] => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
{{1,2,4,5,6,7},{3}} => [6,1] => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
{{1,2,4,5,6},{3},{7}} => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
{{1,2,4,5,7},{3},{6}} => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
{{1,2,4,5},{3},{6},{7}} => [4,1,1,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
{{1,2,4,6,7},{3},{5}} => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
{{1,2,4,6},{3},{5},{7}} => [4,1,1,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
{{1,2,4,7},{3},{5},{6}} => [4,1,1,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
{{1,2,4},{3},{5},{6},{7}} => [3,1,1,1,1] => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
{{1,2,5,6,7},{3},{4}} => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
{{1,2,5,6},{3},{4},{7}} => [4,1,1,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
{{1,2,5,7},{3},{4},{6}} => [4,1,1,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
{{1,2,5},{3},{4},{6},{7}} => [3,1,1,1,1] => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
{{1,2,6,7},{3},{4},{5}} => [4,1,1,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
{{1,2,6},{3},{4},{5},{7}} => [3,1,1,1,1] => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
{{1,2,7},{3},{4},{5},{6}} => [3,1,1,1,1] => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
>>> Load all 143 entries. <<<
{{1,2},{3},{4},{5},{6},{7}} => [2,1,1,1,1,1] => [1,6] => ([(5,6)],7) => 1
{{1,3,4,5,6,7},{2}} => [6,1] => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
{{1,3,4,5,6},{2},{7}} => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
{{1,3,4,5,7},{2},{6}} => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
{{1,3,4,5},{2},{6},{7}} => [4,1,1,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
{{1,3,4,6,7},{2},{5}} => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
{{1,3,4,6},{2},{5},{7}} => [4,1,1,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
{{1,3,4,7},{2},{5},{6}} => [4,1,1,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
{{1,3,4},{2},{5},{6},{7}} => [3,1,1,1,1] => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
{{1,3,5,6,7},{2},{4}} => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
{{1,3,5,6},{2},{4},{7}} => [4,1,1,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
{{1,3,5,7},{2},{4},{6}} => [4,1,1,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
{{1,3,5},{2},{4},{6},{7}} => [3,1,1,1,1] => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
{{1,3,6,7},{2},{4},{5}} => [4,1,1,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
{{1,3,6},{2},{4},{5},{7}} => [3,1,1,1,1] => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
{{1,3,7},{2},{4},{5},{6}} => [3,1,1,1,1] => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
{{1,3},{2},{4},{5},{6},{7}} => [2,1,1,1,1,1] => [1,6] => ([(5,6)],7) => 1
{{1,4,5,6,7},{2},{3}} => [5,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
{{1,4,5,6},{2},{3},{7}} => [4,1,1,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
{{1,4,5,7},{2},{3},{6}} => [4,1,1,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
{{1,4,5},{2},{3},{6},{7}} => [3,1,1,1,1] => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
{{1,4,6,7},{2},{3},{5}} => [4,1,1,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
{{1,4,6},{2},{3},{5},{7}} => [3,1,1,1,1] => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
{{1,4,7},{2},{3},{5},{6}} => [3,1,1,1,1] => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
{{1,4},{2},{3},{5},{6},{7}} => [2,1,1,1,1,1] => [1,6] => ([(5,6)],7) => 1
{{1},{2},{3,4,5},{6},{7}} => [1,1,3,1,1] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
{{1},{2},{3,4,6},{5},{7}} => [1,1,3,1,1] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
{{1},{2},{3,4,7},{5},{6}} => [1,1,3,1,1] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
{{1,5,6,7},{2},{3},{4}} => [4,1,1,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
{{1,5,6},{2},{3},{4},{7}} => [3,1,1,1,1] => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
{{1,5,7},{2},{3},{4},{6}} => [3,1,1,1,1] => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
{{1,5},{2},{3},{4},{6},{7}} => [2,1,1,1,1,1] => [1,6] => ([(5,6)],7) => 1
{{1},{2},{3,5,6},{4},{7}} => [1,1,3,1,1] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
{{1},{2},{3,5,7},{4},{6}} => [1,1,3,1,1] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
{{1},{2},{3},{4,5},{6},{7}} => [1,1,1,2,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 2
{{1,6,7},{2},{3},{4},{5}} => [3,1,1,1,1] => [1,1,5] => ([(4,5),(4,6),(5,6)],7) => 2
{{1,6},{2},{3},{4},{5},{7}} => [2,1,1,1,1,1] => [1,6] => ([(5,6)],7) => 1
{{1},{2},{3,6,7},{4},{5}} => [1,1,3,1,1] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
{{1},{2},{3},{4,6},{5},{7}} => [1,1,1,2,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 2
{{1,7},{2},{3},{4},{5},{6}} => [2,1,1,1,1,1] => [1,6] => ([(5,6)],7) => 1
{{1},{2},{3},{4,7},{5},{6}} => [1,1,1,2,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => 2
{{1},{2},{3},{4},{5},{6},{7}} => [1,1,1,1,1,1,1] => [7] => ([],7) => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
Map
complement
Description
The complement of a composition.
The complement of a composition $I$ is defined as follows:
If $I$ is the empty composition, then the complement is also the empty composition. Otherwise, let $S$ be the descent set corresponding to $I=(i_1,\dots,i_k)$, that is, the subset
$$\{ i_1, i_1 + i_2, \ldots, i_1 + i_2 + \cdots + i_{k-1} \}$$
of $\{ 1, 2, \ldots, |I|-1 \}$. Then, the complement of $I$ is the composition of the same size as $I$, whose descent set is $\{ 1, 2, \ldots, |I|-1 \} \setminus S$.
The complement of a composition $I$ coincides with the reversal (Mp00038reverse) of the composition conjugate (Mp00041conjugate) to $I$.
Map
to composition
Description
The integer composition of block sizes of a set partition.
For a set partition of $\{1,2,\dots,n\}$, this is the integer composition of $n$ obtained by sorting the blocks by their minimal element and then taking the block sizes.