searching the database
Your data matches 79 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000049
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
St000049: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000049: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> 1
([],2)
=> [1,1]
=> 1
([(0,1)],2)
=> [2]
=> 1
([],3)
=> [1,1,1]
=> 1
([(1,2)],3)
=> [2,1]
=> 3
([(0,2),(1,2)],3)
=> [3]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([],4)
=> [1,1,1,1]
=> 1
([(2,3)],4)
=> [2,1,1]
=> 6
([(1,3),(2,3)],4)
=> [3,1]
=> 4
([(0,3),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> 3
([(0,3),(1,2),(2,3)],4)
=> [4]
=> 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 4
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([],5)
=> [1,1,1,1,1]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> 10
([(2,4),(3,4)],5)
=> [3,1,1]
=> 10
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 5
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> 15
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> 5
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> 10
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 10
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 5
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 5
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 5
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> 10
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 5
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
Description
The number of set partitions whose sorted block sizes correspond to the partition.
Matching statistic: St001330
Values
([],1)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
([(0,1)],2)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(1,2)],3)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3 + 1
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([],4)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(2,3)],4)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,4,4,6} + 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,4,4,6} + 1
([(0,3),(1,2)],4)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {3,4,4,6} + 1
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,4,4,6} + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([],5)
=> ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
([(3,4)],5)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} + 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} + 1
([(1,4),(2,3)],5)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} + 1
([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} + 1
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} + 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} + 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,6),(0,7),(1,5),(1,7),(2,3),(2,4),(2,7),(3,5),(3,7),(4,6),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} + 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} + 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([],6)
=> ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
([(4,5)],6)
=> ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} + 1
([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} + 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} + 1
([(2,5),(3,4)],6)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} + 1
([(1,2),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} + 1
([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} + 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} + 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} + 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} + 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} + 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} + 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} + 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ([(0,6),(0,8),(1,7),(1,8),(2,7),(2,8),(3,4),(3,5),(3,8),(4,6),(4,8),(5,7),(5,8),(6,8),(7,8)],9)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} + 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} + 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,6),(0,7),(1,6),(1,7),(2,5),(2,7),(3,5),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} + 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} + 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} + 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} + 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} + 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} + 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} + 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,7),(2,6),(3,4),(3,5),(4,6),(5,7)],8)
=> ([(0,8),(1,7),(1,8),(2,6),(2,8),(3,4),(3,5),(3,8),(4,6),(4,8),(5,7),(5,8),(6,8),(7,8)],9)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} + 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} + 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ([(0,6),(0,8),(1,5),(1,8),(2,7),(2,8),(3,5),(3,7),(3,8),(4,6),(4,7),(4,8),(5,8),(6,8),(7,8)],9)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} + 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} + 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St000771
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(1,2)],3)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? = 3
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1
([(2,3)],4)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6}
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6}
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6}
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([],5)
=> ([],5)
=> ([],1)
=> ([],1)
=> 1
([(3,4)],5)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([],6)
=> ([],6)
=> ([],1)
=> ([],1)
=> 1
([(4,5)],6)
=> ([],5)
=> ([],1)
=> ([],1)
=> 1
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(2,5),(3,4)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1
([(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,2),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,7),(2,6),(3,4),(3,5),(4,6),(5,7)],8)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $2$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St000772
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(1,2)],3)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? = 3
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1
([(2,3)],4)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6}
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6}
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6}
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([],5)
=> ([],5)
=> ([],1)
=> ([],1)
=> 1
([(3,4)],5)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([],6)
=> ([],6)
=> ([],1)
=> ([],1)
=> 1
([(4,5)],6)
=> ([],5)
=> ([],1)
=> ([],1)
=> 1
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(2,5),(3,4)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1
([(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,2),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,7),(2,6),(3,4),(3,5),(4,6),(5,7)],8)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $1$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$.
The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Matching statistic: St000777
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(1,2)],3)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? = 3
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1
([(2,3)],4)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6}
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6}
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6}
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([],5)
=> ([],5)
=> ([],1)
=> ([],1)
=> 1
([(3,4)],5)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([],6)
=> ([],6)
=> ([],1)
=> ([],1)
=> 1
([(4,5)],6)
=> ([],5)
=> ([],1)
=> ([],1)
=> 1
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(2,5),(3,4)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1
([(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,2),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,7),(2,6),(3,4),(3,5),(4,6),(5,7)],8)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Matching statistic: St001645
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(1,2)],3)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? = 3
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1
([(2,3)],4)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6}
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6}
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6}
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([],5)
=> ([],5)
=> ([],1)
=> ([],1)
=> 1
([(3,4)],5)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([],6)
=> ([],6)
=> ([],1)
=> ([],1)
=> 1
([(4,5)],6)
=> ([],5)
=> ([],1)
=> ([],1)
=> 1
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(2,5),(3,4)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1
([(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,2),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,7),(2,6),(3,4),(3,5),(4,6),(5,7)],8)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
Description
The pebbling number of a connected graph.
Matching statistic: St000259
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,2)],3)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? = 3 - 1
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(2,3)],4)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6} - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6} - 1
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6} - 1
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6} - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],5)
=> ([],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(3,4)],5)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],6)
=> ([],6)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(4,5)],6)
=> ([],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(2,5),(3,4)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,2),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,7),(2,6),(3,4),(3,5),(4,6),(5,7)],8)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
Description
The diameter of a connected graph.
This is the greatest distance between any pair of vertices.
Matching statistic: St000260
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,2)],3)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? = 3 - 1
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(2,3)],4)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6} - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6} - 1
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6} - 1
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6} - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],5)
=> ([],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(3,4)],5)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],6)
=> ([],6)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(4,5)],6)
=> ([],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(2,5),(3,4)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,2),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,7),(2,6),(3,4),(3,5),(4,6),(5,7)],8)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
Matching statistic: St000302
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,2)],3)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? = 3 - 1
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(2,3)],4)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6} - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6} - 1
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6} - 1
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6} - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],5)
=> ([],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(3,4)],5)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],6)
=> ([],6)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(4,5)],6)
=> ([],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(2,5),(3,4)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,2),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,7),(2,6),(3,4),(3,5),(4,6),(5,7)],8)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
Description
The determinant of the distance matrix of a connected graph.
Matching statistic: St000466
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,2)],3)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? = 3 - 1
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(2,3)],4)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6} - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6} - 1
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6} - 1
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {3,4,4,6} - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],5)
=> ([],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(3,4)],5)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,5,5,5,5,5,5,10,10,10,10,10,15} - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],6)
=> ([],6)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(4,5)],6)
=> ([],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(2,5),(3,4)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,2),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,7),(2,6),(3,4),(3,5),(4,6),(5,7)],8)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,10,10,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,20,20,45,60,60} - 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
Description
The Gutman (or modified Schultz) index of a connected graph.
This is
$$\sum_{\{u,v\}\subseteq V} d(u)d(v)d(u,v)$$
where $d(u)$ is the degree of vertex $u$ and $d(u,v)$ is the distance between vertices $u$ and $v$.
For trees on $n$ vertices, the modified Schultz index is related to the Wiener index via $S^\ast(T)=4W(T)-(n-1)(2n-1)$ [1].
The following 69 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000467The hyper-Wiener index of a connected graph. St000781The number of proper colouring schemes of a Ferrers diagram. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001592The maximal number of simple paths between any two different vertices of a graph. St000456The monochromatic index of a connected graph. St001118The acyclic chromatic index of a graph. St001281The normalized isoperimetric number of a graph. St000183The side length of the Durfee square of an integer partition. St000326The position of the first one in a binary word after appending a 1 at the end. St000847The number of standard Young tableaux whose descent set is the binary word. St000913The number of ways to refine the partition into singletons. St001011Number of simple modules of projective dimension 2 in the Nakayama algebra corresponding to the Dyck path. St001063Numbers of 3-torsionfree simple modules in the corresponding Nakayama algebra. St001064Number of simple modules in the corresponding Nakayama algebra that are 3-syzygy modules. St001196The global dimension of $A$ minus the global dimension of $eAe$ for the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001256Number of simple reflexive modules that are 2-stable reflexive. St001385The number of conjugacy classes of subgroups with connected subgroups of sizes prescribed by an integer partition. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St001722The number of minimal chains with small intervals between a binary word and the top element. St001006Number of simple modules with projective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001013Number of indecomposable injective modules with codominant dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St001507The sum of projective dimension of simple modules with even projective dimension divided by 2 in the LNakayama algebra corresponding to Dyck paths. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St000618The number of self-evacuating tableaux of given shape. St001432The order dimension of the partition. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001780The order of promotion on the set of standard tableaux of given shape. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001924The number of cells in an integer partition whose arm and leg length coincide. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St001967The coefficient of the monomial corresponding to the integer partition in a certain power series. St001968The coefficient of the monomial corresponding to the integer partition in a certain power series. St001568The smallest positive integer that does not appear twice in the partition. St001599The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees. St001877Number of indecomposable injective modules with projective dimension 2. St000287The number of connected components of a graph. St000535The rank-width of a graph. St000544The cop number of a graph. St000723The maximal cardinality of a set of vertices with the same neighbourhood in a graph. St000775The multiplicity of the largest eigenvalue in a graph. St001057The Grundy value of the game of creating an independent set in a graph. St001271The competition number of a graph. St001272The number of graphs with the same degree sequence. St001333The cardinality of a minimal edge-isolating set of a graph. St001352The number of internal nodes in the modular decomposition of a graph. St001363The Euler characteristic of a graph according to Knill. St001393The induced matching number of a graph. St001463The number of distinct columns in the nullspace of a graph. St001476The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,-1). St001496The number of graphs with the same Laplacian spectrum as the given graph. St001518The number of graphs with the same ordinary spectrum as the given graph. St001951The number of factors in the disjoint direct product decomposition of the automorphism group of a graph. St000284The Plancherel distribution on integer partitions. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000901The cube of the number of standard Young tableaux with shape given by the partition. St001128The exponens consonantiae of a partition. St000914The sum of the values of the Möbius function of a poset.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!