Your data matches 6 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000057
Mp00106: Standard tableaux catabolismStandard tableaux
St000057: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> 0
[[1,2]]
=> [[1,2]]
=> 0
[[1],[2]]
=> [[1,2]]
=> 0
[[1,2,3]]
=> [[1,2,3]]
=> 0
[[1,3],[2]]
=> [[1,2],[3]]
=> 1
[[1,2],[3]]
=> [[1,2,3]]
=> 0
[[1],[2],[3]]
=> [[1,2],[3]]
=> 1
[[1,2,3,4]]
=> [[1,2,3,4]]
=> 0
[[1,3,4],[2]]
=> [[1,2,4],[3]]
=> 1
[[1,2,4],[3]]
=> [[1,2,3],[4]]
=> 2
[[1,2,3],[4]]
=> [[1,2,3,4]]
=> 0
[[1,3],[2,4]]
=> [[1,2,4],[3]]
=> 1
[[1,2],[3,4]]
=> [[1,2,3,4]]
=> 0
[[1,4],[2],[3]]
=> [[1,2],[3],[4]]
=> 2
[[1,3],[2],[4]]
=> [[1,2,4],[3]]
=> 1
[[1,2],[3],[4]]
=> [[1,2,3],[4]]
=> 2
[[1],[2],[3],[4]]
=> [[1,2],[3],[4]]
=> 2
[[1,2,3,4,5]]
=> [[1,2,3,4,5]]
=> 0
[[1,3,4,5],[2]]
=> [[1,2,4,5],[3]]
=> 1
[[1,2,4,5],[3]]
=> [[1,2,3,5],[4]]
=> 2
[[1,2,3,5],[4]]
=> [[1,2,3,4],[5]]
=> 3
[[1,2,3,4],[5]]
=> [[1,2,3,4,5]]
=> 0
[[1,3,5],[2,4]]
=> [[1,2,4],[3,5]]
=> 2
[[1,2,5],[3,4]]
=> [[1,2,3,4],[5]]
=> 3
[[1,3,4],[2,5]]
=> [[1,2,4,5],[3]]
=> 1
[[1,2,4],[3,5]]
=> [[1,2,3,5],[4]]
=> 2
[[1,2,3],[4,5]]
=> [[1,2,3,4,5]]
=> 0
[[1,4,5],[2],[3]]
=> [[1,2,5],[3],[4]]
=> 2
[[1,3,5],[2],[4]]
=> [[1,2,4],[3],[5]]
=> 3
[[1,2,5],[3],[4]]
=> [[1,2,3],[4],[5]]
=> 4
[[1,3,4],[2],[5]]
=> [[1,2,4,5],[3]]
=> 1
[[1,2,4],[3],[5]]
=> [[1,2,3,5],[4]]
=> 2
[[1,2,3],[4],[5]]
=> [[1,2,3,4],[5]]
=> 3
[[1,4],[2,5],[3]]
=> [[1,2,5],[3],[4]]
=> 2
[[1,3],[2,5],[4]]
=> [[1,2,4,5],[3]]
=> 1
[[1,2],[3,5],[4]]
=> [[1,2,3,5],[4]]
=> 2
[[1,3],[2,4],[5]]
=> [[1,2,4],[3,5]]
=> 2
[[1,2],[3,4],[5]]
=> [[1,2,3,4],[5]]
=> 3
[[1,5],[2],[3],[4]]
=> [[1,2],[3],[4],[5]]
=> 3
[[1,4],[2],[3],[5]]
=> [[1,2,5],[3],[4]]
=> 2
[[1,3],[2],[4],[5]]
=> [[1,2,4],[3],[5]]
=> 3
[[1,2],[3],[4],[5]]
=> [[1,2,3],[4],[5]]
=> 4
[[1],[2],[3],[4],[5]]
=> [[1,2],[3],[4],[5]]
=> 3
[[1,2,3,4,5,6]]
=> [[1,2,3,4,5,6]]
=> 0
[[1,3,4,5,6],[2]]
=> [[1,2,4,5,6],[3]]
=> 1
[[1,2,4,5,6],[3]]
=> [[1,2,3,5,6],[4]]
=> 2
[[1,2,3,5,6],[4]]
=> [[1,2,3,4,6],[5]]
=> 3
[[1,2,3,4,6],[5]]
=> [[1,2,3,4,5],[6]]
=> 4
[[1,2,3,4,5],[6]]
=> [[1,2,3,4,5,6]]
=> 0
[[1,3,5,6],[2,4]]
=> [[1,2,4,6],[3,5]]
=> 2
Description
The Shynar inversion number of a standard tableau. Shynar's inversion number is the number of inversion pairs in a standard Young tableau, where an inversion pair is defined as a pair of integers (x,y) such that y > x and y appears strictly southwest of x in the tableau.
Mp00134: Standard tableaux descent wordBinary words
Mp00097: Binary words delta morphismInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000454: Graphs ⟶ ℤResult quality: 21% values known / values provided: 21%distinct values known / distinct values provided: 50%
Values
[[1]]
=> => [] => ?
=> ? = 0
[[1,2]]
=> 0 => [1] => ([],1)
=> 0
[[1],[2]]
=> 1 => [1] => ([],1)
=> 0
[[1,2,3]]
=> 00 => [2] => ([],2)
=> 0
[[1,3],[2]]
=> 10 => [1,1] => ([(0,1)],2)
=> 1
[[1,2],[3]]
=> 01 => [1,1] => ([(0,1)],2)
=> 1
[[1],[2],[3]]
=> 11 => [2] => ([],2)
=> 0
[[1,2,3,4]]
=> 000 => [3] => ([],3)
=> 0
[[1,3,4],[2]]
=> 100 => [1,2] => ([(1,2)],3)
=> 1
[[1,2,4],[3]]
=> 010 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,2,3],[4]]
=> 001 => [2,1] => ([(0,2),(1,2)],3)
=> ? ∊ {0,1}
[[1,3],[2,4]]
=> 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,2],[3,4]]
=> 010 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,4],[2],[3]]
=> 110 => [2,1] => ([(0,2),(1,2)],3)
=> ? ∊ {0,1}
[[1,3],[2],[4]]
=> 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,2],[3],[4]]
=> 011 => [1,2] => ([(1,2)],3)
=> 1
[[1],[2],[3],[4]]
=> 111 => [3] => ([],3)
=> 0
[[1,2,3,4,5]]
=> 0000 => [4] => ([],4)
=> 0
[[1,3,4,5],[2]]
=> 1000 => [1,3] => ([(2,3)],4)
=> 1
[[1,2,4,5],[3]]
=> 0100 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[[1,2,3,5],[4]]
=> 0010 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,3,3,4,4}
[[1,2,3,4],[5]]
=> 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,3,3,4,4}
[[1,3,5],[2,4]]
=> 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,2,5],[3,4]]
=> 0100 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[[1,3,4],[2,5]]
=> 1001 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,3,3,4,4}
[[1,2,4],[3,5]]
=> 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,2,3],[4,5]]
=> 0010 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,3,3,4,4}
[[1,4,5],[2],[3]]
=> 1100 => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,3,3,4,4}
[[1,3,5],[2],[4]]
=> 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,2,5],[3],[4]]
=> 0110 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,3,3,4,4}
[[1,3,4],[2],[5]]
=> 1001 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,3,3,4,4}
[[1,2,4],[3],[5]]
=> 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,2,3],[4],[5]]
=> 0011 => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,3,3,4,4}
[[1,4],[2,5],[3]]
=> 1101 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,3,3,4,4}
[[1,3],[2,5],[4]]
=> 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,2],[3,5],[4]]
=> 0110 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,3,3,4,4}
[[1,3],[2,4],[5]]
=> 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[[1,2],[3,4],[5]]
=> 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,5],[2],[3],[4]]
=> 1110 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,3,3,4,4}
[[1,4],[2],[3],[5]]
=> 1101 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,2,2,2,2,2,3,3,4,4}
[[1,3],[2],[4],[5]]
=> 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[[1,2],[3],[4],[5]]
=> 0111 => [1,3] => ([(2,3)],4)
=> 1
[[1],[2],[3],[4],[5]]
=> 1111 => [4] => ([],4)
=> 0
[[1,2,3,4,5,6]]
=> 00000 => [5] => ([],5)
=> 0
[[1,3,4,5,6],[2]]
=> 10000 => [1,4] => ([(3,4)],5)
=> 1
[[1,2,4,5,6],[3]]
=> 01000 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,3,5,6],[4]]
=> 00100 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,4,6],[5]]
=> 00010 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,3,4,5],[6]]
=> 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[1,3,5,6],[2,4]]
=> 10100 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,5,6],[3,4]]
=> 01000 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[[1,3,4,6],[2,5]]
=> 10010 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,4,6],[3,5]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,3,6],[4,5]]
=> 00100 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,4,5],[2,6]]
=> 10001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,4,5],[3,6]]
=> 01001 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,5],[4,6]]
=> 00101 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,4],[5,6]]
=> 00010 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,4,5,6],[2],[3]]
=> 11000 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,5,6],[2],[4]]
=> 10100 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,5,6],[3],[4]]
=> 01100 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,4,6],[2],[5]]
=> 10010 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,4,6],[3],[5]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,3,6],[4],[5]]
=> 00110 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,4,5],[2],[6]]
=> 10001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,4,5],[3],[6]]
=> 01001 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,5],[4],[6]]
=> 00101 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,4],[5],[6]]
=> 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,5],[2,4,6]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,5],[3,4,6]]
=> 01001 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,4],[2,5,6]]
=> 10010 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,4],[3,5,6]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,3],[4,5,6]]
=> 00100 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,4,6],[2,5],[3]]
=> 11010 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,6],[2,5],[4]]
=> 10100 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,6],[3,5],[4]]
=> 01100 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,6],[2,4],[5]]
=> 10110 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,6],[3,4],[5]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,4,5],[2,6],[3]]
=> 11001 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,5],[2,6],[4]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,5],[3,6],[4]]
=> 01101 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,4],[2,6],[5]]
=> 10010 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,4],[3,6],[5]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,3],[4,6],[5]]
=> 00110 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,5],[2,4],[6]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,5],[3,4],[6]]
=> 01001 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,4],[2,5],[6]]
=> 10011 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,4],[3,5],[6]]
=> 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,3],[4,5],[6]]
=> 00101 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,5,6],[2],[3],[4]]
=> 11100 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,4,6],[2],[3],[5]]
=> 11010 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,6],[2],[4],[5]]
=> 10110 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,6],[3],[4],[5]]
=> 01110 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,4,5],[2],[3],[6]]
=> 11001 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,5],[2],[4],[6]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,5],[3],[4],[6]]
=> 01101 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,4],[2],[5],[6]]
=> 10011 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,4],[3],[5],[6]]
=> 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,3],[4],[5],[6]]
=> 00111 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3],[2,5],[4,6]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
Description
The largest eigenvalue of a graph if it is integral. If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001232
Mp00134: Standard tableaux descent wordBinary words
Mp00097: Binary words delta morphismInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 18% values known / values provided: 18%distinct values known / distinct values provided: 50%
Values
[[1]]
=> => [] => ?
=> ? = 0
[[1,2]]
=> 0 => [1] => [1,0]
=> 0
[[1],[2]]
=> 1 => [1] => [1,0]
=> 0
[[1,2,3]]
=> 00 => [2] => [1,1,0,0]
=> 0
[[1,3],[2]]
=> 10 => [1,1] => [1,0,1,0]
=> 1
[[1,2],[3]]
=> 01 => [1,1] => [1,0,1,0]
=> 1
[[1],[2],[3]]
=> 11 => [2] => [1,1,0,0]
=> 0
[[1,2,3,4]]
=> 000 => [3] => [1,1,1,0,0,0]
=> 0
[[1,3,4],[2]]
=> 100 => [1,2] => [1,0,1,1,0,0]
=> 2
[[1,2,4],[3]]
=> 010 => [1,1,1] => [1,0,1,0,1,0]
=> ? ∊ {0,1,2,2}
[[1,2,3],[4]]
=> 001 => [2,1] => [1,1,0,0,1,0]
=> 1
[[1,3],[2,4]]
=> 101 => [1,1,1] => [1,0,1,0,1,0]
=> ? ∊ {0,1,2,2}
[[1,2],[3,4]]
=> 010 => [1,1,1] => [1,0,1,0,1,0]
=> ? ∊ {0,1,2,2}
[[1,4],[2],[3]]
=> 110 => [2,1] => [1,1,0,0,1,0]
=> 1
[[1,3],[2],[4]]
=> 101 => [1,1,1] => [1,0,1,0,1,0]
=> ? ∊ {0,1,2,2}
[[1,2],[3],[4]]
=> 011 => [1,2] => [1,0,1,1,0,0]
=> 2
[[1],[2],[3],[4]]
=> 111 => [3] => [1,1,1,0,0,0]
=> 0
[[1,2,3,4,5]]
=> 0000 => [4] => [1,1,1,1,0,0,0,0]
=> 0
[[1,3,4,5],[2]]
=> 1000 => [1,3] => [1,0,1,1,1,0,0,0]
=> 3
[[1,2,4,5],[3]]
=> 0100 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,4}
[[1,2,3,5],[4]]
=> 0010 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,4}
[[1,2,3,4],[5]]
=> 0001 => [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[[1,3,5],[2,4]]
=> 1010 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,4}
[[1,2,5],[3,4]]
=> 0100 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,4}
[[1,3,4],[2,5]]
=> 1001 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 3
[[1,2,4],[3,5]]
=> 0101 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,4}
[[1,2,3],[4,5]]
=> 0010 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,4}
[[1,4,5],[2],[3]]
=> 1100 => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[[1,3,5],[2],[4]]
=> 1010 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,4}
[[1,2,5],[3],[4]]
=> 0110 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 3
[[1,3,4],[2],[5]]
=> 1001 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 3
[[1,2,4],[3],[5]]
=> 0101 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,4}
[[1,2,3],[4],[5]]
=> 0011 => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[[1,4],[2,5],[3]]
=> 1101 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,4}
[[1,3],[2,5],[4]]
=> 1010 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,4}
[[1,2],[3,5],[4]]
=> 0110 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 3
[[1,3],[2,4],[5]]
=> 1011 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,4}
[[1,2],[3,4],[5]]
=> 0101 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,4}
[[1,5],[2],[3],[4]]
=> 1110 => [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[[1,4],[2],[3],[5]]
=> 1101 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,4}
[[1,3],[2],[4],[5]]
=> 1011 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> ? ∊ {0,1,1,2,2,2,2,2,2,2,3,3,4,4}
[[1,2],[3],[4],[5]]
=> 0111 => [1,3] => [1,0,1,1,1,0,0,0]
=> 3
[[1],[2],[3],[4],[5]]
=> 1111 => [4] => [1,1,1,1,0,0,0,0]
=> 0
[[1,2,3,4,5,6]]
=> 00000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[[1,3,4,5,6],[2]]
=> 10000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 4
[[1,2,4,5,6],[3]]
=> 01000 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,5,6],[4]]
=> 00100 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,4,6],[5]]
=> 00010 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,4,5],[6]]
=> 00001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[[1,3,5,6],[2,4]]
=> 10100 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,5,6],[3,4]]
=> 01000 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,4,6],[2,5]]
=> 10010 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,4,6],[3,5]]
=> 01010 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,6],[4,5]]
=> 00100 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,4,5],[2,6]]
=> 10001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 4
[[1,2,4,5],[3,6]]
=> 01001 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,5],[4,6]]
=> 00101 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,4],[5,6]]
=> 00010 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,4,5,6],[2],[3]]
=> 11000 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 3
[[1,3,5,6],[2],[4]]
=> 10100 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,5,6],[3],[4]]
=> 01100 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
[[1,3,4,6],[2],[5]]
=> 10010 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,4,6],[3],[5]]
=> 01010 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,6],[4],[5]]
=> 00110 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 3
[[1,3,4,5],[2],[6]]
=> 10001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 4
[[1,2,4,5],[3],[6]]
=> 01001 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,5],[4],[6]]
=> 00101 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,4],[5],[6]]
=> 00011 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 2
[[1,3,5],[2,4,6]]
=> 10101 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,5],[3,4,6]]
=> 01001 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,4],[2,5,6]]
=> 10010 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,4],[3,5,6]]
=> 01010 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3],[4,5,6]]
=> 00100 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,4,6],[2,5],[3]]
=> 11010 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,6],[2,5],[4]]
=> 10100 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,6],[3,5],[4]]
=> 01100 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
[[1,3,6],[2,4],[5]]
=> 10110 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,6],[3,4],[5]]
=> 01010 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,4,5],[2,6],[3]]
=> 11001 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 3
[[1,3,5],[2,6],[4]]
=> 10101 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,5],[3,6],[4]]
=> 01101 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,4],[2,6],[5]]
=> 10010 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,4],[3,6],[5]]
=> 01010 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3],[4,6],[5]]
=> 00110 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 3
[[1,3,5],[2,4],[6]]
=> 10101 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,5],[3,4],[6]]
=> 01001 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,4],[2,5],[6]]
=> 10011 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
[[1,5,6],[2],[3],[4]]
=> 11100 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 2
[[1,2,6],[3],[4],[5]]
=> 01110 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 4
[[1,4,5],[2],[3],[6]]
=> 11001 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 3
[[1,3,4],[2],[5],[6]]
=> 10011 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
[[1,2,3],[4],[5],[6]]
=> 00111 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 3
[[1,2],[3,6],[4],[5]]
=> 01110 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 4
[[1,6],[2],[3],[4],[5]]
=> 11110 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[[1,2],[3],[4],[5],[6]]
=> 01111 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 4
[[1],[2],[3],[4],[5],[6]]
=> 11111 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[[1,2,3,4,5,6,7]]
=> 000000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[[1,3,4,5,6,7],[2]]
=> 100000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
[[1,2,3,4,5,6],[7]]
=> 000001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
[[1,3,4,5,6],[2,7]]
=> 100001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> 5
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St000456
Mp00106: Standard tableaux catabolismStandard tableaux
Mp00294: Standard tableaux peak compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000456: Graphs ⟶ ℤResult quality: 10% values known / values provided: 10%distinct values known / distinct values provided: 36%
Values
[[1]]
=> [[1]]
=> [1] => ([],1)
=> ? = 0
[[1,2]]
=> [[1,2]]
=> [2] => ([],2)
=> ? ∊ {0,0}
[[1],[2]]
=> [[1,2]]
=> [2] => ([],2)
=> ? ∊ {0,0}
[[1,2,3]]
=> [[1,2,3]]
=> [3] => ([],3)
=> ? ∊ {0,0}
[[1,3],[2]]
=> [[1,2],[3]]
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
[[1,2],[3]]
=> [[1,2,3]]
=> [3] => ([],3)
=> ? ∊ {0,0}
[[1],[2],[3]]
=> [[1,2],[3]]
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
[[1,2,3,4]]
=> [[1,2,3,4]]
=> [4] => ([],4)
=> ? ∊ {0,0,0,1,2,2,2,2}
[[1,3,4],[2]]
=> [[1,2,4],[3]]
=> [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,1,2,2,2,2}
[[1,2,4],[3]]
=> [[1,2,3],[4]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[[1,2,3],[4]]
=> [[1,2,3,4]]
=> [4] => ([],4)
=> ? ∊ {0,0,0,1,2,2,2,2}
[[1,3],[2,4]]
=> [[1,2,4],[3]]
=> [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,1,2,2,2,2}
[[1,2],[3,4]]
=> [[1,2,3,4]]
=> [4] => ([],4)
=> ? ∊ {0,0,0,1,2,2,2,2}
[[1,4],[2],[3]]
=> [[1,2],[3],[4]]
=> [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,1,2,2,2,2}
[[1,3],[2],[4]]
=> [[1,2,4],[3]]
=> [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,1,2,2,2,2}
[[1,2],[3],[4]]
=> [[1,2,3],[4]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[[1],[2],[3],[4]]
=> [[1,2],[3],[4]]
=> [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,1,2,2,2,2}
[[1,2,3,4,5]]
=> [[1,2,3,4,5]]
=> [5] => ([],5)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4}
[[1,3,4,5],[2]]
=> [[1,2,4,5],[3]]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4}
[[1,2,4,5],[3]]
=> [[1,2,3,5],[4]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4}
[[1,2,3,5],[4]]
=> [[1,2,3,4],[5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[[1,2,3,4],[5]]
=> [[1,2,3,4,5]]
=> [5] => ([],5)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4}
[[1,3,5],[2,4]]
=> [[1,2,4],[3,5]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,5],[3,4]]
=> [[1,2,3,4],[5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[[1,3,4],[2,5]]
=> [[1,2,4,5],[3]]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4}
[[1,2,4],[3,5]]
=> [[1,2,3,5],[4]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4}
[[1,2,3],[4,5]]
=> [[1,2,3,4,5]]
=> [5] => ([],5)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4}
[[1,4,5],[2],[3]]
=> [[1,2,5],[3],[4]]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4}
[[1,3,5],[2],[4]]
=> [[1,2,4],[3],[5]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,5],[3],[4]]
=> [[1,2,3],[4],[5]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4}
[[1,3,4],[2],[5]]
=> [[1,2,4,5],[3]]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4}
[[1,2,4],[3],[5]]
=> [[1,2,3,5],[4]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4}
[[1,2,3],[4],[5]]
=> [[1,2,3,4],[5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[[1,4],[2,5],[3]]
=> [[1,2,5],[3],[4]]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4}
[[1,3],[2,5],[4]]
=> [[1,2,4,5],[3]]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4}
[[1,2],[3,5],[4]]
=> [[1,2,3,5],[4]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4}
[[1,3],[2,4],[5]]
=> [[1,2,4],[3,5]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2],[3,4],[5]]
=> [[1,2,3,4],[5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[[1,5],[2],[3],[4]]
=> [[1,2],[3],[4],[5]]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4}
[[1,4],[2],[3],[5]]
=> [[1,2,5],[3],[4]]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4}
[[1,3],[2],[4],[5]]
=> [[1,2,4],[3],[5]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2],[3],[4],[5]]
=> [[1,2,3],[4],[5]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4}
[[1],[2],[3],[4],[5]]
=> [[1,2],[3],[4],[5]]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4}
[[1,2,3,4,5,6]]
=> [[1,2,3,4,5,6]]
=> [6] => ([],6)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,4,5,6],[2]]
=> [[1,2,4,5,6],[3]]
=> [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,4,5,6],[3]]
=> [[1,2,3,5,6],[4]]
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,5,6],[4]]
=> [[1,2,3,4,6],[5]]
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,4,6],[5]]
=> [[1,2,3,4,5],[6]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[[1,2,3,4,5],[6]]
=> [[1,2,3,4,5,6]]
=> [6] => ([],6)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,5,6],[2,4]]
=> [[1,2,4,6],[3,5]]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,5,6],[3,4]]
=> [[1,2,3,4],[5,6]]
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,4,6],[2,5]]
=> [[1,2,4,5],[3,6]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,4,6],[3,5]]
=> [[1,2,3,5],[4,6]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,2,3,6],[4,5]]
=> [[1,2,3,4,5],[6]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[[1,3,4,5],[2,6]]
=> [[1,2,4,5,6],[3]]
=> [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,4,5],[3,6]]
=> [[1,2,3,5,6],[4]]
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,5],[4,6]]
=> [[1,2,3,4,6],[5]]
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,4],[5,6]]
=> [[1,2,3,4,5,6]]
=> [6] => ([],6)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,4,5,6],[2],[3]]
=> [[1,2,5,6],[3],[4]]
=> [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,5,6],[2],[4]]
=> [[1,2,4,6],[3],[5]]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,5,6],[3],[4]]
=> [[1,2,3,6],[4],[5]]
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,4,6],[2],[5]]
=> [[1,2,4,5],[3],[6]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,4,6],[3],[5]]
=> [[1,2,3,5],[4],[6]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,2,3,6],[4],[5]]
=> [[1,2,3,4],[5],[6]]
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,4,5],[2],[6]]
=> [[1,2,4,5,6],[3]]
=> [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,4,5],[3],[6]]
=> [[1,2,3,5,6],[4]]
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,5],[4],[6]]
=> [[1,2,3,4,6],[5]]
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,4],[5],[6]]
=> [[1,2,3,4,5],[6]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[[1,3,5],[2,4,6]]
=> [[1,2,4,6],[3,5]]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,4,6],[2,5],[3]]
=> [[1,2,5],[3,6],[4]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,6],[2,5],[4]]
=> [[1,2,4,5],[3],[6]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,6],[3,5],[4]]
=> [[1,2,3,5],[4],[6]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,3,4],[2,5],[6]]
=> [[1,2,4,5],[3,6]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,4],[3,5],[6]]
=> [[1,2,3,5],[4,6]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,2,3],[4,5],[6]]
=> [[1,2,3,4,5],[6]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[[1,4,6],[2],[3],[5]]
=> [[1,2,5],[3],[4],[6]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,4],[2],[5],[6]]
=> [[1,2,4,5],[3],[6]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,4],[3],[5],[6]]
=> [[1,2,3,5],[4],[6]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,4],[2,5],[3,6]]
=> [[1,2,5],[3,6],[4]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3],[2,5],[4,6]]
=> [[1,2,4,5],[3,6]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2],[3,5],[4,6]]
=> [[1,2,3,5],[4,6]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,4],[2,5],[3],[6]]
=> [[1,2,5],[3,6],[4]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3],[2,5],[4],[6]]
=> [[1,2,4,5],[3],[6]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2],[3,5],[4],[6]]
=> [[1,2,3,5],[4],[6]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,4],[2],[3],[5],[6]]
=> [[1,2,5],[3],[4],[6]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,3,4,5,7],[6]]
=> [[1,2,3,4,5,6],[7]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 1
[[1,3,4,5,7],[2,6]]
=> [[1,2,4,5,6],[3,7]]
=> [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[[1,2,4,5,7],[3,6]]
=> [[1,2,3,5,6],[4,7]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[[1,2,3,5,7],[4,6]]
=> [[1,2,3,4,6],[5,7]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
[[1,2,3,4,7],[5,6]]
=> [[1,2,3,4,5,6],[7]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 1
[[1,3,4,5,7],[2],[6]]
=> [[1,2,4,5,6],[3],[7]]
=> [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[[1,2,4,5,7],[3],[6]]
=> [[1,2,3,5,6],[4],[7]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[[1,2,3,5,7],[4],[6]]
=> [[1,2,3,4,6],[5],[7]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
[[1,2,3,4,5],[6],[7]]
=> [[1,2,3,4,5,6],[7]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 1
[[1,3,5,7],[2,4,6]]
=> [[1,2,4,6],[3,5,7]]
=> [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[[1,2,5,7],[3,4,6]]
=> [[1,2,3,4,6],[5,7]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
[[1,3,4,7],[2,5,6]]
=> [[1,2,4,5,6],[3,7]]
=> [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[[1,2,4,7],[3,5,6]]
=> [[1,2,3,5,6],[4,7]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[[1,2,3,7],[4,5,6]]
=> [[1,2,3,4,5,6],[7]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 1
[[1,4,5,7],[2,6],[3]]
=> [[1,2,5,6],[3,7],[4]]
=> [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
Description
The monochromatic index of a connected graph. This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path. For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.
Matching statistic: St001811
Mp00106: Standard tableaux catabolismStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
Mp00073: Permutations major-index to inversion-number bijectionPermutations
St001811: Permutations ⟶ ℤResult quality: 4% values known / values provided: 4%distinct values known / distinct values provided: 36%
Values
[[1]]
=> [[1]]
=> [1] => [1] => ? = 0
[[1,2]]
=> [[1,2]]
=> [1,2] => [1,2] => 0
[[1],[2]]
=> [[1,2]]
=> [1,2] => [1,2] => 0
[[1,2,3]]
=> [[1,2,3]]
=> [1,2,3] => [1,2,3] => 0
[[1,3],[2]]
=> [[1,2],[3]]
=> [3,1,2] => [1,3,2] => 1
[[1,2],[3]]
=> [[1,2,3]]
=> [1,2,3] => [1,2,3] => 0
[[1],[2],[3]]
=> [[1,2],[3]]
=> [3,1,2] => [1,3,2] => 1
[[1,2,3,4]]
=> [[1,2,3,4]]
=> [1,2,3,4] => [1,2,3,4] => 0
[[1,3,4],[2]]
=> [[1,2,4],[3]]
=> [3,1,2,4] => [1,3,2,4] => 1
[[1,2,4],[3]]
=> [[1,2,3],[4]]
=> [4,1,2,3] => [1,2,4,3] => 2
[[1,2,3],[4]]
=> [[1,2,3,4]]
=> [1,2,3,4] => [1,2,3,4] => 0
[[1,3],[2,4]]
=> [[1,2,4],[3]]
=> [3,1,2,4] => [1,3,2,4] => 1
[[1,2],[3,4]]
=> [[1,2,3,4]]
=> [1,2,3,4] => [1,2,3,4] => 0
[[1,4],[2],[3]]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => 2
[[1,3],[2],[4]]
=> [[1,2,4],[3]]
=> [3,1,2,4] => [1,3,2,4] => 1
[[1,2],[3],[4]]
=> [[1,2,3],[4]]
=> [4,1,2,3] => [1,2,4,3] => 2
[[1],[2],[3],[4]]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => 2
[[1,2,3,4,5]]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
[[1,3,4,5],[2]]
=> [[1,2,4,5],[3]]
=> [3,1,2,4,5] => [1,3,2,4,5] => 1
[[1,2,4,5],[3]]
=> [[1,2,3,5],[4]]
=> [4,1,2,3,5] => [1,2,4,3,5] => 2
[[1,2,3,5],[4]]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => [1,2,3,5,4] => 3
[[1,2,3,4],[5]]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
[[1,3,5],[2,4]]
=> [[1,2,4],[3,5]]
=> [3,5,1,2,4] => [1,2,4,5,3] => 2
[[1,2,5],[3,4]]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => [1,2,3,5,4] => 3
[[1,3,4],[2,5]]
=> [[1,2,4,5],[3]]
=> [3,1,2,4,5] => [1,3,2,4,5] => 1
[[1,2,4],[3,5]]
=> [[1,2,3,5],[4]]
=> [4,1,2,3,5] => [1,2,4,3,5] => 2
[[1,2,3],[4,5]]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
[[1,4,5],[2],[3]]
=> [[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [1,4,3,2,5] => 2
[[1,3,5],[2],[4]]
=> [[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [1,4,2,5,3] => 3
[[1,2,5],[3],[4]]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [1,2,5,4,3] => 4
[[1,3,4],[2],[5]]
=> [[1,2,4,5],[3]]
=> [3,1,2,4,5] => [1,3,2,4,5] => 1
[[1,2,4],[3],[5]]
=> [[1,2,3,5],[4]]
=> [4,1,2,3,5] => [1,2,4,3,5] => 2
[[1,2,3],[4],[5]]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => [1,2,3,5,4] => 3
[[1,4],[2,5],[3]]
=> [[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [1,4,3,2,5] => 2
[[1,3],[2,5],[4]]
=> [[1,2,4,5],[3]]
=> [3,1,2,4,5] => [1,3,2,4,5] => 1
[[1,2],[3,5],[4]]
=> [[1,2,3,5],[4]]
=> [4,1,2,3,5] => [1,2,4,3,5] => 2
[[1,3],[2,4],[5]]
=> [[1,2,4],[3,5]]
=> [3,5,1,2,4] => [1,2,4,5,3] => 2
[[1,2],[3,4],[5]]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => [1,2,3,5,4] => 3
[[1,5],[2],[3],[4]]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [1,5,4,3,2] => 3
[[1,4],[2],[3],[5]]
=> [[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [1,4,3,2,5] => 2
[[1,3],[2],[4],[5]]
=> [[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [1,4,2,5,3] => 3
[[1,2],[3],[4],[5]]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [1,2,5,4,3] => 4
[[1],[2],[3],[4],[5]]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [1,5,4,3,2] => 3
[[1,2,3,4,5,6]]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,4,5,6],[2]]
=> [[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [1,3,2,4,5,6] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,4,5,6],[3]]
=> [[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [1,2,4,3,5,6] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,5,6],[4]]
=> [[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [1,2,3,5,4,6] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,4,6],[5]]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [1,2,3,4,6,5] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,4,5],[6]]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,5,6],[2,4]]
=> [[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => [1,2,4,5,3,6] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,5,6],[3,4]]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => [1,2,3,6,4,5] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,4,6],[2,5]]
=> [[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => [1,2,4,3,6,5] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,4,6],[3,5]]
=> [[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => [1,2,3,5,6,4] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,6],[4,5]]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [1,2,3,4,6,5] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,4,5],[2,6]]
=> [[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [1,3,2,4,5,6] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,4,5],[3,6]]
=> [[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [1,2,4,3,5,6] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,5],[4,6]]
=> [[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [1,2,3,5,4,6] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,4],[5,6]]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,4,5,6],[2],[3]]
=> [[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => [1,4,3,2,5,6] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,5,6],[2],[4]]
=> [[1,2,4,6],[3],[5]]
=> [5,3,1,2,4,6] => [1,4,2,5,3,6] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,5,6],[3],[4]]
=> [[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => [1,2,5,4,3,6] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,4,6],[2],[5]]
=> [[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => [1,4,2,3,6,5] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,4,6],[3],[5]]
=> [[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => [1,2,5,3,6,4] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,6],[4],[5]]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => [1,2,3,6,5,4] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,4,5],[2],[6]]
=> [[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [1,3,2,4,5,6] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,4,5],[3],[6]]
=> [[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [1,2,4,3,5,6] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,5],[4],[6]]
=> [[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [1,2,3,5,4,6] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,4],[5],[6]]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [1,2,3,4,6,5] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,5],[2,4,6]]
=> [[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => [1,2,4,5,3,6] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,5],[3,4,6]]
=> [[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [1,2,3,5,4,6] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,4],[2,5,6]]
=> [[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [1,3,2,4,5,6] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,4],[3,5,6]]
=> [[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [1,2,4,3,5,6] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3],[4,5,6]]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,4,6],[2,5],[3]]
=> [[1,2,5],[3,6],[4]]
=> [4,3,6,1,2,5] => [1,2,5,4,6,3] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,6],[2,5],[4]]
=> [[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => [1,4,2,3,6,5] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,6],[3,5],[4]]
=> [[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => [1,2,5,3,6,4] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,6],[2,4],[5]]
=> [[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => [1,2,4,6,5,3] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,6],[3,4],[5]]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => [1,2,3,6,5,4] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,4,5],[2,6],[3]]
=> [[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => [1,4,3,2,5,6] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,5],[2,6],[4]]
=> [[1,2,4,6],[3],[5]]
=> [5,3,1,2,4,6] => [1,4,2,5,3,6] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,5],[3,6],[4]]
=> [[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => [1,2,5,4,3,6] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,4],[2,6],[5]]
=> [[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [1,3,2,4,5,6] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,4],[3,6],[5]]
=> [[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [1,2,4,3,5,6] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3],[4,6],[5]]
=> [[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [1,2,3,5,4,6] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,5],[2,4],[6]]
=> [[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => [1,2,4,5,3,6] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,5],[3,4],[6]]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => [1,2,3,6,4,5] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,4],[2,5],[6]]
=> [[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => [1,2,4,3,6,5] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,4],[3,5],[6]]
=> [[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => [1,2,3,5,6,4] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3],[4,5],[6]]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [1,2,3,4,6,5] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,5,6],[2],[3],[4]]
=> [[1,2,6],[3],[4],[5]]
=> [5,4,3,1,2,6] => [1,5,4,3,2,6] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,4,6],[2],[3],[5]]
=> [[1,2,5],[3],[4],[6]]
=> [6,4,3,1,2,5] => [1,5,4,2,6,3] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,6],[2],[4],[5]]
=> [[1,2,4],[3],[5],[6]]
=> [6,5,3,1,2,4] => [1,5,2,6,4,3] => ? ∊ {0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
Description
The Castelnuovo-Mumford regularity of a permutation. The ''Castelnuovo-Mumford regularity'' of a permutation $\sigma$ is the ''Castelnuovo-Mumford regularity'' of the ''matrix Schubert variety'' $X_\sigma$. Equivalently, it is the difference between the degrees of the ''Grothendieck polynomial'' and the ''Schubert polynomial'' for $\sigma$. It can be computed by subtracting the ''Coxeter length'' [[St000018]] from the ''Rajchgot index'' [[St001759]].
Matching statistic: St000632
Mp00081: Standard tableaux reading word permutationPermutations
Mp00087: Permutations inverse first fundamental transformationPermutations
Mp00209: Permutations pattern posetPosets
St000632: Posets ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 21%
Values
[[1]]
=> [1] => [1] => ([],1)
=> 0
[[1,2]]
=> [1,2] => [1,2] => ([(0,1)],2)
=> 0
[[1],[2]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 0
[[1,2,3]]
=> [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 0
[[1,3],[2]]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,2],[3]]
=> [3,1,2] => [3,2,1] => ([(0,2),(2,1)],3)
=> 0
[[1],[2],[3]]
=> [3,2,1] => [2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,2,3,4]]
=> [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,3,4],[2]]
=> [2,1,3,4] => [2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[[1,2,4],[3]]
=> [3,1,2,4] => [3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[[1,2,3],[4]]
=> [4,1,2,3] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,3],[2,4]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[[1,2],[3,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ? = 0
[[1,4],[2],[3]]
=> [3,2,1,4] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 2
[[1,3],[2],[4]]
=> [4,2,1,3] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 2
[[1,2],[3],[4]]
=> [4,3,1,2] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 2
[[1],[2],[3],[4]]
=> [4,3,2,1] => [3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 2
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4}
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => [3,2,1,4,5] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4}
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => [4,3,2,1,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4}
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => [4,3,1,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4}
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4}
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => [5,4,3,1,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4}
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => [3,1,5,4,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4}
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => [5,3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4}
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4}
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => [2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4}
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [4,2,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4}
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => [2,5,4,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4}
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4}
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [4,2,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4}
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => [2,5,4,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4}
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4}
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [4,1,5,2,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4}
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [2,5,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4}
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [5,2,3,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4}
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [3,2,4,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4}
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4}
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [5,3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4}
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [3,5,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4}
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [3,4,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4}
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [2,1,3,4,5,6] => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [3,2,1,4,5,6] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [4,3,2,1,5,6] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [5,4,3,2,1,6] => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => [4,3,1,2,5,6] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => [3,1,4,2,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,6),(1,14),(1,18),(2,13),(2,14),(2,18),(3,12),(3,14),(3,18),(4,11),(4,14),(4,18),(5,8),(5,9),(5,10),(5,16),(6,5),(6,11),(6,12),(6,13),(6,18),(8,15),(8,19),(9,15),(9,19),(10,15),(10,19),(11,8),(11,16),(11,17),(12,9),(12,16),(12,17),(13,10),(13,16),(13,17),(14,17),(15,7),(16,15),(16,19),(17,19),(18,16),(18,17),(19,7)],20)
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,4,6],[2,5]]
=> [2,5,1,3,4,6] => [5,4,3,1,2,6] => ([(0,3),(0,4),(0,5),(1,14),(2,1),(2,6),(2,7),(3,9),(3,11),(4,9),(4,10),(5,2),(5,10),(5,11),(6,13),(6,14),(7,13),(7,14),(9,12),(10,6),(10,12),(11,7),(11,12),(12,13),(13,8),(14,8)],15)
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => [3,1,5,4,2,6] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,18),(1,23),(2,13),(2,14),(2,19),(3,11),(3,12),(3,19),(4,9),(4,10),(4,14),(4,19),(5,1),(5,9),(5,12),(5,15),(5,19),(6,10),(6,11),(6,13),(6,15),(7,21),(7,22),(9,17),(9,18),(9,23),(10,16),(10,17),(10,20),(11,20),(11,23),(12,18),(12,23),(13,16),(13,20),(14,16),(14,23),(15,7),(15,17),(15,20),(15,23),(16,22),(17,21),(17,22),(18,21),(19,18),(19,20),(19,23),(20,21),(20,22),(21,8),(22,8),(23,21),(23,22)],24)
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => [5,3,1,4,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(1,19),(1,21),(2,13),(2,15),(2,19),(2,21),(3,12),(3,14),(3,19),(3,21),(4,10),(4,11),(4,19),(4,21),(5,9),(5,11),(5,14),(5,15),(5,21),(6,8),(6,9),(6,10),(6,12),(6,13),(8,20),(8,24),(9,16),(9,17),(9,24),(9,25),(10,20),(10,24),(10,25),(11,18),(11,25),(12,16),(12,20),(12,24),(13,17),(13,20),(13,24),(14,16),(14,18),(14,25),(15,17),(15,18),(15,25),(16,22),(16,23),(17,22),(17,23),(18,23),(19,20),(19,25),(20,22),(21,18),(21,24),(21,25),(22,7),(23,7),(24,22),(24,23),(25,22),(25,23)],26)
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,4,5],[2,6]]
=> [2,6,1,3,4,5] => [6,5,4,3,1,2] => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => [3,1,6,5,4,2] => ([(0,2),(0,3),(0,4),(0,6),(1,15),(1,17),(2,7),(2,14),(3,9),(3,14),(4,9),(4,10),(4,14),(5,1),(5,11),(5,12),(5,16),(6,5),(6,7),(6,10),(6,14),(7,11),(7,16),(9,13),(10,12),(10,13),(10,16),(11,15),(11,17),(12,15),(12,17),(13,17),(14,13),(14,16),(15,8),(16,15),(16,17),(17,8)],18)
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => [6,5,3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,6),(1,14),(1,18),(2,13),(2,14),(2,18),(3,12),(3,14),(3,18),(4,11),(4,14),(4,18),(5,8),(5,9),(5,10),(5,16),(6,5),(6,11),(6,12),(6,13),(6,18),(8,15),(8,19),(9,15),(9,19),(10,15),(10,19),(11,8),(11,16),(11,17),(12,9),(12,16),(12,17),(13,10),(13,16),(13,17),(14,17),(15,7),(16,15),(16,19),(17,19),(18,16),(18,17),(19,7)],20)
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => [5,3,1,6,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(1,16),(1,17),(1,24),(2,11),(2,15),(2,17),(2,24),(3,9),(3,13),(3,15),(3,24),(4,10),(4,14),(4,16),(4,24),(5,7),(5,9),(5,11),(5,14),(5,24),(6,7),(6,10),(6,12),(6,13),(6,24),(7,21),(7,22),(7,25),(9,21),(9,25),(10,22),(10,25),(11,19),(11,21),(11,25),(12,20),(12,22),(12,25),(13,19),(13,22),(13,25),(14,20),(14,21),(14,25),(15,19),(15,25),(16,20),(16,25),(17,19),(17,20),(18,8),(19,18),(19,23),(20,18),(20,23),(21,18),(21,23),(22,18),(22,23),(23,8),(24,19),(24,20),(24,21),(24,22),(25,23)],26)
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => [2,3,1,4,5,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,5,6],[2],[4]]
=> [4,2,1,3,5,6] => [2,4,3,1,5,6] => ([(0,1),(0,2),(0,3),(0,5),(1,11),(1,14),(2,10),(2,13),(2,14),(3,10),(3,12),(3,14),(4,7),(4,8),(4,9),(5,4),(5,11),(5,12),(5,13),(7,17),(8,17),(8,18),(9,17),(9,18),(10,15),(11,7),(11,16),(12,8),(12,15),(12,16),(13,9),(13,15),(13,16),(14,15),(14,16),(15,18),(16,17),(16,18),(17,6),(18,6)],19)
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => [4,2,3,1,5,6] => ([(0,1),(0,2),(0,3),(0,5),(1,11),(1,14),(2,10),(2,13),(2,14),(3,10),(3,12),(3,14),(4,7),(4,8),(4,9),(5,4),(5,11),(5,12),(5,13),(7,17),(8,17),(8,18),(9,17),(9,18),(10,15),(11,7),(11,16),(12,8),(12,15),(12,16),(13,9),(13,15),(13,16),(14,15),(14,16),(15,18),(16,17),(16,18),(17,6),(18,6)],19)
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,4,6],[2],[5]]
=> [5,2,1,3,4,6] => [2,5,4,3,1,6] => ([(0,1),(0,3),(0,4),(0,5),(1,6),(1,15),(2,7),(2,8),(2,13),(3,10),(3,12),(3,15),(4,2),(4,11),(4,12),(4,15),(5,6),(5,10),(5,11),(6,16),(7,17),(8,17),(8,18),(10,14),(10,16),(11,8),(11,14),(11,16),(12,7),(12,13),(12,14),(13,17),(13,18),(14,17),(14,18),(15,13),(15,16),(16,18),(17,9),(18,9)],19)
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,4,6],[3],[5]]
=> [5,3,1,2,4,6] => [5,4,2,3,1,6] => ([(0,1),(0,3),(0,4),(0,5),(1,6),(1,15),(2,7),(2,8),(2,13),(3,10),(3,12),(3,15),(4,2),(4,11),(4,12),(4,15),(5,6),(5,10),(5,11),(6,16),(7,17),(8,17),(8,18),(10,14),(10,16),(11,8),(11,14),(11,16),(12,7),(12,13),(12,14),(13,17),(13,18),(14,17),(14,18),(15,13),(15,16),(16,18),(17,9),(18,9)],19)
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => [4,2,5,3,1,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(1,19),(1,21),(2,13),(2,15),(2,19),(2,21),(3,12),(3,14),(3,19),(3,21),(4,10),(4,11),(4,19),(4,21),(5,9),(5,11),(5,14),(5,15),(5,21),(6,8),(6,9),(6,10),(6,12),(6,13),(8,20),(8,24),(9,16),(9,17),(9,24),(9,25),(10,20),(10,24),(10,25),(11,18),(11,25),(12,16),(12,20),(12,24),(13,17),(13,20),(13,24),(14,16),(14,18),(14,25),(15,17),(15,18),(15,25),(16,22),(16,23),(17,22),(17,23),(18,23),(19,20),(19,25),(20,22),(21,18),(21,24),(21,25),(22,7),(23,7),(24,22),(24,23),(25,22),(25,23)],26)
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,4,5],[2],[6]]
=> [6,2,1,3,4,5] => [2,6,5,4,3,1] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => [6,5,4,2,3,1] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => [4,2,6,5,3,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(1,18),(1,21),(2,11),(2,12),(2,19),(3,9),(3,13),(3,19),(4,10),(4,13),(4,19),(5,10),(5,12),(5,14),(5,19),(6,1),(6,9),(6,11),(6,14),(6,19),(8,17),(8,20),(9,18),(9,21),(10,16),(10,21),(11,15),(11,18),(11,21),(12,15),(12,16),(13,21),(14,8),(14,15),(14,16),(14,18),(15,17),(15,20),(16,17),(16,20),(17,7),(18,17),(18,20),(19,16),(19,18),(19,21),(20,7),(21,20)],22)
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => [6,4,2,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(1,17),(1,22),(2,13),(2,17),(2,22),(3,9),(3,11),(3,17),(3,22),(4,8),(4,10),(4,17),(4,22),(5,8),(5,9),(5,12),(5,13),(5,22),(6,10),(6,11),(6,12),(6,14),(6,22),(8,15),(8,19),(8,23),(9,16),(9,19),(9,23),(10,15),(10,20),(10,23),(11,16),(11,20),(11,23),(12,15),(12,16),(12,19),(12,20),(13,19),(13,23),(14,20),(14,23),(15,18),(15,21),(16,18),(16,21),(17,23),(18,7),(19,18),(19,21),(20,18),(20,21),(21,7),(22,19),(22,20),(22,23),(23,21)],24)
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => [4,1,2,6,5,3] => ([(0,2),(0,4),(0,5),(0,6),(1,14),(1,16),(2,12),(2,17),(3,7),(3,8),(3,18),(4,10),(4,11),(4,17),(5,1),(5,11),(5,13),(5,17),(6,3),(6,10),(6,12),(6,13),(7,19),(7,20),(8,19),(10,15),(10,18),(11,14),(11,15),(11,16),(12,8),(12,18),(13,7),(13,15),(13,16),(13,18),(14,20),(15,19),(15,20),(16,19),(16,20),(17,14),(17,18),(18,19),(18,20),(19,9),(20,9)],21)
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => [6,5,2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,6),(1,14),(1,18),(2,13),(2,14),(2,18),(3,12),(3,14),(3,18),(4,11),(4,14),(4,18),(5,8),(5,9),(5,10),(5,16),(6,5),(6,11),(6,12),(6,13),(6,18),(8,15),(8,19),(9,15),(9,19),(10,15),(10,19),(11,8),(11,16),(11,17),(12,9),(12,16),(12,17),(13,10),(13,16),(13,17),(14,17),(15,7),(16,15),(16,19),(17,19),(18,16),(18,17),(19,7)],20)
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6}
[[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[[1,2,3,4,5,6],[7]]
=> [7,1,2,3,4,5,6] => [7,6,5,4,3,2,1] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
Description
The jump number of the poset. A jump in a linear extension $e_1, \dots, e_n$ of a poset $P$ is a pair $(e_i, e_{i+1})$ so that $e_{i+1}$ does not cover $e_i$ in $P$. The jump number of a poset is the minimal number of jumps in linear extensions of a poset.