Your data matches 56 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St000058: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 1
[1,0,1,0]
=> [2,1] => 2
[1,1,0,0]
=> [1,2] => 1
[1,0,1,0,1,0]
=> [3,2,1] => 2
[1,0,1,1,0,0]
=> [2,3,1] => 3
[1,1,0,0,1,0]
=> [3,1,2] => 3
[1,1,0,1,0,0]
=> [2,1,3] => 2
[1,1,1,0,0,0]
=> [1,2,3] => 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 2
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 4
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 3
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 4
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 4
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 2
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 3
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 2
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 3
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 4
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 3
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 2
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => 2
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => 4
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => 6
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => 5
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => 6
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => 6
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => 5
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 6
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 5
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 4
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 5
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => 4
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 5
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 6
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 5
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => 5
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => 6
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => 6
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => 4
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => 3
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => 4
Description
The order of a permutation. $\operatorname{ord}(\pi)$ is given by the minimial $k$ for which $\pi^k$ is the identity permutation.
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00108: Permutations cycle typeInteger partitions
St000668: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,2] => [1,1]
=> 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,1,3] => [2,1]
=> 2
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => [1,1,1]
=> 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [2,1,1]
=> 2
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [3,1]
=> 3
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [3,1]
=> 3
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,1]
=> 2
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,1,1,1]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [2,2,1]
=> 2
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [4,1]
=> 4
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [2,1,1,1]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [3,1,1]
=> 3
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [4,1]
=> 4
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => [4,1]
=> 4
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => [2,2,1]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => [3,1,1]
=> 3
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => [2,1,1,1]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => [3,1,1]
=> 3
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => [4,1]
=> 4
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => [3,1,1]
=> 3
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,1,1]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,1,1,1,1]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1,6] => [2,2,1,1]
=> 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [4,5,3,2,1,6] => [4,1,1]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [5,3,4,2,1,6] => [3,2,1]
=> 6
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [4,3,5,2,1,6] => [5,1]
=> 5
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,1,6] => [3,2,1]
=> 6
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [5,4,2,3,1,6] => [3,2,1]
=> 6
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [4,5,2,3,1,6] => [5,1]
=> 5
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [5,3,2,4,1,6] => [2,2,1,1]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [4,3,2,5,1,6] => [3,2,1]
=> 6
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,1,6] => [5,1]
=> 5
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,1,6] => [2,1,1,1,1]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,1,6] => [3,1,1,1]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,1,6] => [4,1,1]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,1,6] => [5,1]
=> 5
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [5,4,3,1,2,6] => [4,1,1]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [4,5,3,1,2,6] => [2,2,1,1]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [5,3,4,1,2,6] => [5,1]
=> 5
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [4,3,5,1,2,6] => [3,2,1]
=> 6
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,4,5,1,2,6] => [5,1]
=> 5
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [5,4,2,1,3,6] => [5,1]
=> 5
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,5,2,1,3,6] => [3,2,1]
=> 6
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,3,2,1,4,6] => [3,2,1]
=> 6
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [4,3,2,1,5,6] => [2,2,1,1]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,2,1,5,6] => [4,1,1]
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,3,1,4,6] => [3,1,1,1]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [4,2,3,1,5,6] => [2,1,1,1,1]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,2,4,1,5,6] => [3,1,1,1]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [2,3,4,1,5,6] => [4,1,1]
=> 4
Description
The least common multiple of the parts of the partition.
Matching statistic: St001128
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00108: Permutations cycle typeInteger partitions
St001128: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,2] => [1,1]
=> 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,1,3] => [2,1]
=> 2
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => [1,1,1]
=> 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [2,1,1]
=> 2
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [3,1]
=> 3
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [3,1]
=> 3
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,1]
=> 2
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,1,1,1]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [2,2,1]
=> 2
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [4,1]
=> 4
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [2,1,1,1]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [3,1,1]
=> 3
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [4,1]
=> 4
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => [4,1]
=> 4
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => [2,2,1]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => [3,1,1]
=> 3
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => [2,1,1,1]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => [3,1,1]
=> 3
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => [4,1]
=> 4
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => [3,1,1]
=> 3
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,1,1]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,1,1,1,1]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1,6] => [2,2,1,1]
=> 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [4,5,3,2,1,6] => [4,1,1]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [5,3,4,2,1,6] => [3,2,1]
=> 6
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [4,3,5,2,1,6] => [5,1]
=> 5
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,1,6] => [3,2,1]
=> 6
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [5,4,2,3,1,6] => [3,2,1]
=> 6
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [4,5,2,3,1,6] => [5,1]
=> 5
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [5,3,2,4,1,6] => [2,2,1,1]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [4,3,2,5,1,6] => [3,2,1]
=> 6
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,1,6] => [5,1]
=> 5
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,1,6] => [2,1,1,1,1]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,1,6] => [3,1,1,1]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,1,6] => [4,1,1]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,1,6] => [5,1]
=> 5
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [5,4,3,1,2,6] => [4,1,1]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [4,5,3,1,2,6] => [2,2,1,1]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [5,3,4,1,2,6] => [5,1]
=> 5
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [4,3,5,1,2,6] => [3,2,1]
=> 6
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,4,5,1,2,6] => [5,1]
=> 5
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [5,4,2,1,3,6] => [5,1]
=> 5
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,5,2,1,3,6] => [3,2,1]
=> 6
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,3,2,1,4,6] => [3,2,1]
=> 6
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [4,3,2,1,5,6] => [2,2,1,1]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,2,1,5,6] => [4,1,1]
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,3,1,4,6] => [3,1,1,1]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [4,2,3,1,5,6] => [2,1,1,1,1]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,2,4,1,5,6] => [3,1,1,1]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [2,3,4,1,5,6] => [4,1,1]
=> 4
Description
The exponens consonantiae of a partition. This is the quotient of the least common multiple and the greatest common divior of the parts of the partiton. See [1, Caput sextum, §19-§22].
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00071: Permutations descent compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 56% values known / values provided: 56%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1,0]
=> 0 = 1 - 1
[1,0,1,0]
=> [1,2] => [2] => [1,1,0,0]
=> 0 = 1 - 1
[1,1,0,0]
=> [2,1] => [1,1] => [1,0,1,0]
=> 1 = 2 - 1
[1,0,1,0,1,0]
=> [1,2,3] => [3] => [1,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,0]
=> [1,3,2] => [2,1] => [1,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,0,1,0]
=> [2,1,3] => [1,2] => [1,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,0,0]
=> [2,3,1] => [2,1] => [1,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,1,0,0,0]
=> [3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> ? = 3 - 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,3,3} - 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,3,3} - 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> ? ∊ {2,2,3,3} - 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,3,3} - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,5,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,5,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,3,3,3,5,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,5,6,6,6,6,6,6,6,6} - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 4 = 5 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4 = 5 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,5,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,5,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,3,3,3,5,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> ? ∊ {2,2,2,2,2,3,3,3,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4 = 5 - 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,2,3,1,5] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4 = 5 - 1
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,3,5,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[1,1,1,0,1,0,1,0,0,0]
=> [5,2,3,4,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,3,3,3,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,5,6,6,6,6,6,6,6,6} - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,5,4] => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,4,6,5,3] => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,4,3,6] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,5,4,3] => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,5,4] => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,3,4,6,5,2] => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,3,5,4,2,6] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,3,6,5,4,2] => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,4,3,2,5,6] => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,4,3,2,6,5] => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,4,3,6,5,2] => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,6,3,5,4,2] => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,5,4,3,2,6] => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,5,4,3,6,2] => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,6,4,3,5,2] => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,6,4,5,3,2] => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,5,4,3,2] => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,3,6,5,4] => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,1,4,6,5,3] => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,1,5,4,3,6] => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,6,5,4,3] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [2,3,1,6,5,4] => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,5,1] => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [2,3,5,4,1,6] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,5,4,1] => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [2,4,3,1,5,6] => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [2,4,3,1,6,5] => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,3,6,5,1] => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
Mp00117: Graphs Ore closureGraphs
St000454: Graphs ⟶ ℤResult quality: 49% values known / values provided: 49%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => ([],1)
=> ([],1)
=> 0 = 1 - 1
[1,0,1,0]
=> [1,2] => ([],2)
=> ([],2)
=> 0 = 1 - 1
[1,1,0,0]
=> [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,0,1,0,1,0]
=> [1,2,3] => ([],3)
=> ([],3)
=> 0 = 1 - 1
[1,0,1,1,0,0]
=> [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[1,1,0,0,1,0]
=> [2,1,3] => ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[1,1,0,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 3 - 1
[1,1,1,0,0,0]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => ([],4)
=> ([],4)
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {2,3,3,4,4} - 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {2,3,3,4,4} - 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,4,4} - 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,4,4} - 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,4,4} - 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1 = 2 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1 = 2 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {2,2,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {2,2,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {2,2,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {2,2,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {2,2,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,1,0,1,0,0,0]
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => ([],6)
=> ([],6)
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => ([(4,5)],6)
=> ([(4,5)],6)
=> 1 = 2 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => ([(4,5)],6)
=> ([(4,5)],6)
=> 1 = 2 - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,5,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => ([(4,5)],6)
=> ([(4,5)],6)
=> 1 = 2 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => ([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> 1 = 2 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,4,6,5,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,4,3,6] => ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,5,4,6,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,6,4,5,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,5,4,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => ([(4,5)],6)
=> ([(4,5)],6)
=> 1 = 2 - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => ([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,6,4] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,4,2,5,6] => ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,3,4,2,6,5] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,2,6] => ([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,3,4,6,5,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,3,5,4,2,6] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,3,5,4,6,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,3,6,4,5,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,3,6,5,4,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,4,3,5,2,6] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,4,3,5,6,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,4,3,6,5,2] => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,5,3,4,6,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,5,4,3,6,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,3,5,6,4] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,1,4,5,3,6] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,1,4,5,6,3] => ([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,1,4,6,5,3] => ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,1,5,4,6,3] => ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6] => ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
Description
The largest eigenvalue of a graph if it is integral. If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
Mp00146: Dyck paths to tunnel matchingPerfect matchings
Mp00058: Perfect matchings to permutationPermutations
Mp00159: Permutations Demazure product with inversePermutations
St001115: Permutations ⟶ ℤResult quality: 49% values known / values provided: 49%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [(1,2)]
=> [2,1] => [2,1] => 0 = 1 - 1
[1,0,1,0]
=> [(1,2),(3,4)]
=> [2,1,4,3] => [2,1,4,3] => 0 = 1 - 1
[1,1,0,0]
=> [(1,4),(2,3)]
=> [4,3,2,1] => [4,3,2,1] => 1 = 2 - 1
[1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => [2,1,4,3,6,5] => 0 = 1 - 1
[1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,6,5,4,3] => [2,1,6,5,4,3] => 1 = 2 - 1
[1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [4,3,2,1,6,5] => [4,3,2,1,6,5] => 1 = 2 - 1
[1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> [6,3,2,5,4,1] => [6,5,3,4,2,1] => 2 = 3 - 1
[1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => 2 = 3 - 1
[1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => 0 = 1 - 1
[1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,8,7,6,5] => [2,1,4,3,8,7,6,5] => 1 = 2 - 1
[1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,6,5,4,3,8,7] => [2,1,6,5,4,3,8,7] => 1 = 2 - 1
[1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,8,5,4,7,6,3] => [2,1,8,7,5,6,4,3] => ? ∊ {2,2,3,4,4} - 1
[1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,8,7,6,5,4,3] => [2,1,8,7,6,5,4,3] => 2 = 3 - 1
[1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [4,3,2,1,6,5,8,7] => [4,3,2,1,6,5,8,7] => 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [4,3,2,1,8,7,6,5] => [4,3,2,1,8,7,6,5] => 2 = 3 - 1
[1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [6,3,2,5,4,1,8,7] => [6,5,3,4,2,1,8,7] => ? ∊ {2,2,3,4,4} - 1
[1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => [8,7,3,5,4,6,2,1] => ? ∊ {2,2,3,4,4} - 1
[1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [8,3,2,7,6,5,4,1] => [8,7,3,6,5,4,2,1] => ? ∊ {2,2,3,4,4} - 1
[1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [6,5,4,3,2,1,8,7] => [6,5,4,3,2,1,8,7] => 2 = 3 - 1
[1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [8,5,4,3,2,7,6,1] => [8,7,5,4,3,6,2,1] => ? ∊ {2,2,3,4,4} - 1
[1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [8,7,4,3,6,5,2,1] => [8,7,6,5,4,3,2,1] => 3 = 4 - 1
[1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [8,7,6,5,4,3,2,1] => [8,7,6,5,4,3,2,1] => 3 = 4 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> [2,1,4,3,6,5,10,9,8,7] => [2,1,4,3,6,5,10,9,8,7] => 1 = 2 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,8,7,6,5,10,9] => [2,1,4,3,8,7,6,5,10,9] => 1 = 2 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> [2,1,4,3,10,7,6,9,8,5] => [2,1,4,3,10,9,7,8,6,5] => ? ∊ {2,2,2,2,2,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> [2,1,4,3,10,9,8,7,6,5] => [2,1,4,3,10,9,8,7,6,5] => 2 = 3 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10)]
=> [2,1,6,5,4,3,8,7,10,9] => [2,1,6,5,4,3,8,7,10,9] => 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> [2,1,6,5,4,3,10,9,8,7] => [2,1,6,5,4,3,10,9,8,7] => 2 = 3 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [2,1,8,5,4,7,6,3,10,9] => [2,1,8,7,5,6,4,3,10,9] => ? ∊ {2,2,2,2,2,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,10,5,4,7,6,9,8,3] => [2,1,10,9,5,7,6,8,4,3] => ? ∊ {2,2,2,2,2,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> [2,1,10,5,4,9,8,7,6,3] => [2,1,10,9,5,8,7,6,4,3] => ? ∊ {2,2,2,2,2,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [2,1,8,7,6,5,4,3,10,9] => [2,1,8,7,6,5,4,3,10,9] => 2 = 3 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [2,1,10,7,6,5,4,9,8,3] => [2,1,10,9,7,6,5,8,4,3] => ? ∊ {2,2,2,2,2,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> [2,1,10,9,6,5,8,7,4,3] => [2,1,10,9,8,7,6,5,4,3] => 3 = 4 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> [2,1,10,9,8,7,6,5,4,3] => [2,1,10,9,8,7,6,5,4,3] => 3 = 4 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [4,3,2,1,6,5,8,7,10,9] => [4,3,2,1,6,5,8,7,10,9] => 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> [4,3,2,1,6,5,10,9,8,7] => [4,3,2,1,6,5,10,9,8,7] => 2 = 3 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> [4,3,2,1,8,7,6,5,10,9] => [4,3,2,1,8,7,6,5,10,9] => 2 = 3 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> [4,3,2,1,10,7,6,9,8,5] => [4,3,2,1,10,9,7,8,6,5] => ? ∊ {2,2,2,2,2,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> [4,3,2,1,10,9,8,7,6,5] => [4,3,2,1,10,9,8,7,6,5] => 3 = 4 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [6,3,2,5,4,1,8,7,10,9] => [6,5,3,4,2,1,8,7,10,9] => ? ∊ {2,2,2,2,2,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> [6,3,2,5,4,1,10,9,8,7] => [6,5,3,4,2,1,10,9,8,7] => ? ∊ {2,2,2,2,2,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [8,3,2,5,4,7,6,1,10,9] => [8,7,3,5,4,6,2,1,10,9] => ? ∊ {2,2,2,2,2,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,0,1,0,1,0,0]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [10,3,2,5,4,7,6,9,8,1] => [10,9,3,5,4,7,6,8,2,1] => ? ∊ {2,2,2,2,2,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,0,1,1,0,0,0]
=> [(1,10),(2,3),(4,5),(6,9),(7,8)]
=> [10,3,2,5,4,9,8,7,6,1] => [10,9,3,5,4,8,7,6,2,1] => ? ∊ {2,2,2,2,2,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [8,3,2,7,6,5,4,1,10,9] => [8,7,3,6,5,4,2,1,10,9] => ? ∊ {2,2,2,2,2,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,1,0,0,1,0,0]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [10,3,2,7,6,5,4,9,8,1] => [10,9,3,7,6,5,4,8,2,1] => ? ∊ {2,2,2,2,2,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,1,0,1,0,0,0]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> [10,3,2,9,6,5,8,7,4,1] => [10,9,3,8,7,6,5,4,2,1] => ? ∊ {2,2,2,2,2,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,1,1,0,0,0,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> [10,3,2,9,8,7,6,5,4,1] => [10,9,3,8,7,6,5,4,2,1] => ? ∊ {2,2,2,2,2,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [6,5,4,3,2,1,8,7,10,9] => [6,5,4,3,2,1,8,7,10,9] => 2 = 3 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> [6,5,4,3,2,1,10,9,8,7] => [6,5,4,3,2,1,10,9,8,7] => 3 = 4 - 1
[1,1,1,0,0,1,0,0,1,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10)]
=> [8,5,4,3,2,7,6,1,10,9] => [8,7,5,4,3,6,2,1,10,9] => ? ∊ {2,2,2,2,2,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> [10,5,4,3,2,7,6,9,8,1] => [10,9,5,4,3,7,6,8,2,1] => ? ∊ {2,2,2,2,2,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,0,1,1,0,0,0]
=> [(1,10),(2,5),(3,4),(6,9),(7,8)]
=> [10,5,4,3,2,9,8,7,6,1] => [10,9,5,4,3,8,7,6,2,1] => ? ∊ {2,2,2,2,2,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,1,0,0,0,1,0]
=> [(1,8),(2,7),(3,4),(5,6),(9,10)]
=> [8,7,4,3,6,5,2,1,10,9] => [8,7,6,5,4,3,2,1,10,9] => 3 = 4 - 1
[1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> [10,7,4,3,6,5,2,9,8,1] => [10,9,7,6,5,4,3,8,2,1] => ? ∊ {2,2,2,2,2,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,1,0,1,0,0,0]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [10,9,4,3,6,5,8,7,2,1] => [10,9,8,7,6,5,4,3,2,1] => 4 = 5 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> [10,9,4,3,8,7,6,5,2,1] => [10,9,8,7,6,5,4,3,2,1] => 4 = 5 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> [8,7,6,5,4,3,2,1,10,9] => [8,7,6,5,4,3,2,1,10,9] => 3 = 4 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [(1,10),(2,7),(3,6),(4,5),(8,9)]
=> [10,7,6,5,4,3,2,9,8,1] => [10,9,7,6,5,4,3,8,2,1] => ? ∊ {2,2,2,2,2,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,1,0,0,1,0,0,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8)]
=> [10,9,6,5,4,3,8,7,2,1] => [10,9,8,7,6,5,4,3,2,1] => 4 = 5 - 1
[1,1,1,1,0,1,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,5),(6,7)]
=> [10,9,8,5,4,7,6,3,2,1] => [10,9,8,7,6,5,4,3,2,1] => 4 = 5 - 1
[1,1,1,1,1,0,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> [10,9,8,7,6,5,4,3,2,1] => [10,9,8,7,6,5,4,3,2,1] => 4 = 5 - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]
=> [2,1,4,3,6,5,8,7,10,9,12,11] => [2,1,4,3,6,5,8,7,10,9,12,11] => 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)]
=> [2,1,4,3,6,5,8,7,12,11,10,9] => [2,1,4,3,6,5,8,7,12,11,10,9] => 1 = 2 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)]
=> [2,1,4,3,6,5,10,9,8,7,12,11] => [2,1,4,3,6,5,10,9,8,7,12,11] => 1 = 2 - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)]
=> [2,1,4,3,6,5,12,9,8,11,10,7] => [2,1,4,3,6,5,12,11,9,10,8,7] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)]
=> [2,1,4,3,6,5,12,11,10,9,8,7] => [2,1,4,3,6,5,12,11,10,9,8,7] => 2 = 3 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)]
=> [2,1,4,3,8,7,6,5,10,9,12,11] => [2,1,4,3,8,7,6,5,10,9,12,11] => 1 = 2 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)]
=> [2,1,4,3,8,7,6,5,12,11,10,9] => [2,1,4,3,8,7,6,5,12,11,10,9] => 2 = 3 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)]
=> [2,1,4,3,10,7,6,9,8,5,12,11] => [2,1,4,3,10,9,7,8,6,5,12,11] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)]
=> [2,1,4,3,12,7,6,9,8,11,10,5] => [2,1,4,3,12,11,7,9,8,10,6,5] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)]
=> [2,1,4,3,12,7,6,11,10,9,8,5] => [2,1,4,3,12,11,7,10,9,8,6,5] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)]
=> [2,1,4,3,10,9,8,7,6,5,12,11] => [2,1,4,3,10,9,8,7,6,5,12,11] => 2 = 3 - 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)]
=> [2,1,4,3,12,9,8,7,6,11,10,5] => [2,1,4,3,12,11,9,8,7,10,6,5] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)]
=> [2,1,4,3,12,11,8,7,10,9,6,5] => [2,1,4,3,12,11,10,9,8,7,6,5] => 3 = 4 - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)]
=> [2,1,4,3,12,11,10,9,8,7,6,5] => [2,1,4,3,12,11,10,9,8,7,6,5] => 3 = 4 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10),(11,12)]
=> [2,1,6,5,4,3,8,7,10,9,12,11] => [2,1,6,5,4,3,8,7,10,9,12,11] => 1 = 2 - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,12),(10,11)]
=> [2,1,6,5,4,3,8,7,12,11,10,9] => [2,1,6,5,4,3,8,7,12,11,10,9] => 2 = 3 - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [(1,2),(3,6),(4,5),(7,12),(8,9),(10,11)]
=> [2,1,6,5,4,3,12,9,8,11,10,7] => [2,1,6,5,4,3,12,11,9,10,8,7] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10),(11,12)]
=> [2,1,8,5,4,7,6,3,10,9,12,11] => [2,1,8,7,5,6,4,3,10,9,12,11] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,12),(10,11)]
=> [2,1,8,5,4,7,6,3,12,11,10,9] => [2,1,8,7,5,6,4,3,12,11,10,9] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9),(11,12)]
=> [2,1,10,5,4,7,6,9,8,3,12,11] => [2,1,10,9,5,7,6,8,4,3,12,11] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,9),(10,11)]
=> [2,1,12,5,4,7,6,9,8,11,10,3] => [2,1,12,11,5,7,6,9,8,10,4,3] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,11),(9,10)]
=> [2,1,12,5,4,7,6,11,10,9,8,3] => [2,1,12,11,5,7,6,10,9,8,4,3] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8),(11,12)]
=> [2,1,10,5,4,9,8,7,6,3,12,11] => [2,1,10,9,5,8,7,6,4,3,12,11] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,9),(7,8),(10,11)]
=> [2,1,12,5,4,9,8,7,6,11,10,3] => [2,1,12,11,5,9,8,7,6,10,4,3] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [(1,2),(3,12),(4,5),(6,11),(7,8),(9,10)]
=> [2,1,12,5,4,11,8,7,10,9,6,3] => [2,1,12,11,5,10,9,8,7,6,4,3] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [(1,2),(3,12),(4,5),(6,11),(7,10),(8,9)]
=> [2,1,12,5,4,11,10,9,8,7,6,3] => [2,1,12,11,5,10,9,8,7,6,4,3] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9),(11,12)]
=> [2,1,10,7,6,5,4,9,8,3,12,11] => [2,1,10,9,7,6,5,8,4,3,12,11] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,7),(5,6),(8,9),(10,11)]
=> [2,1,12,7,6,5,4,9,8,11,10,3] => [2,1,12,11,7,6,5,9,8,10,4,3] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [(1,2),(3,12),(4,7),(5,6),(8,11),(9,10)]
=> [2,1,12,7,6,5,4,11,10,9,8,3] => [2,1,12,11,7,6,5,10,9,8,4,3] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [(1,2),(3,12),(4,9),(5,6),(7,8),(10,11)]
=> [2,1,12,9,6,5,8,7,4,11,10,3] => [2,1,12,11,9,8,7,6,5,10,4,3] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [(1,2),(3,12),(4,9),(5,8),(6,7),(10,11)]
=> [2,1,12,9,8,7,6,5,4,11,10,3] => [2,1,12,11,9,8,7,6,5,10,4,3] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,6),(7,12),(8,9),(10,11)]
=> [4,3,2,1,6,5,12,9,8,11,10,7] => [4,3,2,1,6,5,12,11,9,10,8,7] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9),(11,12)]
=> [4,3,2,1,10,7,6,9,8,5,12,11] => [4,3,2,1,10,9,7,8,6,5,12,11] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [(1,4),(2,3),(5,12),(6,7),(8,9),(10,11)]
=> [4,3,2,1,12,7,6,9,8,11,10,5] => [4,3,2,1,12,11,7,9,8,10,6,5] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [(1,4),(2,3),(5,12),(6,7),(8,11),(9,10)]
=> [4,3,2,1,12,7,6,11,10,9,8,5] => [4,3,2,1,12,11,7,10,9,8,6,5] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [(1,4),(2,3),(5,12),(6,9),(7,8),(10,11)]
=> [4,3,2,1,12,9,8,7,6,11,10,5] => [4,3,2,1,12,11,9,8,7,10,6,5] => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
Description
The number of even descents of a permutation.
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00310: Permutations toric promotionPermutations
Mp00160: Permutations graph of inversionsGraphs
St000777: Graphs ⟶ ℤResult quality: 48% values known / values provided: 48%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 1
[1,0,1,0]
=> [1,2] => [1,2] => ([],2)
=> ? = 1
[1,1,0,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 2
[1,0,1,0,1,0]
=> [1,2,3] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[1,0,1,1,0,0]
=> [1,3,2] => [2,3,1] => ([(0,2),(1,2)],3)
=> 3
[1,1,0,0,1,0]
=> [2,1,3] => [3,1,2] => ([(0,2),(1,2)],3)
=> 3
[1,1,0,1,0,0]
=> [2,3,1] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,2}
[1,1,1,0,0,0]
=> [3,2,1] => [1,2,3] => ([],3)
=> ? ∊ {1,2}
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 4
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,4}
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,4}
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,4}
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,4}
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {1,2,2,2,2,2,4}
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,4}
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,4}
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [5,2,4,1,3] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [5,4,1,3,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 5
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 5
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 5
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,5,6,6,6,6,6,6,6,6}
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,5,6,6,6,6,6,6,6,6}
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,5,6,6,6,6,6,6,6,6}
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,5,6,6,6,6,6,6,6,6}
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,5,6,6,6,6,6,6,6,6}
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [5,1,2,4,3] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [5,1,3,2,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [5,1,3,4,2] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [5,1,4,3,2] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,5,6,6,6,6,6,6,6,6}
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,5,6,6,6,6,6,6,6,6}
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,2,3,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,2,1,4,3] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,5,6,6,6,6,6,6,6,6}
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [5,3,1,4,2] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,5,6,6,6,6,6,6,6,6}
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,5,6,6,6,6,6,6,6,6}
[1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,5,6,6,6,6,6,6,6,6}
[1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,5,6,6,6,6,6,6,6,6}
[1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 5
[1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,5,6,6,6,6,6,6,6,6}
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,2,1,5] => [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,5,6,6,6,6,6,6,6,6}
[1,1,1,0,1,0,0,1,0,0]
=> [3,4,2,5,1] => [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,5,6,6,6,6,6,6,6,6}
[1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,2,1] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,5,6,6,6,6,6,6,6,6}
[1,1,1,0,1,1,0,0,0,0]
=> [3,5,4,2,1] => [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,5,6,6,6,6,6,6,6,6}
[1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,5,6,6,6,6,6,6,6,6}
[1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,5,6,6,6,6,6,6,6,6}
[1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,5,6,6,6,6,6,6,6,6}
[1,1,1,1,0,1,0,0,0,0]
=> [4,5,3,2,1] => [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,5,6,6,6,6,6,6,6,6}
[1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,4,5,6,6,6,6,6,6,6,6}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [6,2,3,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [6,2,3,5,1,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [6,2,4,1,3,5] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => [6,2,4,5,1,3] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,5,4] => [6,2,5,1,4,3] => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [6,3,1,2,4,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [6,3,1,2,5,4] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => [6,3,4,1,2,5] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 5
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => [6,3,4,5,1,2] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,4,6,5,3] => [6,3,5,1,4,2] => ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,4,3,6] => [6,4,1,3,2,5] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,5,4,6,3] => [6,4,1,3,5,2] => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,5,6,4,3] => [6,4,5,1,3,2] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 5
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,5,4,3] => [6,5,1,4,3,2] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 5
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => [2,6,1,3,5,4] => ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 6
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => [2,6,1,4,3,5] => ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 6
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,6,4] => [2,6,1,4,5,3] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> 6
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,3,4,6,5,2] => [2,3,5,1,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,3,5,4,2,6] => [2,4,1,3,6,5] => ([(0,1),(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,3,5,4,6,2] => [2,4,1,3,5,6] => ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,3,5,6,4,2] => [2,4,5,1,3,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,3,6,5,4,2] => [2,5,1,4,3,6] => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,4,3,2,5,6] => [3,1,2,6,4,5] => ([(0,5),(1,5),(2,4),(3,4)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,4,3,2,6,5] => [3,1,2,6,5,4] => ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,4,3,5,2,6] => [3,1,2,4,6,5] => ([(1,2),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,4,3,5,6,2] => [3,1,2,4,5,6] => ([(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,4,3,6,5,2] => [3,1,2,5,4,6] => ([(1,2),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,4,5,3,2,6] => [3,4,1,2,6,5] => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,4,5,3,6,2] => [3,4,1,2,5,6] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,4,5,6,3,2] => [3,4,5,1,2,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,5,3,2] => [3,5,1,4,2,6] => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,5,4,3,2,6] => [4,1,3,2,6,5] => ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,5,4,3,6,2] => [4,1,3,2,5,6] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5,4,6,3,2] => [4,1,3,5,2,6] => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,4,3,2] => [4,5,1,3,2,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00160: Permutations graph of inversionsGraphs
Mp00247: Graphs de-duplicateGraphs
St000259: Graphs ⟶ ℤResult quality: 36% values known / values provided: 36%distinct values known / distinct values provided: 83%
Values
[1,0]
=> [1] => ([],1)
=> ([],1)
=> 0 = 1 - 1
[1,0,1,0]
=> [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,0,0]
=> [1,2] => ([],2)
=> ([],1)
=> 0 = 1 - 1
[1,0,1,0,1,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,0,1,1,0,0]
=> [2,1,3] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {3,3} - 1
[1,1,0,0,1,0]
=> [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {3,3} - 1
[1,1,0,1,0,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ([],1)
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,3,3,3,3,4,4} - 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ? ∊ {2,2,3,3,3,3,4,4} - 1
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 4 - 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,3,3,3,3,4,4} - 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,3,3,3,3,4,4} - 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,3,3,3,3,4,4} - 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 4 - 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,3,3,3,3,4,4} - 1
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,3,3,3,3,4,4} - 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,3,3,3,3,4,4} - 1
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ([],1)
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 4 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 5 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 4 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 4 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 4 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 4 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 5 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 4 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 4 - 1
[1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 4 - 1
[1,1,1,0,1,0,1,0,0,0]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6} - 1
[1,1,1,1,0,1,0,0,0,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,5,1,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,3,4,1,6,5] => ([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 4 - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,3,4,1,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,3,1,5,6,4] => ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,1,5,4,6] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [2,3,5,1,6,4] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 5 - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 4 - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [2,3,1,4,6,5] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,6,4,5] => ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 4 - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,3,1,4,5,6] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,4,5,6,3] => ([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,1,4,5,3,6] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5] => ([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,6,3,5] => ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [2,4,1,5,6,3] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 5 - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [2,4,5,1,6,3] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 5 - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 4 - 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,6,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 5 = 6 - 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [2,5,1,3,6,4] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4 = 5 - 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [2,5,1,6,3,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 5 - 1
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [2,5,6,1,3,4] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 4 - 1
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 4 - 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [3,1,4,5,6,2] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 4 - 1
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [3,1,4,6,2,5] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 4 = 5 - 1
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [3,4,1,5,6,2] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 4 - 1
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [3,4,5,1,6,2] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 4 - 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [3,4,1,6,2,5] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 5 - 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [3,4,6,1,2,5] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 4 - 1
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [3,1,5,2,6,4] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 5 = 6 - 1
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [3,1,5,6,2,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 5 - 1
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
Mp00247: Graphs de-duplicateGraphs
St001645: Graphs ⟶ ℤResult quality: 35% values known / values provided: 35%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => ([],1)
=> ([],1)
=> 1
[1,0,1,0]
=> [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,1,0,0]
=> [1,2] => ([],2)
=> ([],1)
=> 1
[1,0,1,0,1,0]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
[1,1,0,0,1,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
[1,1,0,1,0,0]
=> [2,1,3] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 3
[1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ([],1)
=> 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,3,4,4,4}
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 2
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,3,4,4,4}
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,3,4,4,4}
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,3,4,4,4}
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,3,4,4,4}
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,3,4,4,4}
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 2
[1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,5,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,6,2,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [4,5,3,6,2,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [5,3,4,6,2,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [4,3,5,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,3,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [5,6,4,2,3,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,5,2,3,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,6,2,3,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [4,5,6,2,3,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,4,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [5,6,3,2,4,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,5,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,6,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [4,5,3,2,6,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [6,3,4,2,5,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [5,3,4,2,6,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [4,3,5,2,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,6,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [6,5,2,3,4,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [5,6,2,3,4,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [6,4,2,3,5,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [5,4,2,3,6,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [4,5,2,3,6,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [6,3,2,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 2
Description
The pebbling number of a connected graph.
Mp00100: Dyck paths touch compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000771: Graphs ⟶ ℤResult quality: 33% values known / values provided: 33%distinct values known / distinct values provided: 83%
Values
[1,0]
=> [1] => ([],1)
=> 1
[1,0,1,0]
=> [1,1] => ([(0,1)],2)
=> 1
[1,1,0,0]
=> [2] => ([],2)
=> ? = 2
[1,0,1,0,1,0]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[1,0,1,1,0,0]
=> [1,2] => ([(1,2)],3)
=> ? ∊ {2,3,3}
[1,1,0,0,1,0]
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
[1,1,0,1,0,0]
=> [3] => ([],3)
=> ? ∊ {2,3,3}
[1,1,1,0,0,0]
=> [3] => ([],3)
=> ? ∊ {2,3,3}
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,1,0,0]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3,4,4,4,4}
[1,0,1,1,0,0,1,0]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3] => ([(2,3)],4)
=> ? ∊ {2,2,3,3,3,4,4,4,4}
[1,0,1,1,1,0,0,0]
=> [1,3] => ([(2,3)],4)
=> ? ∊ {2,2,3,3,3,4,4,4,4}
[1,1,0,0,1,0,1,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,1,0,0]
=> [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3,4,4,4,4}
[1,1,0,1,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,1,0,0]
=> [4] => ([],4)
=> ? ∊ {2,2,3,3,3,4,4,4,4}
[1,1,0,1,1,0,0,0]
=> [4] => ([],4)
=> ? ∊ {2,2,3,3,3,4,4,4,4}
[1,1,1,0,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,1,0,0]
=> [4] => ([],4)
=> ? ∊ {2,2,3,3,3,4,4,4,4}
[1,1,1,0,1,0,0,0]
=> [4] => ([],4)
=> ? ∊ {2,2,3,3,3,4,4,4,4}
[1,1,1,1,0,0,0,0]
=> [4] => ([],4)
=> ? ∊ {2,2,3,3,3,4,4,4,4}
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {2,2,2,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {2,2,2,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {2,2,2,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {2,2,2,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {2,2,2,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [5] => ([],5)
=> ? ∊ {2,2,2,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,0,1,0,1,1,0,0,0]
=> [5] => ([],5)
=> ? ∊ {2,2,2,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [5] => ([],5)
=> ? ∊ {2,2,2,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,0,1,1,0,1,0,0,0]
=> [5] => ([],5)
=> ? ∊ {2,2,2,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,0,1,1,1,0,0,0,0]
=> [5] => ([],5)
=> ? ∊ {2,2,2,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,1,0,0,1,0,1,0,0]
=> [5] => ([],5)
=> ? ∊ {2,2,2,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,1,0,0,1,1,0,0,0]
=> [5] => ([],5)
=> ? ∊ {2,2,2,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,1,0,1,0,0,1,0,0]
=> [5] => ([],5)
=> ? ∊ {2,2,2,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,1,0,1,0,1,0,0,0]
=> [5] => ([],5)
=> ? ∊ {2,2,2,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,1,0,1,1,0,0,0,0]
=> [5] => ([],5)
=> ? ∊ {2,2,2,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,1,1,0,0,0,1,0,0]
=> [5] => ([],5)
=> ? ∊ {2,2,2,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,1,1,0,0,1,0,0,0]
=> [5] => ([],5)
=> ? ∊ {2,2,2,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,1,1,0,1,0,0,0,0]
=> [5] => ([],5)
=> ? ∊ {2,2,2,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,1,1,1,1,0,0,0,0,0]
=> [5] => ([],5)
=> ? ∊ {2,2,2,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $2$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
The following 46 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001555The order of a signed permutation. St000456The monochromatic index of a connected graph. St000672The number of minimal elements in Bruhat order not less than the permutation. St000189The number of elements in the poset. St000528The height of a poset. St000907The number of maximal antichains of minimal length in a poset. St000912The number of maximal antichains in a poset. St001343The dimension of the reduced incidence algebra of a poset. St001636The number of indecomposable injective modules with projective dimension at most one in the incidence algebra of the poset. St001717The largest size of an interval in a poset. St000080The rank of the poset. St001300The rank of the boundary operator in degree 1 of the chain complex of the order complex of the poset. St001782The order of rowmotion on the set of order ideals of a poset. St000656The number of cuts of a poset. St000680The Grundy value for Hackendot on posets. St000906The length of the shortest maximal chain in a poset. St000264The girth of a graph, which is not a tree. St001498The normalised height of a Nakayama algebra with magnitude 1. St001571The Cartan determinant of the integer partition. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000993The multiplicity of the largest part of an integer partition. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000707The product of the factorials of the parts. St001378The product of the cohook lengths of the integer partition. St001600The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple graphs. St001607The number of coloured graphs such that the multiplicities of colours are given by a partition. St000744The length of the path to the largest entry in a standard Young tableau. St000455The second largest eigenvalue of a graph if it is integral. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000186The sum of the first row in a Gelfand-Tsetlin pattern. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001090The number of pop-stack-sorts needed to sort a permutation. St001060The distinguishing index of a graph. St000075The orbit size of a standard tableau under promotion. St000485The length of the longest cycle of a permutation. St000422The energy of a graph, if it is integral. St000871The number of very big ascents of a permutation. St001557The number of inversions of the second entry of a permutation. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St000742The number of big ascents of a permutation after prepending zero. St001394The genus of a permutation. St001877Number of indecomposable injective modules with projective dimension 2. St000451The length of the longest pattern of the form k 1 2.