Your data matches 52 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00075: Semistandard tableaux reading word permutationPermutations
St000058: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1,2]]
=> [1,2] => 1
[[2,2]]
=> [1,2] => 1
[[1],[2]]
=> [2,1] => 2
[[1,3]]
=> [1,2] => 1
[[2,3]]
=> [1,2] => 1
[[3,3]]
=> [1,2] => 1
[[1],[3]]
=> [2,1] => 2
[[2],[3]]
=> [2,1] => 2
[[1,1,2]]
=> [1,2,3] => 1
[[1,2,2]]
=> [1,2,3] => 1
[[2,2,2]]
=> [1,2,3] => 1
[[1,1],[2]]
=> [3,1,2] => 3
[[1,2],[2]]
=> [2,1,3] => 2
[[1,4]]
=> [1,2] => 1
[[2,4]]
=> [1,2] => 1
[[3,4]]
=> [1,2] => 1
[[4,4]]
=> [1,2] => 1
[[1],[4]]
=> [2,1] => 2
[[2],[4]]
=> [2,1] => 2
[[3],[4]]
=> [2,1] => 2
[[1,1,3]]
=> [1,2,3] => 1
[[1,2,3]]
=> [1,2,3] => 1
[[1,3,3]]
=> [1,2,3] => 1
[[2,2,3]]
=> [1,2,3] => 1
[[2,3,3]]
=> [1,2,3] => 1
[[3,3,3]]
=> [1,2,3] => 1
[[1,1],[3]]
=> [3,1,2] => 3
[[1,2],[3]]
=> [3,1,2] => 3
[[1,3],[2]]
=> [2,1,3] => 2
[[1,3],[3]]
=> [2,1,3] => 2
[[2,2],[3]]
=> [3,1,2] => 3
[[2,3],[3]]
=> [2,1,3] => 2
[[1],[2],[3]]
=> [3,2,1] => 2
[[1,1,1,2]]
=> [1,2,3,4] => 1
[[1,1,2,2]]
=> [1,2,3,4] => 1
[[1,2,2,2]]
=> [1,2,3,4] => 1
[[2,2,2,2]]
=> [1,2,3,4] => 1
[[1,1,1],[2]]
=> [4,1,2,3] => 4
[[1,1,2],[2]]
=> [3,1,2,4] => 3
[[1,2,2],[2]]
=> [2,1,3,4] => 2
[[1,1],[2,2]]
=> [3,4,1,2] => 2
[[1,5]]
=> [1,2] => 1
[[2,5]]
=> [1,2] => 1
[[3,5]]
=> [1,2] => 1
[[4,5]]
=> [1,2] => 1
[[5,5]]
=> [1,2] => 1
[[1],[5]]
=> [2,1] => 2
[[2],[5]]
=> [2,1] => 2
[[3],[5]]
=> [2,1] => 2
[[4],[5]]
=> [2,1] => 2
Description
The order of a permutation. $\operatorname{ord}(\pi)$ is given by the minimial $k$ for which $\pi^k$ is the identity permutation.
Mp00075: Semistandard tableaux reading word permutationPermutations
Mp00108: Permutations cycle typeInteger partitions
St000668: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1,2]]
=> [1,2] => [1,1]
=> 1
[[2,2]]
=> [1,2] => [1,1]
=> 1
[[1],[2]]
=> [2,1] => [2]
=> 2
[[1,3]]
=> [1,2] => [1,1]
=> 1
[[2,3]]
=> [1,2] => [1,1]
=> 1
[[3,3]]
=> [1,2] => [1,1]
=> 1
[[1],[3]]
=> [2,1] => [2]
=> 2
[[2],[3]]
=> [2,1] => [2]
=> 2
[[1,1,2]]
=> [1,2,3] => [1,1,1]
=> 1
[[1,2,2]]
=> [1,2,3] => [1,1,1]
=> 1
[[2,2,2]]
=> [1,2,3] => [1,1,1]
=> 1
[[1,1],[2]]
=> [3,1,2] => [3]
=> 3
[[1,2],[2]]
=> [2,1,3] => [2,1]
=> 2
[[1,4]]
=> [1,2] => [1,1]
=> 1
[[2,4]]
=> [1,2] => [1,1]
=> 1
[[3,4]]
=> [1,2] => [1,1]
=> 1
[[4,4]]
=> [1,2] => [1,1]
=> 1
[[1],[4]]
=> [2,1] => [2]
=> 2
[[2],[4]]
=> [2,1] => [2]
=> 2
[[3],[4]]
=> [2,1] => [2]
=> 2
[[1,1,3]]
=> [1,2,3] => [1,1,1]
=> 1
[[1,2,3]]
=> [1,2,3] => [1,1,1]
=> 1
[[1,3,3]]
=> [1,2,3] => [1,1,1]
=> 1
[[2,2,3]]
=> [1,2,3] => [1,1,1]
=> 1
[[2,3,3]]
=> [1,2,3] => [1,1,1]
=> 1
[[3,3,3]]
=> [1,2,3] => [1,1,1]
=> 1
[[1,1],[3]]
=> [3,1,2] => [3]
=> 3
[[1,2],[3]]
=> [3,1,2] => [3]
=> 3
[[1,3],[2]]
=> [2,1,3] => [2,1]
=> 2
[[1,3],[3]]
=> [2,1,3] => [2,1]
=> 2
[[2,2],[3]]
=> [3,1,2] => [3]
=> 3
[[2,3],[3]]
=> [2,1,3] => [2,1]
=> 2
[[1],[2],[3]]
=> [3,2,1] => [2,1]
=> 2
[[1,1,1,2]]
=> [1,2,3,4] => [1,1,1,1]
=> 1
[[1,1,2,2]]
=> [1,2,3,4] => [1,1,1,1]
=> 1
[[1,2,2,2]]
=> [1,2,3,4] => [1,1,1,1]
=> 1
[[2,2,2,2]]
=> [1,2,3,4] => [1,1,1,1]
=> 1
[[1,1,1],[2]]
=> [4,1,2,3] => [4]
=> 4
[[1,1,2],[2]]
=> [3,1,2,4] => [3,1]
=> 3
[[1,2,2],[2]]
=> [2,1,3,4] => [2,1,1]
=> 2
[[1,1],[2,2]]
=> [3,4,1,2] => [2,2]
=> 2
[[1,5]]
=> [1,2] => [1,1]
=> 1
[[2,5]]
=> [1,2] => [1,1]
=> 1
[[3,5]]
=> [1,2] => [1,1]
=> 1
[[4,5]]
=> [1,2] => [1,1]
=> 1
[[5,5]]
=> [1,2] => [1,1]
=> 1
[[1],[5]]
=> [2,1] => [2]
=> 2
[[2],[5]]
=> [2,1] => [2]
=> 2
[[3],[5]]
=> [2,1] => [2]
=> 2
[[4],[5]]
=> [2,1] => [2]
=> 2
Description
The least common multiple of the parts of the partition.
Mp00075: Semistandard tableaux reading word permutationPermutations
Mp00126: Permutations cactus evacuationPermutations
Mp00170: Permutations to signed permutationSigned permutations
St001555: Signed permutations ⟶ ℤResult quality: 73% values known / values provided: 73%distinct values known / distinct values provided: 86%
Values
[[1,2]]
=> [1,2] => [1,2] => [1,2] => 1
[[2,2]]
=> [1,2] => [1,2] => [1,2] => 1
[[1],[2]]
=> [2,1] => [2,1] => [2,1] => 2
[[1,3]]
=> [1,2] => [1,2] => [1,2] => 1
[[2,3]]
=> [1,2] => [1,2] => [1,2] => 1
[[3,3]]
=> [1,2] => [1,2] => [1,2] => 1
[[1],[3]]
=> [2,1] => [2,1] => [2,1] => 2
[[2],[3]]
=> [2,1] => [2,1] => [2,1] => 2
[[1,1,2]]
=> [1,2,3] => [1,2,3] => [1,2,3] => 1
[[1,2,2]]
=> [1,2,3] => [1,2,3] => [1,2,3] => 1
[[2,2,2]]
=> [1,2,3] => [1,2,3] => [1,2,3] => 1
[[1,1],[2]]
=> [3,1,2] => [1,3,2] => [1,3,2] => 2
[[1,2],[2]]
=> [2,1,3] => [2,3,1] => [2,3,1] => 3
[[1,4]]
=> [1,2] => [1,2] => [1,2] => 1
[[2,4]]
=> [1,2] => [1,2] => [1,2] => 1
[[3,4]]
=> [1,2] => [1,2] => [1,2] => 1
[[4,4]]
=> [1,2] => [1,2] => [1,2] => 1
[[1],[4]]
=> [2,1] => [2,1] => [2,1] => 2
[[2],[4]]
=> [2,1] => [2,1] => [2,1] => 2
[[3],[4]]
=> [2,1] => [2,1] => [2,1] => 2
[[1,1,3]]
=> [1,2,3] => [1,2,3] => [1,2,3] => 1
[[1,2,3]]
=> [1,2,3] => [1,2,3] => [1,2,3] => 1
[[1,3,3]]
=> [1,2,3] => [1,2,3] => [1,2,3] => 1
[[2,2,3]]
=> [1,2,3] => [1,2,3] => [1,2,3] => 1
[[2,3,3]]
=> [1,2,3] => [1,2,3] => [1,2,3] => 1
[[3,3,3]]
=> [1,2,3] => [1,2,3] => [1,2,3] => 1
[[1,1],[3]]
=> [3,1,2] => [1,3,2] => [1,3,2] => 2
[[1,2],[3]]
=> [3,1,2] => [1,3,2] => [1,3,2] => 2
[[1,3],[2]]
=> [2,1,3] => [2,3,1] => [2,3,1] => 3
[[1,3],[3]]
=> [2,1,3] => [2,3,1] => [2,3,1] => 3
[[2,2],[3]]
=> [3,1,2] => [1,3,2] => [1,3,2] => 2
[[2,3],[3]]
=> [2,1,3] => [2,3,1] => [2,3,1] => 3
[[1],[2],[3]]
=> [3,2,1] => [3,2,1] => [3,2,1] => 2
[[1,1,1,2]]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 1
[[1,1,2,2]]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 1
[[1,2,2,2]]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 1
[[2,2,2,2]]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 1
[[1,1,1],[2]]
=> [4,1,2,3] => [1,2,4,3] => [1,2,4,3] => 2
[[1,1,2],[2]]
=> [3,1,2,4] => [1,3,4,2] => [1,3,4,2] => 3
[[1,2,2],[2]]
=> [2,1,3,4] => [2,3,4,1] => [2,3,4,1] => 4
[[1,1],[2,2]]
=> [3,4,1,2] => [3,4,1,2] => [3,4,1,2] => 2
[[1,5]]
=> [1,2] => [1,2] => [1,2] => 1
[[2,5]]
=> [1,2] => [1,2] => [1,2] => 1
[[3,5]]
=> [1,2] => [1,2] => [1,2] => 1
[[4,5]]
=> [1,2] => [1,2] => [1,2] => 1
[[5,5]]
=> [1,2] => [1,2] => [1,2] => 1
[[1],[5]]
=> [2,1] => [2,1] => [2,1] => 2
[[2],[5]]
=> [2,1] => [2,1] => [2,1] => 2
[[3],[5]]
=> [2,1] => [2,1] => [2,1] => 2
[[4],[5]]
=> [2,1] => [2,1] => [2,1] => 2
[[1,1,1,1,1,2]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,5,5,6}
[[1,1,1,1,2,2]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,5,5,6}
[[1,1,1,2,2,2]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,5,5,6}
[[1,1,2,2,2,2]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,5,5,6}
[[1,2,2,2,2,2]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,5,5,6}
[[2,2,2,2,2,2]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,5,5,6}
[[1,1,1,1,1],[2]]
=> [6,1,2,3,4,5] => [1,2,3,4,6,5] => [1,2,3,4,6,5] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,5,5,6}
[[1,1,1,1,2],[2]]
=> [5,1,2,3,4,6] => [1,2,3,5,6,4] => [1,2,3,5,6,4] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,5,5,6}
[[1,1,1,2,2],[2]]
=> [4,1,2,3,5,6] => [1,2,4,5,6,3] => [1,2,4,5,6,3] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,5,5,6}
[[1,1,2,2,2],[2]]
=> [3,1,2,4,5,6] => [1,3,4,5,6,2] => [1,3,4,5,6,2] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,5,5,6}
[[1,2,2,2,2],[2]]
=> [2,1,3,4,5,6] => [2,3,4,5,6,1] => [2,3,4,5,6,1] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,5,5,6}
[[1,1,1,1],[2,2]]
=> [5,6,1,2,3,4] => [1,2,5,6,3,4] => [1,2,5,6,3,4] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,5,5,6}
[[1,1,1,2],[2,2]]
=> [4,5,1,2,3,6] => [1,4,5,6,2,3] => [1,4,5,6,2,3] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,5,5,6}
[[1,1,2,2],[2,2]]
=> [3,4,1,2,5,6] => [3,4,5,6,1,2] => [3,4,5,6,1,2] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,5,5,6}
[[1,1,1],[2,2,2]]
=> [4,5,6,1,2,3] => [4,5,6,1,2,3] => [4,5,6,1,2,3] => ? ∊ {1,1,1,1,1,1,2,2,2,3,3,4,5,5,6}
[[1,1,1,1,1,3]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[1,1,1,1,2,3]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[1,1,1,1,3,3]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[1,1,1,2,2,3]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[1,1,1,2,3,3]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[1,1,1,3,3,3]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[1,1,2,2,2,3]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[1,1,2,2,3,3]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[1,1,2,3,3,3]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[1,1,3,3,3,3]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[1,2,2,2,2,3]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[1,2,2,2,3,3]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[1,2,2,3,3,3]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[1,2,3,3,3,3]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[1,3,3,3,3,3]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[2,2,2,2,2,3]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[2,2,2,2,3,3]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[2,2,2,3,3,3]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[2,2,3,3,3,3]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[2,3,3,3,3,3]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[3,3,3,3,3,3]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[1,1,1,1,1],[3]]
=> [6,1,2,3,4,5] => [1,2,3,4,6,5] => [1,2,3,4,6,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[1,1,1,1,2],[3]]
=> [6,1,2,3,4,5] => [1,2,3,4,6,5] => [1,2,3,4,6,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[1,1,1,1,3],[2]]
=> [5,1,2,3,4,6] => [1,2,3,5,6,4] => [1,2,3,5,6,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[1,1,1,1,3],[3]]
=> [5,1,2,3,4,6] => [1,2,3,5,6,4] => [1,2,3,5,6,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[1,1,1,2,2],[3]]
=> [6,1,2,3,4,5] => [1,2,3,4,6,5] => [1,2,3,4,6,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[1,1,1,2,3],[2]]
=> [4,1,2,3,5,6] => [1,2,4,5,6,3] => [1,2,4,5,6,3] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[1,1,1,2,3],[3]]
=> [5,1,2,3,4,6] => [1,2,3,5,6,4] => [1,2,3,5,6,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[1,1,1,3,3],[2]]
=> [4,1,2,3,5,6] => [1,2,4,5,6,3] => [1,2,4,5,6,3] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[1,1,1,3,3],[3]]
=> [4,1,2,3,5,6] => [1,2,4,5,6,3] => [1,2,4,5,6,3] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[1,1,2,2,2],[3]]
=> [6,1,2,3,4,5] => [1,2,3,4,6,5] => [1,2,3,4,6,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[1,1,2,2,3],[2]]
=> [3,1,2,4,5,6] => [1,3,4,5,6,2] => [1,3,4,5,6,2] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[1,1,2,2,3],[3]]
=> [5,1,2,3,4,6] => [1,2,3,5,6,4] => [1,2,3,5,6,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[1,1,2,3,3],[2]]
=> [3,1,2,4,5,6] => [1,3,4,5,6,2] => [1,3,4,5,6,2] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[[1,1,2,3,3],[3]]
=> [4,1,2,3,5,6] => [1,2,4,5,6,3] => [1,2,4,5,6,3] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
Description
The order of a signed permutation.
Mp00075: Semistandard tableaux reading word permutationPermutations
Mp00087: Permutations inverse first fundamental transformationPermutations
Mp00160: Permutations graph of inversionsGraphs
St001330: Graphs ⟶ ℤResult quality: 66% values known / values provided: 66%distinct values known / distinct values provided: 100%
Values
[[1,2]]
=> [1,2] => [1,2] => ([],2)
=> 1
[[2,2]]
=> [1,2] => [1,2] => ([],2)
=> 1
[[1],[2]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 2
[[1,3]]
=> [1,2] => [1,2] => ([],2)
=> 1
[[2,3]]
=> [1,2] => [1,2] => ([],2)
=> 1
[[3,3]]
=> [1,2] => [1,2] => ([],2)
=> 1
[[1],[3]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 2
[[2],[3]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 2
[[1,1,2]]
=> [1,2,3] => [1,2,3] => ([],3)
=> 1
[[1,2,2]]
=> [1,2,3] => [1,2,3] => ([],3)
=> 1
[[2,2,2]]
=> [1,2,3] => [1,2,3] => ([],3)
=> 1
[[1,1],[2]]
=> [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[1,2],[2]]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> 2
[[1,4]]
=> [1,2] => [1,2] => ([],2)
=> 1
[[2,4]]
=> [1,2] => [1,2] => ([],2)
=> 1
[[3,4]]
=> [1,2] => [1,2] => ([],2)
=> 1
[[4,4]]
=> [1,2] => [1,2] => ([],2)
=> 1
[[1],[4]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 2
[[2],[4]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 2
[[3],[4]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 2
[[1,1,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> 1
[[1,2,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> 1
[[1,3,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> 1
[[2,2,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> 1
[[2,3,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> 1
[[3,3,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> 1
[[1,1],[3]]
=> [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[1,2],[3]]
=> [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[1,3],[2]]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> 2
[[1,3],[3]]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> 2
[[2,2],[3]]
=> [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[2,3],[3]]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> 2
[[1],[2],[3]]
=> [3,2,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> 2
[[1,1,1,2]]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> 1
[[1,1,2,2]]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> 1
[[1,2,2,2]]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> 1
[[2,2,2,2]]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> 1
[[1,1,1],[2]]
=> [4,1,2,3] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[[1,1,2],[2]]
=> [3,1,2,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 3
[[1,2,2],[2]]
=> [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> 2
[[1,1],[2,2]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,5]]
=> [1,2] => [1,2] => ([],2)
=> 1
[[2,5]]
=> [1,2] => [1,2] => ([],2)
=> 1
[[3,5]]
=> [1,2] => [1,2] => ([],2)
=> 1
[[4,5]]
=> [1,2] => [1,2] => ([],2)
=> 1
[[5,5]]
=> [1,2] => [1,2] => ([],2)
=> 1
[[1],[5]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 2
[[2],[5]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 2
[[3],[5]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 2
[[4],[5]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 2
[[1,2],[2,3]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,4,4}
[[1,1],[2],[3]]
=> [4,3,1,2] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,4,4}
[[1,2],[2],[3]]
=> [4,2,1,3] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,4,4}
[[1,1,1],[2,2]]
=> [4,5,1,2,3] => [5,3,1,4,2] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 5
[[1,2],[2,4]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4}
[[1,3],[2,4]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4}
[[1,3],[3,4]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4}
[[2,3],[3,4]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4}
[[1,1],[2],[4]]
=> [4,3,1,2] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4}
[[1,1],[3],[4]]
=> [4,3,1,2] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4}
[[1,2],[2],[4]]
=> [4,2,1,3] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4}
[[1,2],[3],[4]]
=> [4,3,1,2] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4}
[[1,3],[2],[4]]
=> [4,2,1,3] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4}
[[1,3],[3],[4]]
=> [4,2,1,3] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4}
[[2,2],[3],[4]]
=> [4,3,1,2] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4}
[[2,3],[3],[4]]
=> [4,2,1,3] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4}
[[1],[2],[3],[4]]
=> [4,3,2,1] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,3,3,4,4,4,4,4,4,4,4}
[[1,1,1],[2,3]]
=> [4,5,1,2,3] => [5,3,1,4,2] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,4,4,4,5,5,5,5,5,5,5,5,6,6,6}
[[1,1,1],[3,3]]
=> [4,5,1,2,3] => [5,3,1,4,2] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,4,4,4,5,5,5,5,5,5,5,5,6,6,6}
[[1,1,2],[2,3]]
=> [3,5,1,2,4] => [3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {3,4,4,4,5,5,5,5,5,5,5,5,6,6,6}
[[1,1,2],[3,3]]
=> [4,5,1,2,3] => [5,3,1,4,2] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,4,4,4,5,5,5,5,5,5,5,5,6,6,6}
[[1,2,2],[2,3]]
=> [2,5,1,3,4] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,4,4,4,5,5,5,5,5,5,5,5,6,6,6}
[[1,2,2],[3,3]]
=> [4,5,1,2,3] => [5,3,1,4,2] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,4,4,4,5,5,5,5,5,5,5,5,6,6,6}
[[1,2,3],[2,3]]
=> [2,4,1,3,5] => [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,4,4,4,5,5,5,5,5,5,5,5,6,6,6}
[[2,2,2],[3,3]]
=> [4,5,1,2,3] => [5,3,1,4,2] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,4,4,4,5,5,5,5,5,5,5,5,6,6,6}
[[1,1,1],[2],[3]]
=> [5,4,1,2,3] => [4,2,5,3,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,4,4,4,5,5,5,5,5,5,5,5,6,6,6}
[[1,1,2],[2],[3]]
=> [5,3,1,2,4] => [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,4,4,4,5,5,5,5,5,5,5,5,6,6,6}
[[1,1,3],[2],[3]]
=> [4,3,1,2,5] => [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,4,4,4,5,5,5,5,5,5,5,5,6,6,6}
[[1,2,2],[2],[3]]
=> [5,2,1,3,4] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,4,4,4,5,5,5,5,5,5,5,5,6,6,6}
[[1,2,3],[2],[3]]
=> [4,2,1,3,5] => [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,4,4,4,5,5,5,5,5,5,5,5,6,6,6}
[[1,1],[2,2],[3]]
=> [5,3,4,1,2] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,4,4,4,5,5,5,5,5,5,5,5,6,6,6}
[[1,1],[2,3],[3]]
=> [4,3,5,1,2] => [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {3,4,4,4,5,5,5,5,5,5,5,5,6,6,6}
[[1,1,1,1],[2,2]]
=> [5,6,1,2,3,4] => [5,3,1,6,4,2] => ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,3,5}
[[1,1,1,2],[2,2]]
=> [4,5,1,2,3,6] => [5,3,1,4,2,6] => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,3,5}
[[1,1,1],[2,2,2]]
=> [4,5,6,1,2,3] => [4,1,5,2,6,3] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {2,3,5}
[[1,2],[2,5]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[[1,3],[2,5]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[[1,4],[2,5]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[[1,3],[3,5]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[[1,4],[3,5]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[[1,4],[4,5]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[[2,3],[3,5]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[[2,4],[3,5]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[[2,4],[4,5]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[[3,4],[4,5]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[[1,1],[2],[5]]
=> [4,3,1,2] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[[1,1],[3],[5]]
=> [4,3,1,2] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[[1,1],[4],[5]]
=> [4,3,1,2] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[[1,2],[2],[5]]
=> [4,2,1,3] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[[1,2],[3],[5]]
=> [4,3,1,2] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Mp00075: Semistandard tableaux reading word permutationPermutations
Mp00087: Permutations inverse first fundamental transformationPermutations
Mp00160: Permutations graph of inversionsGraphs
St000454: Graphs ⟶ ℤResult quality: 55% values known / values provided: 55%distinct values known / distinct values provided: 100%
Values
[[1,2]]
=> [1,2] => [1,2] => ([],2)
=> 0 = 1 - 1
[[2,2]]
=> [1,2] => [1,2] => ([],2)
=> 0 = 1 - 1
[[1],[2]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1 = 2 - 1
[[1,3]]
=> [1,2] => [1,2] => ([],2)
=> 0 = 1 - 1
[[2,3]]
=> [1,2] => [1,2] => ([],2)
=> 0 = 1 - 1
[[3,3]]
=> [1,2] => [1,2] => ([],2)
=> 0 = 1 - 1
[[1],[3]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1 = 2 - 1
[[2],[3]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1 = 2 - 1
[[1,1,2]]
=> [1,2,3] => [1,2,3] => ([],3)
=> 0 = 1 - 1
[[1,2,2]]
=> [1,2,3] => [1,2,3] => ([],3)
=> 0 = 1 - 1
[[2,2,2]]
=> [1,2,3] => [1,2,3] => ([],3)
=> 0 = 1 - 1
[[1,1],[2]]
=> [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[[1,2],[2]]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> 1 = 2 - 1
[[1,4]]
=> [1,2] => [1,2] => ([],2)
=> 0 = 1 - 1
[[2,4]]
=> [1,2] => [1,2] => ([],2)
=> 0 = 1 - 1
[[3,4]]
=> [1,2] => [1,2] => ([],2)
=> 0 = 1 - 1
[[4,4]]
=> [1,2] => [1,2] => ([],2)
=> 0 = 1 - 1
[[1],[4]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1 = 2 - 1
[[2],[4]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1 = 2 - 1
[[3],[4]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1 = 2 - 1
[[1,1,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> 0 = 1 - 1
[[1,2,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> 0 = 1 - 1
[[1,3,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> 0 = 1 - 1
[[2,2,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> 0 = 1 - 1
[[2,3,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> 0 = 1 - 1
[[3,3,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> 0 = 1 - 1
[[1,1],[3]]
=> [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[[1,2],[3]]
=> [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[[1,3],[2]]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> 1 = 2 - 1
[[1,3],[3]]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> 1 = 2 - 1
[[2,2],[3]]
=> [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[[2,3],[3]]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> 1 = 2 - 1
[[1],[2],[3]]
=> [3,2,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ? = 2 - 1
[[1,1,1,2]]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0 = 1 - 1
[[1,1,2,2]]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0 = 1 - 1
[[1,2,2,2]]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0 = 1 - 1
[[2,2,2,2]]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0 = 1 - 1
[[1,1,1],[2]]
=> [4,1,2,3] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[[1,1,2],[2]]
=> [3,1,2,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[[1,2,2],[2]]
=> [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> 1 = 2 - 1
[[1,1],[2,2]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 1
[[1,5]]
=> [1,2] => [1,2] => ([],2)
=> 0 = 1 - 1
[[2,5]]
=> [1,2] => [1,2] => ([],2)
=> 0 = 1 - 1
[[3,5]]
=> [1,2] => [1,2] => ([],2)
=> 0 = 1 - 1
[[4,5]]
=> [1,2] => [1,2] => ([],2)
=> 0 = 1 - 1
[[5,5]]
=> [1,2] => [1,2] => ([],2)
=> 0 = 1 - 1
[[1],[5]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1 = 2 - 1
[[2],[5]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1 = 2 - 1
[[3],[5]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1 = 2 - 1
[[4],[5]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1 = 2 - 1
[[1,1,4]]
=> [1,2,3] => [1,2,3] => ([],3)
=> 0 = 1 - 1
[[1,2,4]]
=> [1,2,3] => [1,2,3] => ([],3)
=> 0 = 1 - 1
[[1],[2],[4]]
=> [3,2,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2} - 1
[[1],[3],[4]]
=> [3,2,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2} - 1
[[2],[3],[4]]
=> [3,2,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2} - 1
[[1,1],[2,3]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,3,4,4} - 1
[[1,1],[3,3]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,3,4,4} - 1
[[1,2],[2,3]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,3,4,4} - 1
[[1,2],[3,3]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,3,4,4} - 1
[[2,2],[3,3]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,3,4,4} - 1
[[1,1],[2],[3]]
=> [4,3,1,2] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,3,4,4} - 1
[[1,2],[2],[3]]
=> [4,2,1,3] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,3,4,4} - 1
[[1,3],[2],[3]]
=> [3,2,1,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,3,4,4} - 1
[[1,1,1],[2,2]]
=> [4,5,1,2,3] => [5,3,1,4,2] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,5} - 1
[[1,1,2],[2,2]]
=> [3,4,1,2,5] => [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,5} - 1
[[1],[2],[5]]
=> [3,2,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,2,2,2} - 1
[[1],[3],[5]]
=> [3,2,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,2,2,2} - 1
[[1],[4],[5]]
=> [3,2,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,2,2,2} - 1
[[2],[3],[5]]
=> [3,2,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,2,2,2} - 1
[[2],[4],[5]]
=> [3,2,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,2,2,2} - 1
[[3],[4],[5]]
=> [3,2,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,2,2,2} - 1
[[1,1],[2,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4} - 1
[[1,1],[3,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4} - 1
[[1,1],[4,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4} - 1
[[1,2],[2,4]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4} - 1
[[1,2],[3,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4} - 1
[[1,3],[2,4]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4} - 1
[[1,2],[4,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4} - 1
[[1,3],[3,4]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4} - 1
[[1,3],[4,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4} - 1
[[2,2],[3,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4} - 1
[[2,2],[4,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4} - 1
[[2,3],[3,4]]
=> [2,4,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4} - 1
[[2,3],[4,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4} - 1
[[3,3],[4,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4} - 1
[[1,1],[2],[4]]
=> [4,3,1,2] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4} - 1
[[1,1],[3],[4]]
=> [4,3,1,2] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4} - 1
[[1,2],[2],[4]]
=> [4,2,1,3] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4} - 1
[[1,2],[3],[4]]
=> [4,3,1,2] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4} - 1
[[1,3],[2],[4]]
=> [4,2,1,3] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4} - 1
[[1,4],[2],[3]]
=> [3,2,1,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4} - 1
[[1,4],[2],[4]]
=> [3,2,1,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4} - 1
[[1,3],[3],[4]]
=> [4,2,1,3] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4} - 1
[[1,4],[3],[4]]
=> [3,2,1,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4} - 1
[[2,2],[3],[4]]
=> [4,3,1,2] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4} - 1
[[2,3],[3],[4]]
=> [4,2,1,3] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4} - 1
[[2,4],[3],[4]]
=> [3,2,1,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4} - 1
[[1],[2],[3],[4]]
=> [4,3,2,1] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4} - 1
[[1,1,1],[2,3]]
=> [4,5,1,2,3] => [5,3,1,4,2] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,3,4,4,5,5,5,5,5,5,5,5,6,6,6} - 1
[[1,1,1],[3,3]]
=> [4,5,1,2,3] => [5,3,1,4,2] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,3,4,4,5,5,5,5,5,5,5,5,6,6,6} - 1
Description
The largest eigenvalue of a graph if it is integral. If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001207
Mp00075: Semistandard tableaux reading word permutationPermutations
Mp00087: Permutations inverse first fundamental transformationPermutations
Mp00254: Permutations Inverse fireworks mapPermutations
St001207: Permutations ⟶ ℤResult quality: 39% values known / values provided: 39%distinct values known / distinct values provided: 57%
Values
[[1,2]]
=> [1,2] => [1,2] => [1,2] => 0 = 1 - 1
[[2,2]]
=> [1,2] => [1,2] => [1,2] => 0 = 1 - 1
[[1],[2]]
=> [2,1] => [2,1] => [2,1] => 1 = 2 - 1
[[1,3]]
=> [1,2] => [1,2] => [1,2] => 0 = 1 - 1
[[2,3]]
=> [1,2] => [1,2] => [1,2] => 0 = 1 - 1
[[3,3]]
=> [1,2] => [1,2] => [1,2] => 0 = 1 - 1
[[1],[3]]
=> [2,1] => [2,1] => [2,1] => 1 = 2 - 1
[[2],[3]]
=> [2,1] => [2,1] => [2,1] => 1 = 2 - 1
[[1,1,2]]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0 = 1 - 1
[[1,2,2]]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0 = 1 - 1
[[2,2,2]]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0 = 1 - 1
[[1,1],[2]]
=> [3,1,2] => [3,2,1] => [3,2,1] => 2 = 3 - 1
[[1,2],[2]]
=> [2,1,3] => [2,1,3] => [2,1,3] => 1 = 2 - 1
[[1,4]]
=> [1,2] => [1,2] => [1,2] => 0 = 1 - 1
[[2,4]]
=> [1,2] => [1,2] => [1,2] => 0 = 1 - 1
[[3,4]]
=> [1,2] => [1,2] => [1,2] => 0 = 1 - 1
[[4,4]]
=> [1,2] => [1,2] => [1,2] => 0 = 1 - 1
[[1],[4]]
=> [2,1] => [2,1] => [2,1] => 1 = 2 - 1
[[2],[4]]
=> [2,1] => [2,1] => [2,1] => 1 = 2 - 1
[[3],[4]]
=> [2,1] => [2,1] => [2,1] => 1 = 2 - 1
[[1,1,3]]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0 = 1 - 1
[[1,2,3]]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0 = 1 - 1
[[1,3,3]]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0 = 1 - 1
[[2,2,3]]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0 = 1 - 1
[[2,3,3]]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0 = 1 - 1
[[3,3,3]]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0 = 1 - 1
[[1,1],[3]]
=> [3,1,2] => [3,2,1] => [3,2,1] => 2 = 3 - 1
[[1,2],[3]]
=> [3,1,2] => [3,2,1] => [3,2,1] => 2 = 3 - 1
[[1,3],[2]]
=> [2,1,3] => [2,1,3] => [2,1,3] => 1 = 2 - 1
[[1,3],[3]]
=> [2,1,3] => [2,1,3] => [2,1,3] => 1 = 2 - 1
[[2,2],[3]]
=> [3,1,2] => [3,2,1] => [3,2,1] => 2 = 3 - 1
[[2,3],[3]]
=> [2,1,3] => [2,1,3] => [2,1,3] => 1 = 2 - 1
[[1],[2],[3]]
=> [3,2,1] => [2,3,1] => [1,3,2] => 1 = 2 - 1
[[1,1,1,2]]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0 = 1 - 1
[[1,1,2,2]]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0 = 1 - 1
[[1,2,2,2]]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0 = 1 - 1
[[2,2,2,2]]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0 = 1 - 1
[[1,1,1],[2]]
=> [4,1,2,3] => [4,3,2,1] => [4,3,2,1] => 3 = 4 - 1
[[1,1,2],[2]]
=> [3,1,2,4] => [3,2,1,4] => [3,2,1,4] => 2 = 3 - 1
[[1,2,2],[2]]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 1 = 2 - 1
[[1,1],[2,2]]
=> [3,4,1,2] => [3,1,4,2] => [2,1,4,3] => 1 = 2 - 1
[[1,5]]
=> [1,2] => [1,2] => [1,2] => 0 = 1 - 1
[[2,5]]
=> [1,2] => [1,2] => [1,2] => 0 = 1 - 1
[[3,5]]
=> [1,2] => [1,2] => [1,2] => 0 = 1 - 1
[[4,5]]
=> [1,2] => [1,2] => [1,2] => 0 = 1 - 1
[[5,5]]
=> [1,2] => [1,2] => [1,2] => 0 = 1 - 1
[[1],[5]]
=> [2,1] => [2,1] => [2,1] => 1 = 2 - 1
[[2],[5]]
=> [2,1] => [2,1] => [2,1] => 1 = 2 - 1
[[3],[5]]
=> [2,1] => [2,1] => [2,1] => 1 = 2 - 1
[[4],[5]]
=> [2,1] => [2,1] => [2,1] => 1 = 2 - 1
[[1,1,1,1,2]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? ∊ {1,1,1,1,1,2,2,3,4,5,5} - 1
[[1,1,1,2,2]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? ∊ {1,1,1,1,1,2,2,3,4,5,5} - 1
[[1,1,2,2,2]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? ∊ {1,1,1,1,1,2,2,3,4,5,5} - 1
[[1,2,2,2,2]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? ∊ {1,1,1,1,1,2,2,3,4,5,5} - 1
[[2,2,2,2,2]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? ∊ {1,1,1,1,1,2,2,3,4,5,5} - 1
[[1,1,1,1],[2]]
=> [5,1,2,3,4] => [5,4,3,2,1] => [5,4,3,2,1] => ? ∊ {1,1,1,1,1,2,2,3,4,5,5} - 1
[[1,1,1,2],[2]]
=> [4,1,2,3,5] => [4,3,2,1,5] => [4,3,2,1,5] => ? ∊ {1,1,1,1,1,2,2,3,4,5,5} - 1
[[1,1,2,2],[2]]
=> [3,1,2,4,5] => [3,2,1,4,5] => [3,2,1,4,5] => ? ∊ {1,1,1,1,1,2,2,3,4,5,5} - 1
[[1,2,2,2],[2]]
=> [2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => ? ∊ {1,1,1,1,1,2,2,3,4,5,5} - 1
[[1,1,1],[2,2]]
=> [4,5,1,2,3] => [5,3,1,4,2] => [5,2,1,4,3] => ? ∊ {1,1,1,1,1,2,2,3,4,5,5} - 1
[[1,1,2],[2,2]]
=> [3,4,1,2,5] => [3,1,4,2,5] => [2,1,4,3,5] => ? ∊ {1,1,1,1,1,2,2,3,4,5,5} - 1
[[1,1,1,1,3]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[1,1,1,2,3]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[1,1,1,3,3]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[1,1,2,2,3]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[1,1,2,3,3]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[1,1,3,3,3]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[1,2,2,2,3]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[1,2,2,3,3]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[1,2,3,3,3]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[1,3,3,3,3]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[2,2,2,2,3]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[2,2,2,3,3]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[2,2,3,3,3]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[2,3,3,3,3]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[3,3,3,3,3]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[1,1,1,1],[3]]
=> [5,1,2,3,4] => [5,4,3,2,1] => [5,4,3,2,1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[1,1,1,2],[3]]
=> [5,1,2,3,4] => [5,4,3,2,1] => [5,4,3,2,1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[1,1,1,3],[2]]
=> [4,1,2,3,5] => [4,3,2,1,5] => [4,3,2,1,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[1,1,1,3],[3]]
=> [4,1,2,3,5] => [4,3,2,1,5] => [4,3,2,1,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[1,1,2,2],[3]]
=> [5,1,2,3,4] => [5,4,3,2,1] => [5,4,3,2,1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[1,1,2,3],[2]]
=> [3,1,2,4,5] => [3,2,1,4,5] => [3,2,1,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[1,1,2,3],[3]]
=> [4,1,2,3,5] => [4,3,2,1,5] => [4,3,2,1,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[1,1,3,3],[2]]
=> [3,1,2,4,5] => [3,2,1,4,5] => [3,2,1,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[1,1,3,3],[3]]
=> [3,1,2,4,5] => [3,2,1,4,5] => [3,2,1,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[1,2,2,2],[3]]
=> [5,1,2,3,4] => [5,4,3,2,1] => [5,4,3,2,1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[1,2,2,3],[2]]
=> [2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[1,2,2,3],[3]]
=> [4,1,2,3,5] => [4,3,2,1,5] => [4,3,2,1,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[1,2,3,3],[2]]
=> [2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[1,2,3,3],[3]]
=> [3,1,2,4,5] => [3,2,1,4,5] => [3,2,1,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[1,3,3,3],[2]]
=> [2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[1,3,3,3],[3]]
=> [2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[2,2,2,2],[3]]
=> [5,1,2,3,4] => [5,4,3,2,1] => [5,4,3,2,1] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[2,2,2,3],[3]]
=> [4,1,2,3,5] => [4,3,2,1,5] => [4,3,2,1,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[2,2,3,3],[3]]
=> [3,1,2,4,5] => [3,2,1,4,5] => [3,2,1,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[2,3,3,3],[3]]
=> [2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[1,1,1],[2,3]]
=> [4,5,1,2,3] => [5,3,1,4,2] => [5,2,1,4,3] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[1,1,1],[3,3]]
=> [4,5,1,2,3] => [5,3,1,4,2] => [5,2,1,4,3] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[1,1,2],[2,3]]
=> [3,5,1,2,4] => [3,1,5,4,2] => [2,1,5,4,3] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[[1,1,3],[2,2]]
=> [3,4,1,2,5] => [3,1,4,2,5] => [2,1,4,3,5] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
Description
The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.
Mp00075: Semistandard tableaux reading word permutationPermutations
Mp00065: Permutations permutation posetPosets
Mp00195: Posets order idealsLattices
St001877: Lattices ⟶ ℤResult quality: 36% values known / values provided: 36%distinct values known / distinct values provided: 43%
Values
[[1,2]]
=> [1,2] => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[2,2]]
=> [1,2] => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[1],[2]]
=> [2,1] => ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[[1,3]]
=> [1,2] => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[2,3]]
=> [1,2] => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[3,3]]
=> [1,2] => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[1],[3]]
=> [2,1] => ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[[2],[3]]
=> [2,1] => ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[[1,1,2]]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[[1,2,2]]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[[2,2,2]]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[[1,1],[2]]
=> [3,1,2] => ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[1,2],[2]]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1 = 2 - 1
[[1,4]]
=> [1,2] => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[2,4]]
=> [1,2] => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[3,4]]
=> [1,2] => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[4,4]]
=> [1,2] => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[1],[4]]
=> [2,1] => ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[[2],[4]]
=> [2,1] => ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[[3],[4]]
=> [2,1] => ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[[1,1,3]]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[[1,2,3]]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[[1,3,3]]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[[2,2,3]]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[[2,3,3]]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[[3,3,3]]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[[1,1],[3]]
=> [3,1,2] => ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[1,2],[3]]
=> [3,1,2] => ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[1,3],[2]]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1 = 2 - 1
[[1,3],[3]]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1 = 2 - 1
[[2,2],[3]]
=> [3,1,2] => ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[2,3],[3]]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1 = 2 - 1
[[1],[2],[3]]
=> [3,2,1] => ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 2 - 1
[[1,1,1,2]]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[[1,1,2,2]]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[[1,2,2,2]]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[[2,2,2,2]]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[[1,1,1],[2]]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,4} - 1
[[1,1,2],[2]]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2 = 3 - 1
[[1,2,2],[2]]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1 = 2 - 1
[[1,1],[2,2]]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {2,4} - 1
[[1,5]]
=> [1,2] => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[2,5]]
=> [1,2] => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[3,5]]
=> [1,2] => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[4,5]]
=> [1,2] => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[5,5]]
=> [1,2] => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[1],[5]]
=> [2,1] => ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[[2],[5]]
=> [2,1] => ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[[3],[5]]
=> [2,1] => ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[[4],[5]]
=> [2,1] => ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[[1,1,4]]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[[1,2,4]]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[[1,3,4]]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[[1],[2],[4]]
=> [3,2,1] => ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {2,2,2} - 1
[[1],[3],[4]]
=> [3,2,1] => ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {2,2,2} - 1
[[2],[3],[4]]
=> [3,2,1] => ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {2,2,2} - 1
[[1,1,1],[3]]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,2,3,4,4,4,4,4,4} - 1
[[1,1,2],[3]]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,2,3,4,4,4,4,4,4} - 1
[[1,2,2],[3]]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,2,3,4,4,4,4,4,4} - 1
[[2,2,2],[3]]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,2,3,4,4,4,4,4,4} - 1
[[1,1],[2,3]]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,3,4,4,4,4,4,4} - 1
[[1,1],[3,3]]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,3,4,4,4,4,4,4} - 1
[[1,2],[2,3]]
=> [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {2,2,2,2,2,3,4,4,4,4,4,4} - 1
[[1,2],[3,3]]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,3,4,4,4,4,4,4} - 1
[[2,2],[3,3]]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,3,4,4,4,4,4,4} - 1
[[1,1],[2],[3]]
=> [4,3,1,2] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {2,2,2,2,2,3,4,4,4,4,4,4} - 1
[[1,2],[2],[3]]
=> [4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? ∊ {2,2,2,2,2,3,4,4,4,4,4,4} - 1
[[1,3],[2],[3]]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ? ∊ {2,2,2,2,2,3,4,4,4,4,4,4} - 1
[[1,1,1,1],[2]]
=> [5,1,2,3,4] => ([(1,4),(3,2),(4,3)],5)
=> ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? ∊ {2,3,4,5,5} - 1
[[1,1,1,2],[2]]
=> [4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? ∊ {2,3,4,5,5} - 1
[[1,1,2,2],[2]]
=> [3,1,2,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? ∊ {2,3,4,5,5} - 1
[[1,1,1],[2,2]]
=> [4,5,1,2,3] => ([(0,3),(1,4),(4,2)],5)
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? ∊ {2,3,4,5,5} - 1
[[1,1,2],[2,2]]
=> [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? ∊ {2,3,4,5,5} - 1
[[1],[2],[5]]
=> [3,2,1] => ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2} - 1
[[1],[3],[5]]
=> [3,2,1] => ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2} - 1
[[1],[4],[5]]
=> [3,2,1] => ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2} - 1
[[2],[3],[5]]
=> [3,2,1] => ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2} - 1
[[2],[4],[5]]
=> [3,2,1] => ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2} - 1
[[3],[4],[5]]
=> [3,2,1] => ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2} - 1
[[1,1,1],[4]]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[[1,1,2],[4]]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[[1,1,3],[4]]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[[1,2,2],[4]]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[[1,2,3],[4]]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[[1,3,3],[4]]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[[2,2,2],[4]]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[[2,2,3],[4]]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[[2,3,3],[4]]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[[3,3,3],[4]]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[[1,1],[2,4]]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[[1,1],[3,4]]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[[1,1],[4,4]]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[[1,2],[2,4]]
=> [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[[1,2],[3,4]]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[[1,3],[2,4]]
=> [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[[1,2],[4,4]]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[[1,3],[3,4]]
=> [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[[1,3],[4,4]]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[[2,2],[3,4]]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
[[2,2],[4,4]]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} - 1
Description
Number of indecomposable injective modules with projective dimension 2.
Mp00075: Semistandard tableaux reading word permutationPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00032: Dyck paths inverse zeta mapDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 34% values known / values provided: 34%distinct values known / distinct values provided: 100%
Values
[[1,2]]
=> [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 0 = 1 - 1
[[2,2]]
=> [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 0 = 1 - 1
[[1],[2]]
=> [2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 1 = 2 - 1
[[1,3]]
=> [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 0 = 1 - 1
[[2,3]]
=> [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 0 = 1 - 1
[[3,3]]
=> [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 0 = 1 - 1
[[1],[3]]
=> [2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 1 = 2 - 1
[[2],[3]]
=> [2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 1 = 2 - 1
[[1,1,2]]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[[1,2,2]]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[[2,2,2]]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[[1,1],[2]]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? = 2 - 1
[[1,2],[2]]
=> [2,1,3] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 2 = 3 - 1
[[1,4]]
=> [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 0 = 1 - 1
[[2,4]]
=> [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 0 = 1 - 1
[[3,4]]
=> [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 0 = 1 - 1
[[4,4]]
=> [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 0 = 1 - 1
[[1],[4]]
=> [2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 1 = 2 - 1
[[2],[4]]
=> [2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 1 = 2 - 1
[[3],[4]]
=> [2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 1 = 2 - 1
[[1,1,3]]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[[1,2,3]]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[[1,3,3]]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[[2,2,3]]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[[2,3,3]]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[[3,3,3]]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[[1,1],[3]]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {2,2,2,2} - 1
[[1,2],[3]]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {2,2,2,2} - 1
[[1,3],[2]]
=> [2,1,3] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 2 = 3 - 1
[[1,3],[3]]
=> [2,1,3] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 2 = 3 - 1
[[2,2],[3]]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {2,2,2,2} - 1
[[2,3],[3]]
=> [2,1,3] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 2 = 3 - 1
[[1],[2],[3]]
=> [3,2,1] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {2,2,2,2} - 1
[[1,1,1,2]]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[[1,1,2,2]]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[[1,2,2,2]]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[[2,2,2,2]]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[[1,1,1],[2]]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,3} - 1
[[1,1,2],[2]]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {2,2,3} - 1
[[1,2,2],[2]]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 4 - 1
[[1,1],[2,2]]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,3} - 1
[[1,5]]
=> [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 0 = 1 - 1
[[2,5]]
=> [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 0 = 1 - 1
[[3,5]]
=> [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 0 = 1 - 1
[[4,5]]
=> [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 0 = 1 - 1
[[5,5]]
=> [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 0 = 1 - 1
[[1],[5]]
=> [2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 1 = 2 - 1
[[2],[5]]
=> [2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 1 = 2 - 1
[[3],[5]]
=> [2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 1 = 2 - 1
[[4],[5]]
=> [2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 1 = 2 - 1
[[1,1,4]]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[[1,2,4]]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[[1,3,4]]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[[1,4,4]]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[[2,2,4]]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[[2,3,4]]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[[2,4,4]]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[[3,3,4]]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[[1,1],[4]]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2} - 1
[[1,2],[4]]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2} - 1
[[1,3],[4]]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2} - 1
[[2,2],[4]]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2} - 1
[[2,3],[4]]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2} - 1
[[3,3],[4]]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2} - 1
[[1],[2],[4]]
=> [3,2,1] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2} - 1
[[1],[3],[4]]
=> [3,2,1] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2} - 1
[[2],[3],[4]]
=> [3,2,1] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2} - 1
[[1,1,1],[3]]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,4} - 1
[[1,1,2],[3]]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,4} - 1
[[1,1,3],[2]]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,4} - 1
[[1,1,3],[3]]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,4} - 1
[[1,2,2],[3]]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,4} - 1
[[1,2,3],[3]]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,4} - 1
[[2,2,2],[3]]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,4} - 1
[[2,2,3],[3]]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,4} - 1
[[1,1],[2,3]]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,4} - 1
[[1,1],[3,3]]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,4} - 1
[[1,2],[3,3]]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,4} - 1
[[2,2],[3,3]]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,4} - 1
[[1,1],[2],[3]]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,4} - 1
[[1,2],[2],[3]]
=> [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,4} - 1
[[1,3],[2],[3]]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,4} - 1
[[1,1,1,1],[2]]
=> [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,3,4,5} - 1
[[1,1,1,2],[2]]
=> [4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ? ∊ {2,2,3,4,5} - 1
[[1,1,2,2],[2]]
=> [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ? ∊ {2,2,3,4,5} - 1
[[1,1,1],[2,2]]
=> [4,5,1,2,3] => [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ? ∊ {2,2,3,4,5} - 1
[[1,1,2],[2,2]]
=> [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ? ∊ {2,2,3,4,5} - 1
[[1,1],[5]]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[[1,2],[5]]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[[1,3],[5]]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[[1,4],[5]]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[[2,2],[5]]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[[2,3],[5]]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[[2,4],[5]]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[[3,3],[5]]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[[3,4],[5]]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[[4,4],[5]]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[[1],[2],[5]]
=> [3,2,1] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[[1],[3],[5]]
=> [3,2,1] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
[[1],[4],[5]]
=> [3,2,1] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2} - 1
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Mp00075: Semistandard tableaux reading word permutationPermutations
Mp00073: Permutations major-index to inversion-number bijectionPermutations
Mp00160: Permutations graph of inversionsGraphs
St001060: Graphs ⟶ ℤResult quality: 20% values known / values provided: 20%distinct values known / distinct values provided: 29%
Values
[[1,2]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,1,2}
[[2,2]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,1,2}
[[1],[2]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> ? ∊ {1,1,2}
[[1,3]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,1,1,2,2}
[[2,3]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,1,1,2,2}
[[3,3]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,1,1,2,2}
[[1],[3]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> ? ∊ {1,1,1,2,2}
[[2],[3]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> ? ∊ {1,1,1,2,2}
[[1,1,2]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,2,3}
[[1,2,2]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,2,3}
[[2,2,2]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,2,3}
[[1,1],[2]]
=> [3,1,2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,2,3}
[[1,2],[2]]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,1,1,2,3}
[[1,4]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,1,1,1,2,2,2}
[[2,4]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,1,1,1,2,2,2}
[[3,4]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,1,1,1,2,2,2}
[[4,4]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,1,1,1,2,2,2}
[[1],[4]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> ? ∊ {1,1,1,1,2,2,2}
[[2],[4]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> ? ∊ {1,1,1,1,2,2,2}
[[3],[4]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> ? ∊ {1,1,1,1,2,2,2}
[[1,1,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3}
[[1,2,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3}
[[1,3,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3}
[[2,2,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3}
[[2,3,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3}
[[3,3,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3}
[[1,1],[3]]
=> [3,1,2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3}
[[1,2],[3]]
=> [3,1,2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3}
[[1,3],[2]]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3}
[[1,3],[3]]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3}
[[2,2],[3]]
=> [3,1,2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3}
[[2,3],[3]]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,3}
[[1],[2],[3]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[1,1,1,2]]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,2,3,4}
[[1,1,2,2]]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,2,3,4}
[[1,2,2,2]]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,2,3,4}
[[2,2,2,2]]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,2,3,4}
[[1,1,1],[2]]
=> [4,1,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,2,3,4}
[[1,1,2],[2]]
=> [3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,2,3,4}
[[1,2,2],[2]]
=> [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,2,3,4}
[[1,1],[2,2]]
=> [3,4,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2
[[1,5]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,2,2,2,2}
[[2,5]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,2,2,2,2}
[[3,5]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,2,2,2,2}
[[4,5]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,2,2,2,2}
[[5,5]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,2,2,2,2}
[[1],[5]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,2,2,2,2}
[[2],[5]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,2,2,2,2}
[[3],[5]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,2,2,2,2}
[[4],[5]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,2,2,2,2}
[[1,1,4]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3}
[[1,2,4]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3}
[[1],[2],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[1],[3],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[2],[3],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[1,1],[2,3]]
=> [3,4,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2
[[1,1],[3,3]]
=> [3,4,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2
[[1,2],[2,3]]
=> [2,4,1,3] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> 2
[[1,2],[3,3]]
=> [3,4,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2
[[2,2],[3,3]]
=> [3,4,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2
[[1,1],[2],[3]]
=> [4,3,1,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[[1,2],[2],[3]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,3],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 3
[[1],[2],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[1],[3],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[1],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[2],[3],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[2],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[3],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[1,1],[2,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2
[[1,1],[3,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2
[[1,1],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2
[[1,2],[2,4]]
=> [2,4,1,3] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> 2
[[1,2],[3,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2
[[1,3],[2,4]]
=> [2,4,1,3] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> 2
[[1,2],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2
[[1,3],[3,4]]
=> [2,4,1,3] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> 2
[[1,3],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2
[[2,2],[3,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2
[[2,2],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2
[[2,3],[3,4]]
=> [2,4,1,3] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> 2
[[2,3],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2
[[3,3],[4,4]]
=> [3,4,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2
[[1,1],[2],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[[1,1],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[[1,2],[2],[4]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[[1,3],[2],[4]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,4],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 3
[[1,4],[2],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 3
[[1,3],[3],[4]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,4],[3],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 3
[[2,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[[2,3],[3],[4]]
=> [4,2,1,3] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2
[[2,4],[3],[4]]
=> [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 3
[[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,1,2],[2],[3]]
=> [5,3,1,2,4] => [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> 2
[[1,2,3],[2],[3]]
=> [4,2,1,3,5] => [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> 2
[[1,1],[2,2],[3]]
=> [5,3,4,1,2] => [1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,1],[2,3],[3]]
=> [4,3,5,1,2] => [1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
Description
The distinguishing index of a graph. This is the smallest number of colours such that there is a colouring of the edges which is not preserved by any automorphism. If the graph has a connected component which is a single edge, or at least two isolated vertices, this statistic is undefined.
Mp00075: Semistandard tableaux reading word permutationPermutations
Mp00175: Permutations inverse Foata bijectionPermutations
Mp00160: Permutations graph of inversionsGraphs
St000259: Graphs ⟶ ℤResult quality: 16% values known / values provided: 16%distinct values known / distinct values provided: 71%
Values
[[1,2]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,2}
[[2,2]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,2}
[[1],[2]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[1,3]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,2,2}
[[2,3]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,2,2}
[[3,3]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,2,2}
[[1],[3]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[2],[3]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[1,1,2]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,2,3}
[[1,2,2]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,2,3}
[[2,2,2]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,2,3}
[[1,1],[2]]
=> [3,1,2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,2,3}
[[1,2],[2]]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,1,1,2,3}
[[1,4]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,2,2,2}
[[2,4]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,2,2,2}
[[3,4]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,2,2,2}
[[4,4]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,2,2,2}
[[1],[4]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[2],[4]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[3],[4]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[1,1,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,2,2,2,2,3,3,3}
[[1,2,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,2,2,2,2,3,3,3}
[[1,3,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,2,2,2,2,3,3,3}
[[2,2,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,2,2,2,2,3,3,3}
[[2,3,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,2,2,2,2,3,3,3}
[[3,3,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,2,2,2,2,3,3,3}
[[1,1],[3]]
=> [3,1,2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,2,2,2,2,3,3,3}
[[1,2],[3]]
=> [3,1,2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,2,2,2,2,3,3,3}
[[1,3],[2]]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,2,2,2,2,3,3,3}
[[1,3],[3]]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,2,2,2,2,3,3,3}
[[2,2],[3]]
=> [3,1,2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,2,2,2,2,3,3,3}
[[2,3],[3]]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,2,2,2,2,3,3,3}
[[1],[2],[3]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[[1,1,1,2]]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,2,2,4}
[[1,1,2,2]]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,2,2,4}
[[1,2,2,2]]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,2,2,4}
[[2,2,2,2]]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,2,2,4}
[[1,1,1],[2]]
=> [4,1,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,4}
[[1,1,2],[2]]
=> [3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,4}
[[1,2,2],[2]]
=> [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,4}
[[1,1],[2,2]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 3
[[1,5]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,2,2,2,2}
[[2,5]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,2,2,2,2}
[[3,5]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,2,2,2,2}
[[4,5]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,2,2,2,2}
[[5,5]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,2,2,2,2}
[[1],[5]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[2],[5]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[3],[5]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[4],[5]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[1,1,4]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[[1,2,4]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[[1,3,4]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[[1,4,4]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[[2,2,4]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[[2,3,4]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[[2,4,4]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[[3,3,4]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[[3,4,4]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[[4,4,4]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[[1,1],[4]]
=> [3,1,2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[[1,2],[4]]
=> [3,1,2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3}
[[1],[2],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[[1],[3],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[[2],[3],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[[1,1],[2,3]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 3
[[1,1],[3,3]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 3
[[1,2],[2,3]]
=> [2,4,1,3] => [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[1,2],[3,3]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 3
[[2,2],[3,3]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 3
[[1],[6]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[2],[6]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[3],[6]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[4],[6]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[5],[6]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[1],[2],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[[1],[3],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[[1],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[[2],[3],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[[2],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[[3],[4],[5]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[[1,1],[2,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 3
[[1,1],[3,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 3
[[1,1],[4,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 3
[[1,2],[2,4]]
=> [2,4,1,3] => [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[1,2],[3,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 3
[[1,3],[2,4]]
=> [2,4,1,3] => [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[1,2],[4,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 3
[[1,3],[3,4]]
=> [2,4,1,3] => [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[1,3],[4,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 3
[[2,2],[3,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 3
[[2,2],[4,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 3
[[2,3],[3,4]]
=> [2,4,1,3] => [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[2,3],[4,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 3
[[3,3],[4,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 3
[[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[1,1],[2,2],[3]]
=> [5,3,4,1,2] => [3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
[[1,1],[2,3],[3]]
=> [4,3,5,1,2] => [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2],[2,3],[3]]
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
[[1,1,1],[2,2,2]]
=> [4,5,6,1,2,3] => [4,1,5,2,6,3] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 3
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
The following 42 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000260The radius of a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001568The smallest positive integer that does not appear twice in the partition. St001118The acyclic chromatic index of a graph. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001624The breadth of a lattice. St000264The girth of a graph, which is not a tree. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000706The product of the factorials of the multiplicities of an integer partition. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000993The multiplicity of the largest part of an integer partition. St000456The monochromatic index of a connected graph. St000464The Schultz index of a connected graph. St001281The normalized isoperimetric number of a graph. St001545The second Elser number of a connected graph. St001592The maximal number of simple paths between any two different vertices of a graph. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001645The pebbling number of a connected graph. St000284The Plancherel distribution on integer partitions. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000681The Grundy value of Chomp on Ferrers diagrams. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000901The cube of the number of standard Young tableaux with shape given by the partition. St001128The exponens consonantiae of a partition. St000736The last entry in the first row of a semistandard tableau. St000112The sum of the entries reduced by the index of their row in a semistandard tableau. St000103The sum of the entries of a semistandard tableau. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition.