searching the database
Your data matches 26 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001595
St001595: Skew partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1],[]]
=> 1
[[2],[]]
=> 1
[[1,1],[]]
=> 1
[[2,1],[1]]
=> 2
[[3],[]]
=> 1
[[2,1],[]]
=> 2
[[3,1],[1]]
=> 3
[[2,2],[1]]
=> 2
[[3,2],[2]]
=> 3
[[1,1,1],[]]
=> 1
[[2,2,1],[1,1]]
=> 3
[[2,1,1],[1]]
=> 3
[[3,2,1],[2,1]]
=> 6
[[4],[]]
=> 1
[[3,1],[]]
=> 3
[[4,1],[1]]
=> 4
[[2,2],[]]
=> 2
[[3,2],[1]]
=> 5
[[4,2],[2]]
=> 6
[[2,1,1],[]]
=> 3
[[3,2,1],[1,1]]
=> 8
[[3,1,1],[1]]
=> 6
[[4,2,1],[2,1]]
=> 12
[[3,3],[2]]
=> 3
[[4,3],[3]]
=> 4
[[2,2,1],[1]]
=> 5
[[3,3,1],[2,1]]
=> 8
[[3,2,1],[2]]
=> 8
[[4,3,1],[3,1]]
=> 12
[[2,2,2],[1,1]]
=> 3
[[3,3,2],[2,2]]
=> 6
[[3,2,2],[2,1]]
=> 8
[[4,3,2],[3,2]]
=> 12
[[1,1,1,1],[]]
=> 1
[[2,2,2,1],[1,1,1]]
=> 4
[[2,2,1,1],[1,1]]
=> 6
[[3,3,2,1],[2,2,1]]
=> 12
[[2,1,1,1],[1]]
=> 4
[[3,2,2,1],[2,1,1]]
=> 12
[[3,2,1,1],[2,1]]
=> 12
[[4,3,2,1],[3,2,1]]
=> 24
Description
The number of standard Young tableaux of the skew partition.
Matching statistic: St000071
Values
[[1],[]]
=> ([],1)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[2],[]]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[[1,1],[]]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[[2,1],[1]]
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[[3],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2
[[3,1],[1]]
=> ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[[3,2],[2]]
=> ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[2,2,1],[1,1]]
=> ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3
[[2,1,1],[1]]
=> ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3
[[3,2,1],[2,1]]
=> ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 6
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 3
[[4,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 4
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> 5
[[4,2],[2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 6
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 3
[[3,2,1],[1,1]]
=> ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> 8
[[3,1,1],[1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 6
[[4,2,1],[2,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> 12
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 3
[[4,3],[3]]
=> ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 4
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> 5
[[3,3,1],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> 8
[[3,2,1],[2]]
=> ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> 8
[[4,3,1],[3,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> 12
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 3
[[3,3,2],[2,2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 6
[[3,2,2],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> 8
[[4,3,2],[3,2]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> 12
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[2,2,2,1],[1,1,1]]
=> ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 4
[[2,2,1,1],[1,1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 6
[[3,3,2,1],[2,2,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> 12
[[2,1,1,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 4
[[3,2,2,1],[2,1,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> 12
[[3,2,1,1],[2,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> 12
[[4,3,2,1],[3,2,1]]
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 24
Description
The number of maximal chains in a poset.
Matching statistic: St000100
Mp00185: Skew partitions —cell poset⟶ Posets
St000100: Posets ⟶ ℤResult quality: 98% ●values known / values provided: 98%●distinct values known / distinct values provided: 100%
St000100: Posets ⟶ ℤResult quality: 98% ●values known / values provided: 98%●distinct values known / distinct values provided: 100%
Values
[[1],[]]
=> ([],1)
=> ? = 1
[[2],[]]
=> ([(0,1)],2)
=> 1
[[1,1],[]]
=> ([(0,1)],2)
=> 1
[[2,1],[1]]
=> ([],2)
=> 2
[[3],[]]
=> ([(0,2),(2,1)],3)
=> 1
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> 2
[[3,1],[1]]
=> ([(1,2)],3)
=> 3
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> 2
[[3,2],[2]]
=> ([(1,2)],3)
=> 3
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 1
[[2,2,1],[1,1]]
=> ([(1,2)],3)
=> 3
[[2,1,1],[1]]
=> ([(1,2)],3)
=> 3
[[3,2,1],[2,1]]
=> ([],3)
=> 6
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> 3
[[4,1],[1]]
=> ([(1,2),(2,3)],4)
=> 4
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> 5
[[4,2],[2]]
=> ([(0,3),(1,2)],4)
=> 6
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> 3
[[3,2,1],[1,1]]
=> ([(1,2),(1,3)],4)
=> 8
[[3,1,1],[1]]
=> ([(0,3),(1,2)],4)
=> 6
[[4,2,1],[2,1]]
=> ([(2,3)],4)
=> 12
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[[4,3],[3]]
=> ([(1,2),(2,3)],4)
=> 4
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> 5
[[3,3,1],[2,1]]
=> ([(1,3),(2,3)],4)
=> 8
[[3,2,1],[2]]
=> ([(1,2),(1,3)],4)
=> 8
[[4,3,1],[3,1]]
=> ([(2,3)],4)
=> 12
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[[3,3,2],[2,2]]
=> ([(0,3),(1,2)],4)
=> 6
[[3,2,2],[2,1]]
=> ([(1,3),(2,3)],4)
=> 8
[[4,3,2],[3,2]]
=> ([(2,3)],4)
=> 12
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[2,2,2,1],[1,1,1]]
=> ([(1,2),(2,3)],4)
=> 4
[[2,2,1,1],[1,1]]
=> ([(0,3),(1,2)],4)
=> 6
[[3,3,2,1],[2,2,1]]
=> ([(2,3)],4)
=> 12
[[2,1,1,1],[1]]
=> ([(1,2),(2,3)],4)
=> 4
[[3,2,2,1],[2,1,1]]
=> ([(2,3)],4)
=> 12
[[3,2,1,1],[2,1]]
=> ([(2,3)],4)
=> 12
[[4,3,2,1],[3,2,1]]
=> ([],4)
=> 24
Description
The number of linear extensions of a poset.
Matching statistic: St000228
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00185: Skew partitions —cell poset⟶ Posets
Mp00307: Posets —promotion cycle type⟶ Integer partitions
St000228: Integer partitions ⟶ ℤResult quality: 78% ●values known / values provided: 83%●distinct values known / distinct values provided: 78%
Mp00307: Posets —promotion cycle type⟶ Integer partitions
St000228: Integer partitions ⟶ ℤResult quality: 78% ●values known / values provided: 83%●distinct values known / distinct values provided: 78%
Values
[[1],[]]
=> ([],1)
=> [1]
=> 1
[[2],[]]
=> ([(0,1)],2)
=> [1]
=> 1
[[1,1],[]]
=> ([(0,1)],2)
=> [1]
=> 1
[[2,1],[1]]
=> ([],2)
=> [2]
=> 2
[[3],[]]
=> ([(0,2),(2,1)],3)
=> [1]
=> 1
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> [2]
=> 2
[[3,1],[1]]
=> ([(1,2)],3)
=> [3]
=> 3
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> [2]
=> 2
[[3,2],[2]]
=> ([(1,2)],3)
=> [3]
=> 3
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> [1]
=> 1
[[2,2,1],[1,1]]
=> ([(1,2)],3)
=> [3]
=> 3
[[2,1,1],[1]]
=> ([(1,2)],3)
=> [3]
=> 3
[[3,2,1],[2,1]]
=> ([],3)
=> [3,3]
=> 6
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> [1]
=> 1
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> [3]
=> 3
[[4,1],[1]]
=> ([(1,2),(2,3)],4)
=> [4]
=> 4
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [2]
=> 2
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> 5
[[4,2],[2]]
=> ([(0,3),(1,2)],4)
=> [4,2]
=> 6
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> [3]
=> 3
[[3,2,1],[1,1]]
=> ([(1,2),(1,3)],4)
=> [8]
=> 8
[[3,1,1],[1]]
=> ([(0,3),(1,2)],4)
=> [4,2]
=> 6
[[4,2,1],[2,1]]
=> ([(2,3)],4)
=> [4,4,4]
=> ? ∊ {12,12,12,12,12,12,24}
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 3
[[4,3],[3]]
=> ([(1,2),(2,3)],4)
=> [4]
=> 4
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> 5
[[3,3,1],[2,1]]
=> ([(1,3),(2,3)],4)
=> [8]
=> 8
[[3,2,1],[2]]
=> ([(1,2),(1,3)],4)
=> [8]
=> 8
[[4,3,1],[3,1]]
=> ([(2,3)],4)
=> [4,4,4]
=> ? ∊ {12,12,12,12,12,12,24}
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 3
[[3,3,2],[2,2]]
=> ([(0,3),(1,2)],4)
=> [4,2]
=> 6
[[3,2,2],[2,1]]
=> ([(1,3),(2,3)],4)
=> [8]
=> 8
[[4,3,2],[3,2]]
=> ([(2,3)],4)
=> [4,4,4]
=> ? ∊ {12,12,12,12,12,12,24}
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> [1]
=> 1
[[2,2,2,1],[1,1,1]]
=> ([(1,2),(2,3)],4)
=> [4]
=> 4
[[2,2,1,1],[1,1]]
=> ([(0,3),(1,2)],4)
=> [4,2]
=> 6
[[3,3,2,1],[2,2,1]]
=> ([(2,3)],4)
=> [4,4,4]
=> ? ∊ {12,12,12,12,12,12,24}
[[2,1,1,1],[1]]
=> ([(1,2),(2,3)],4)
=> [4]
=> 4
[[3,2,2,1],[2,1,1]]
=> ([(2,3)],4)
=> [4,4,4]
=> ? ∊ {12,12,12,12,12,12,24}
[[3,2,1,1],[2,1]]
=> ([(2,3)],4)
=> [4,4,4]
=> ? ∊ {12,12,12,12,12,12,24}
[[4,3,2,1],[3,2,1]]
=> ([],4)
=> [4,4,4,4,4,4]
=> ? ∊ {12,12,12,12,12,12,24}
Description
The size of a partition.
This statistic is the constant statistic of the level sets.
Matching statistic: St000909
Values
[[1],[]]
=> ([],1)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[2],[]]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[[1,1],[]]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[[2,1],[1]]
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[[3],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2
[[3,1],[1]]
=> ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[[3,2],[2]]
=> ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[2,2,1],[1,1]]
=> ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3
[[2,1,1],[1]]
=> ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3
[[3,2,1],[2,1]]
=> ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 6
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 3
[[4,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 4
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> 5
[[4,2],[2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 6
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 3
[[3,2,1],[1,1]]
=> ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? ∊ {8,8,8,8,12,12,12,12,12,12,24}
[[3,1,1],[1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 6
[[4,2,1],[2,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {8,8,8,8,12,12,12,12,12,12,24}
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 3
[[4,3],[3]]
=> ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 4
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> 5
[[3,3,1],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? ∊ {8,8,8,8,12,12,12,12,12,12,24}
[[3,2,1],[2]]
=> ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? ∊ {8,8,8,8,12,12,12,12,12,12,24}
[[4,3,1],[3,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {8,8,8,8,12,12,12,12,12,12,24}
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 3
[[3,3,2],[2,2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 6
[[3,2,2],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? ∊ {8,8,8,8,12,12,12,12,12,12,24}
[[4,3,2],[3,2]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {8,8,8,8,12,12,12,12,12,12,24}
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[2,2,2,1],[1,1,1]]
=> ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 4
[[2,2,1,1],[1,1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 6
[[3,3,2,1],[2,2,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {8,8,8,8,12,12,12,12,12,12,24}
[[2,1,1,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 4
[[3,2,2,1],[2,1,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {8,8,8,8,12,12,12,12,12,12,24}
[[3,2,1,1],[2,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {8,8,8,8,12,12,12,12,12,12,24}
[[4,3,2,1],[3,2,1]]
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? ∊ {8,8,8,8,12,12,12,12,12,12,24}
Description
The number of maximal chains of maximal size in a poset.
Matching statistic: St001633
Values
[[1],[]]
=> ([],1)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
[[2],[]]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[1,1],[]]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[2,1],[1]]
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[[3],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1 = 2 - 1
[[3,1],[1]]
=> ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1 = 2 - 1
[[3,2],[2]]
=> ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[[2,2,1],[1,1]]
=> ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[2,1,1],[1]]
=> ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[3,2,1],[2,1]]
=> ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 6 - 1
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 2 = 3 - 1
[[4,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1 = 2 - 1
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[4,2],[2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 2 = 3 - 1
[[3,2,1],[1,1]]
=> ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[3,1,1],[1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[4,2,1],[2,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2 = 3 - 1
[[4,3],[3]]
=> ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[3,3,1],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[3,2,1],[2]]
=> ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[4,3,1],[3,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2 = 3 - 1
[[3,3,2],[2,2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[3,2,2],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[4,3,2],[3,2]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[[2,2,2,1],[1,1,1]]
=> ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[2,2,1,1],[1,1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[3,3,2,1],[2,2,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[2,1,1,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[3,2,2,1],[2,1,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[3,2,1,1],[2,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[4,3,2,1],[3,2,1]]
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
Description
The number of simple modules with projective dimension two in the incidence algebra of the poset.
Matching statistic: St001877
Values
[[1],[]]
=> ([],1)
=> ([(0,1)],2)
=> ? = 1 - 1
[[2],[]]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[1,1],[]]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[2,1],[1]]
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[[3],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1 = 2 - 1
[[3,1],[1]]
=> ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1 = 2 - 1
[[3,2],[2]]
=> ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[[2,2,1],[1,1]]
=> ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[2,1,1],[1]]
=> ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[3,2,1],[2,1]]
=> ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 6 - 1
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 2 = 3 - 1
[[4,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1 = 2 - 1
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[4,2],[2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 2 = 3 - 1
[[3,2,1],[1,1]]
=> ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[3,1,1],[1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[4,2,1],[2,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2 = 3 - 1
[[4,3],[3]]
=> ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[3,3,1],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[3,2,1],[2]]
=> ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[4,3,1],[3,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2 = 3 - 1
[[3,3,2],[2,2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[3,2,2],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[4,3,2],[3,2]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[[2,2,2,1],[1,1,1]]
=> ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[2,2,1,1],[1,1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[3,3,2,1],[2,2,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[2,1,1,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[3,2,2,1],[2,1,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[3,2,1,1],[2,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[4,3,2,1],[3,2,1]]
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? ∊ {4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
Description
Number of indecomposable injective modules with projective dimension 2.
Matching statistic: St000454
Values
[[1],[]]
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[[2],[]]
=> ([(0,1)],2)
=> ([],2)
=> 0 = 1 - 1
[[1,1],[]]
=> ([(0,1)],2)
=> ([],2)
=> 0 = 1 - 1
[[2,1],[1]]
=> ([],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[3],[]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0 = 1 - 1
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[[3,1],[1]]
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {3,3,3,6} - 1
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[[3,2],[2]]
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {3,3,3,6} - 1
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0 = 1 - 1
[[2,2,1],[1,1]]
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {3,3,3,6} - 1
[[2,1,1],[1]]
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {3,3,3,6} - 1
[[3,2,1],[2,1]]
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0 = 1 - 1
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[4,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[4,2],[2]]
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[3,2,1],[1,1]]
=> ([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[3,1,1],[1]]
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
[[4,2,1],[2,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[4,3],[3]]
=> ([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[3,3,1],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[3,2,1],[2]]
=> ([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[4,3,1],[3,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[3,3,2],[2,2]]
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
[[3,2,2],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[4,3,2],[3,2]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0 = 1 - 1
[[2,2,2,1],[1,1,1]]
=> ([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[2,2,1,1],[1,1]]
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
[[3,3,2,1],[2,2,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[2,1,1,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[3,2,2,1],[2,1,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[3,2,1,1],[2,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24} - 1
[[4,3,2,1],[3,2,1]]
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St000910
Values
[[1],[]]
=> ([],1)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[2],[]]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[[1,1],[]]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[[2,1],[1]]
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[[3],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2
[[3,1],[1]]
=> ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[[3,2],[2]]
=> ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[2,2,1],[1,1]]
=> ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3
[[2,1,1],[1]]
=> ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3
[[3,2,1],[2,1]]
=> ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 6
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[4,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[4,2],[2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[3,2,1],[1,1]]
=> ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[3,1,1],[1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[4,2,1],[2,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[4,3],[3]]
=> ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[3,3,1],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[3,2,1],[2]]
=> ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[4,3,1],[3,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[3,3,2],[2,2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[3,2,2],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[4,3,2],[3,2]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[2,2,2,1],[1,1,1]]
=> ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[2,2,1,1],[1,1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[3,3,2,1],[2,2,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[2,1,1,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[3,2,2,1],[2,1,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[3,2,1,1],[2,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[4,3,2,1],[3,2,1]]
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
Description
The number of maximal chains of minimal length in a poset.
Matching statistic: St001105
Values
[[1],[]]
=> ([],1)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[2],[]]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[[1,1],[]]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[[2,1],[1]]
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[[3],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2
[[3,1],[1]]
=> ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[[3,2],[2]]
=> ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[2,2,1],[1,1]]
=> ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3
[[2,1,1],[1]]
=> ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3
[[3,2,1],[2,1]]
=> ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 6
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[4,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[4,2],[2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[3,2,1],[1,1]]
=> ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[3,1,1],[1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[4,2,1],[2,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[4,3],[3]]
=> ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[3,3,1],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[3,2,1],[2]]
=> ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[4,3,1],[3,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[3,3,2],[2,2]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[3,2,2],[2,1]]
=> ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[4,3,2],[3,2]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[2,2,2,1],[1,1,1]]
=> ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[2,2,1,1],[1,1]]
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[3,3,2,1],[2,2,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[2,1,1,1],[1]]
=> ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[3,2,2,1],[2,1,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[3,2,1,1],[2,1]]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
[[4,3,2,1],[3,2,1]]
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? ∊ {3,3,3,3,4,4,4,4,5,5,6,6,6,6,8,8,8,8,12,12,12,12,12,12,24}
Description
The number of greedy linear extensions of a poset.
A linear extension of a poset $P$ with elements $\{x_1,\dots,x_n\}$ is greedy, if it can be obtained by the following algorithm:
* Step 1. Choose a minimal element $x_1$.
* Step 2. Suppose $X=\{x_1,\dots,x_i\}$ have been chosen. If there is at least one minimal element of $P\setminus X$ which is greater than $x_i$ then choose $x_{i+1}$ to be any such minimal element; otherwise, choose $x_{i+1}$ to be any minimal element of $P\setminus X$.
This statistic records the number of greedy linear extensions.
The following 16 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001106The number of supergreedy linear extensions of a poset. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St001686The order of promotion on a Gelfand-Tsetlin pattern. St001330The hat guessing number of a graph. St001816Eigenvalues of the top-to-random operator acting on a simple module. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000927The alternating sum of the coefficients of the character polynomial of an integer partition. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St000264The girth of a graph, which is not a tree. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!