Your data matches 98 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00154: Graphs coreGraphs
St000087: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> 1
([],2)
=> ([],1)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> 2
([],3)
=> ([],1)
=> 1
([(1,2)],3)
=> ([(0,1)],2)
=> 2
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([],4)
=> ([],1)
=> 1
([(2,3)],4)
=> ([(0,1)],2)
=> 2
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([],5)
=> ([],1)
=> 1
([(3,4)],5)
=> ([(0,1)],2)
=> 2
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 7
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
Description
The number of induced subgraphs. A subgraph $H \subseteq G$ is induced if $E(H)$ consists of all edges in $E(G)$ that connect the vertices of $H$.
Matching statistic: St001348
Mp00154: Graphs coreGraphs
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St001348: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1] => [1,0]
=> 1
([],2)
=> ([],1)
=> [1] => [1,0]
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 2
([],3)
=> ([],1)
=> [1] => [1,0]
=> 1
([(1,2)],3)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 2
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 3
([],4)
=> ([],1)
=> [1] => [1,0]
=> 1
([(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 2
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 2
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 4
([],5)
=> ([],1)
=> [1] => [1,0]
=> 1
([(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 2
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 2
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 7
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 4
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> 3
Description
The bounce of the parallelogram polyomino associated with the Dyck path. A bijection due to Delest and Viennot [1] associates a Dyck path with a parallelogram polyomino. The bounce statistic is defined in [2].
Matching statistic: St000008
Mp00154: Graphs coreGraphs
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00315: Integer compositions inverse Foata bijectionInteger compositions
St000008: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1] => [1] => 0 = 1 - 1
([],2)
=> ([],1)
=> [1] => [1] => 0 = 1 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> [1,1] => [1,1] => 1 = 2 - 1
([],3)
=> ([],1)
=> [1] => [1] => 0 = 1 - 1
([(1,2)],3)
=> ([(0,1)],2)
=> [1,1] => [1,1] => 1 = 2 - 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> [1,1] => [1,1] => 1 = 2 - 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1] => 2 = 3 - 1
([],4)
=> ([],1)
=> [1] => [1] => 0 = 1 - 1
([(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => [1,1] => 1 = 2 - 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => [1,1] => 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => [1,1] => 1 = 2 - 1
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> [1,1] => [1,1] => 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => [1,1] => 1 = 2 - 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1] => 2 = 3 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1] => 2 = 3 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> [1,1] => [1,1] => 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1] => 2 = 3 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [3,1] => 3 = 4 - 1
([],5)
=> ([],1)
=> [1] => [1] => 0 = 1 - 1
([(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,1] => 1 = 2 - 1
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,1] => 1 = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,1] => 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,1] => 1 = 2 - 1
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> [1,1] => [1,1] => 1 = 2 - 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,1] => 1 = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,1] => 1 = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1] => 2 = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,1] => 1 = 2 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1] => 2 = 3 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1] => 2 = 3 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,1] => 1 = 2 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,1] => 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1] => 2 = 3 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1] => 2 = 3 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1] => 2 = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,1] => 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1] => 2 = 3 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1,1] => [1,1] => 1 = 2 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1] => 2 = 3 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1] => 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1] => 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,2,1] => 6 = 7 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1] => 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1] => 2 = 3 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1] => 2 = 3 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [3,1] => 3 = 4 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [3,1] => 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [3,1] => 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1] => 2 = 3 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1] => 2 = 3 - 1
Description
The major index of the composition. The descents of a composition $[c_1,c_2,\dots,c_k]$ are the partial sums $c_1, c_1+c_2,\dots, c_1+\dots+c_{k-1}$, excluding the sum of all parts. The major index of a composition is the sum of its descents. For details about the major index see [[Permutations/Descents-Major]].
Matching statistic: St001869
Mp00154: Graphs coreGraphs
Mp00111: Graphs complementGraphs
Mp00203: Graphs coneGraphs
St001869: Graphs ⟶ ℤResult quality: 75% values known / values provided: 99%distinct values known / distinct values provided: 75%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 1
([],2)
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2
([],3)
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([],4)
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([],5)
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 7
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? ∊ {6,12}
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? ∊ {6,12}
Description
The maximum cut size of a graph. A '''cut''' is a set of edges which connect different sides of a vertex partition $V = A \sqcup B$.
Mp00154: Graphs coreGraphs
St000741: Graphs ⟶ ℤResult quality: 75% values known / values provided: 98%distinct values known / distinct values provided: 75%
Values
([],1)
=> ([],1)
=> 0 = 1 - 1
([],2)
=> ([],1)
=> 0 = 1 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([],3)
=> ([],1)
=> 0 = 1 - 1
([(1,2)],3)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([],4)
=> ([],1)
=> 0 = 1 - 1
([(2,3)],4)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([],5)
=> ([],1)
=> 0 = 1 - 1
([(3,4)],5)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 7 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? ∊ {7,7,7,12} - 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? ∊ {7,7,7,12} - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? ∊ {7,7,7,12} - 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? ∊ {7,7,7,12} - 1
Description
The Colin de Verdière graph invariant.
Mp00154: Graphs coreGraphs
Mp00203: Graphs coneGraphs
St000454: Graphs ⟶ ℤResult quality: 75% values known / values provided: 98%distinct values known / distinct values provided: 75%
Values
([],1)
=> ([],1)
=> ([(0,1)],2)
=> 1
([],2)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([],3)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([],4)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([],5)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 7
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? ∊ {7,7,7,12}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? ∊ {7,7,7,12}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? ∊ {7,7,7,12}
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,12}
Description
The largest eigenvalue of a graph if it is integral. If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
Mp00154: Graphs coreGraphs
Mp00203: Graphs coneGraphs
St001330: Graphs ⟶ ℤResult quality: 75% values known / values provided: 98%distinct values known / distinct values provided: 75%
Values
([],1)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([],2)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([],3)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([],4)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
([],5)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 7 + 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? ∊ {7,7,7,12} + 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? ∊ {7,7,7,12} + 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? ∊ {7,7,7,12} + 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {7,7,7,12} + 1
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St000479
Mp00154: Graphs coreGraphs
Mp00111: Graphs complementGraphs
Mp00147: Graphs squareGraphs
St000479: Graphs ⟶ ℤResult quality: 75% values known / values provided: 98%distinct values known / distinct values provided: 75%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> 2
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> 2
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> 3
([],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> 2
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> 2
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],4)
=> 4
([],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> 2
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> 2
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 7
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],4)
=> 4
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],4)
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],4)
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],4)
=> 4
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {7,7,7,12}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {7,7,7,12}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {7,7,7,12}
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {7,7,7,12}
Description
The Ramsey number of a graph. This is the smallest integer $n$ such that every two-colouring of the edges of the complete graph $K_n$ contains a (not necessarily induced) monochromatic copy of the given graph. [1] Thus, the Ramsey number of the complete graph $K_n$ is the ordinary Ramsey number $R(n,n)$. Very few of these numbers are known, in particular, it is only known that $43\leq R(5,5)\leq 48$. [2,3,4,5]
Mp00154: Graphs coreGraphs
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001645: Graphs ⟶ ℤResult quality: 75% values known / values provided: 98%distinct values known / distinct values provided: 75%
Values
([],1)
=> ([],1)
=> [1] => ([],1)
=> 1
([],2)
=> ([],1)
=> [1] => ([],1)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 2
([],3)
=> ([],1)
=> [1] => ([],1)
=> 1
([(1,2)],3)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 2
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([],4)
=> ([],1)
=> [1] => ([],1)
=> 1
([(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 2
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 2
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([],5)
=> ([],1)
=> [1] => ([],1)
=> 1
([(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 2
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 2
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 7
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {7,7,7,12}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {7,7,7,12}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {7,7,7,12}
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {7,7,7,12}
Description
The pebbling number of a connected graph.
Matching statistic: St001491
Mp00154: Graphs coreGraphs
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00094: Integer compositions to binary wordBinary words
St001491: Binary words ⟶ ℤResult quality: 50% values known / values provided: 94%distinct values known / distinct values provided: 50%
Values
([],1)
=> ([],1)
=> [1] => 1 => 1
([],2)
=> ([],1)
=> [1] => 1 => 1
([(0,1)],2)
=> ([(0,1)],2)
=> [1,1] => 11 => 2
([],3)
=> ([],1)
=> [1] => 1 => 1
([(1,2)],3)
=> ([(0,1)],2)
=> [1,1] => 11 => 2
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> [1,1] => 11 => 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => 111 => 3
([],4)
=> ([],1)
=> [1] => 1 => 1
([(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => 11 => 2
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => 11 => 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => 11 => 2
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> [1,1] => 11 => 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => 11 => 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => 111 => 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => 111 => 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> [1,1] => 11 => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => 111 => 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => 1111 => 4
([],5)
=> ([],1)
=> [1] => 1 => 1
([(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => 11 => 2
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => 11 => 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => 11 => 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => 11 => 2
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> [1,1] => 11 => 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => 11 => 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => 11 => 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => 111 => 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => 11 => 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => 111 => 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => 111 => 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1,1] => 11 => 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => 11 => 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => 111 => 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => 111 => 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => 111 => 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1,1] => 11 => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => 111 => 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1,1] => 11 => 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => 111 => 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => 111 => 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => 111 => 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 10101 => ? ∊ {5,7}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => 111 => 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => 111 => 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => 111 => 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => 1111 => 4
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => 1111 => 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => 1111 => 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => 111 => 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => 111 => 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => 1111 => 4
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 11111 => ? ∊ {5,7}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 10101 => ? ∊ {5,5,5,5,5,6,7,7,7,12}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 10101 => ? ∊ {5,5,5,5,5,6,7,7,7,12}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 10101 => ? ∊ {5,5,5,5,5,6,7,7,7,12}
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [2,2,1,1] => 101011 => ? ∊ {5,5,5,5,5,6,7,7,7,12}
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 11111 => ? ∊ {5,5,5,5,5,6,7,7,7,12}
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 11111 => ? ∊ {5,5,5,5,5,6,7,7,7,12}
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 11111 => ? ∊ {5,5,5,5,5,6,7,7,7,12}
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 11111 => ? ∊ {5,5,5,5,5,6,7,7,7,12}
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 11111 => ? ∊ {5,5,5,5,5,6,7,7,7,12}
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => 111111 => ? ∊ {5,5,5,5,5,6,7,7,7,12}
Description
The number of indecomposable projective-injective modules in the algebra corresponding to a subset. Let $A_n=K[x]/(x^n)$. We associate to a nonempty subset S of an (n-1)-set the module $M_S$, which is the direct sum of $A_n$-modules with indecomposable non-projective direct summands of dimension $i$ when $i$ is in $S$ (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of $M_S$. We decode the subset as a binary word so that for example the subset $S=\{1,3 \} $ of $\{1,2,3 \}$ is decoded as 101.
The following 88 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001515The vector space dimension of the socle of the first syzygy module of the regular module (as a bimodule). St001812The biclique partition number of a graph. St001834The number of non-isomorphic minors of a graph. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001358The largest degree of a regular subgraph of a graph. St001323The independence gap of a graph. St000147The largest part of an integer partition. St001644The dimension of a graph. St000443The number of long tunnels of a Dyck path. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St000260The radius of a connected graph. St001570The minimal number of edges to add to make a graph Hamiltonian. St001638The book thickness of a graph. St000259The diameter of a connected graph. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001480The number of simple summands of the module J^2/J^3. St000144The pyramid weight of the Dyck path. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St000264The girth of a graph, which is not a tree. St000636The hull number of a graph. St001060The distinguishing index of a graph. St000738The first entry in the last row of a standard tableau. St001183The maximum of $projdim(S)+injdim(S)$ over all simple modules in the Nakayama algebra corresponding to the Dyck path. St001258Gives the maximum of injective plus projective dimension of an indecomposable module over the corresponding Nakayama algebra. St000015The number of peaks of a Dyck path. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St001530The depth of a Dyck path. St000474Dyson's crank of a partition. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001875The number of simple modules with projective dimension at most 1. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001118The acyclic chromatic index of a graph. St000108The number of partitions contained in the given partition. St000380Half of the maximal perimeter of a rectangle fitting into the diagram of an integer partition. St000393The number of strictly increasing runs in a binary word. St000395The sum of the heights of the peaks of a Dyck path. St000439The position of the first down step of a Dyck path. St000532The total number of rook placements on a Ferrers board. St000543The size of the conjugacy class of a binary word. St000626The minimal period of a binary word. St000969We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n-1}]$ by adding $c_0$ to $c_{n-1}$. St000998Number of indecomposable projective modules with injective dimension smaller than or equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001012Number of simple modules with projective dimension at most 2 in the Nakayama algebra corresponding to the Dyck path. St001020Sum of the codominant dimensions of the non-projective indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path. St001023Number of simple modules with projective dimension at most 3 in the Nakayama algebra corresponding to the Dyck path. St001028Number of simple modules with injective dimension equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001166Number of indecomposable projective non-injective modules with dominant dimension equal to the global dimension plus the number of indecomposable projective injective modules in the corresponding Nakayama algebra. St001170Number of indecomposable injective modules whose socle has projective dimension at most g-1 when g denotes the global dimension in the corresponding Nakayama algebra. St001179Number of indecomposable injective modules with projective dimension at most 2 in the corresponding Nakayama algebra. St001180Number of indecomposable injective modules with projective dimension at most 1. St001190Number of simple modules with projective dimension at most 4 in the corresponding Nakayama algebra. St001211The number of simple modules in the corresponding Nakayama algebra that have vanishing second Ext-group with the regular module. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001237The number of simple modules with injective dimension at most one or dominant dimension at least one. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra St001267The length of the Lyndon factorization of the binary word. St001437The flex of a binary word. St001492The number of simple modules that do not appear in the socle of the regular module or have no nontrivial selfextensions with the regular module in the corresponding Nakayama algebra. St001504The sum of all indegrees of vertices with indegree at least two in the resolution quiver of a Nakayama algebra corresponding to the Dyck path. St001505The number of elements generated by the Dyck path as a map in the full transformation monoid. St001814The number of partitions interlacing the given partition. St001983The number of indecomposable injective modules that are pure. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000455The second largest eigenvalue of a graph if it is integral. St001108The 2-dynamic chromatic number of a graph. St001674The number of vertices of the largest induced star graph in the graph. St000422The energy of a graph, if it is integral. St001336The minimal number of vertices in a graph whose complement is triangle-free. St001621The number of atoms of a lattice. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St001624The breadth of a lattice. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000776The maximal multiplicity of an eigenvalue in a graph.