searching the database
Your data matches 121 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000096
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Values
([],1)
=> 1
([],2)
=> 0
([(0,1)],2)
=> 1
([],3)
=> 0
([(1,2)],3)
=> 0
([(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(1,2)],3)
=> 3
([],4)
=> 0
([(2,3)],4)
=> 0
([(1,3),(2,3)],4)
=> 0
([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> 0
([(0,3),(1,2),(2,3)],4)
=> 1
([(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 8
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 16
([],5)
=> 0
([(3,4)],5)
=> 0
([(2,4),(3,4)],5)
=> 0
([(1,4),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(1,4),(2,3)],5)
=> 0
([(1,4),(2,3),(3,4)],5)
=> 0
([(0,1),(2,4),(3,4)],5)
=> 0
([(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 12
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 20
([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 9
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 11
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 21
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 8
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 16
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 40
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 24
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 45
Description
The number of spanning trees of a graph.
A subgraph $H \subseteq G$ is a spanning tree if $V(H)=V(G)$ and $H$ is a tree (i.e. $H$ is connected and contains no cycles).
Matching statistic: St000699
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 1
([],2)
=> ([],2)
=> ([],2)
=> ([],2)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 1
([],3)
=> ([],3)
=> ([],3)
=> ([],3)
=> 0
([(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 0
([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ? ∊ {1,3}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ? ∊ {1,3}
([],4)
=> ([],4)
=> ([],4)
=> ([],4)
=> 0
([(2,3)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 0
([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,3,4,8,16}
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,3,4,8,16}
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,3,4,8,16}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,3,4,8,16}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,3,4,8,16}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,3,4,8,16}
([],5)
=> ([],5)
=> ([],5)
=> ([],5)
=> 0
([(3,4)],5)
=> ([(3,4)],5)
=> ([(3,4)],5)
=> ([(3,4)],5)
=> 0
([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([],6)
=> ([],6)
=> ([],6)
=> ([],6)
=> 0
([(4,5)],6)
=> ([(4,5)],6)
=> ([(4,5)],6)
=> ([(4,5)],6)
=> 0
([(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> 0
([(2,5),(3,4),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> 0
([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
Description
The toughness times the least common multiple of 1,...,n-1 of a non-complete graph.
A graph $G$ is $t$-tough if $G$ cannot be split into $k$ different connected components by the removal of fewer than $tk$ vertices for all integers $k>1$.
The toughness of $G$ is the maximal number $t$ such that $G$ is $t$-tough. It is a rational number except for the complete graph, where it is infinity. The toughness of a disconnected graph is zero.
This statistic is the toughness multiplied by the least common multiple of $1,\dots,n-1$, where $n$ is the number of vertices of $G$.
Matching statistic: St000205
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000205: Integer partitions ⟶ ℤResult quality: 2% ●values known / values provided: 31%●distinct values known / distinct values provided: 2%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000205: Integer partitions ⟶ ℤResult quality: 2% ●values known / values provided: 31%●distinct values known / distinct values provided: 2%
Values
([],1)
=> [1]
=> []
=> ? = 1
([],2)
=> [1,1]
=> [1]
=> 0
([(0,1)],2)
=> [2]
=> []
=> ? = 1
([],3)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2)],3)
=> [2,1]
=> [1]
=> 0
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,3}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,3}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 0
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 0
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 0
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
Description
Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight.
Given $\lambda$ count how many ''integer partitions'' $w$ (weight) there are, such that
$P_{\lambda,w}$ is non-integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has at least one non-integral vertex.
Matching statistic: St000206
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000206: Integer partitions ⟶ ℤResult quality: 2% ●values known / values provided: 31%●distinct values known / distinct values provided: 2%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000206: Integer partitions ⟶ ℤResult quality: 2% ●values known / values provided: 31%●distinct values known / distinct values provided: 2%
Values
([],1)
=> [1]
=> []
=> ? = 1
([],2)
=> [1,1]
=> [1]
=> 0
([(0,1)],2)
=> [2]
=> []
=> ? = 1
([],3)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2)],3)
=> [2,1]
=> [1]
=> 0
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,3}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,3}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 0
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 0
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 0
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
Description
Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight.
Given $\lambda$ count how many ''integer compositions'' $w$ (weight) there are, such that
$P_{\lambda,w}$ is non-integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has at least one non-integral vertex.
See also [[St000205]].
Each value in this statistic is greater than or equal to corresponding value in [[St000205]].
Matching statistic: St000225
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000225: Integer partitions ⟶ ℤResult quality: 3% ●values known / values provided: 31%●distinct values known / distinct values provided: 3%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000225: Integer partitions ⟶ ℤResult quality: 3% ●values known / values provided: 31%●distinct values known / distinct values provided: 3%
Values
([],1)
=> [1]
=> []
=> ? = 1
([],2)
=> [1,1]
=> [1]
=> 0
([(0,1)],2)
=> [2]
=> []
=> ? = 1
([],3)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2)],3)
=> [2,1]
=> [1]
=> 0
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,3}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,3}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 0
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 0
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
Description
Difference between largest and smallest parts in a partition.
Matching statistic: St000379
Values
([],1)
=> ([(0,1)],2)
=> ([],1)
=> ? = 1
([],2)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ? = 1
([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 0
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {1,3}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {1,3}
([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,3,4,8,16}
([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,3,4,8,16}
([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,3,4,8,16}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,3,4,8,16}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,3,4,8,16}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,3,4,8,16}
([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0
([(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(2,5),(3,4)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,2),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
Description
The number of Hamiltonian cycles in a graph.
A Hamiltonian cycle in a graph $G$ is a subgraph (this is, a subset of the edges) that is a cycle which contains every vertex of $G$.
Since it is unclear whether the graph on one vertex is Hamiltonian, the statistic is undefined for this graph.
Matching statistic: St000455
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
([],1)
=> ([(0,1)],2)
=> ([],1)
=> ? = 1
([],2)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ? = 1
([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 0
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {1,3}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {1,3}
([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,3,4,8,16}
([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,3,4,8,16}
([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,3,4,8,16}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,3,4,8,16}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,3,4,8,16}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,3,4,8,16}
([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0
([(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(2,5),(3,4)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,2),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
Description
The second largest eigenvalue of a graph if it is integral.
This statistic is undefined if the second largest eigenvalue of the graph is not integral.
Chapter 4 of [1] provides lots of context.
Matching statistic: St000944
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000944: Integer partitions ⟶ ℤResult quality: 3% ●values known / values provided: 31%●distinct values known / distinct values provided: 3%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000944: Integer partitions ⟶ ℤResult quality: 3% ●values known / values provided: 31%●distinct values known / distinct values provided: 3%
Values
([],1)
=> [1]
=> []
=> ? = 1
([],2)
=> [1,1]
=> [1]
=> 0
([(0,1)],2)
=> [2]
=> []
=> ? = 1
([],3)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2)],3)
=> [2,1]
=> [1]
=> 0
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,3}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,3}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 0
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 0
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
Description
The 3-degree of an integer partition.
For an integer partition $\lambda$, this is given by the exponent of 3 in the Gram determinant of the integal Specht module of the symmetric group indexed by $\lambda$.
This stupid comment should not be accepted as an edit!
Matching statistic: St001175
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001175: Integer partitions ⟶ ℤResult quality: 3% ●values known / values provided: 31%●distinct values known / distinct values provided: 3%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001175: Integer partitions ⟶ ℤResult quality: 3% ●values known / values provided: 31%●distinct values known / distinct values provided: 3%
Values
([],1)
=> [1]
=> []
=> ? = 1
([],2)
=> [1,1]
=> [1]
=> 0
([(0,1)],2)
=> [2]
=> []
=> ? = 1
([],3)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2)],3)
=> [2,1]
=> [1]
=> 0
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,3}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,3}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 0
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 0
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,3,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 0
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,1,1,1,1,1,3,3,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,8,9,9,9,11,11,11,12,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
Description
The size of a partition minus the hook length of the base cell.
This is, the number of boxes in the diagram of a partition that are neither in the first row nor in the first column.
Matching statistic: St001178
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001178: Integer partitions ⟶ ℤResult quality: 6% ●values known / values provided: 31%●distinct values known / distinct values provided: 6%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001178: Integer partitions ⟶ ℤResult quality: 6% ●values known / values provided: 31%●distinct values known / distinct values provided: 6%
Values
([],1)
=> [1]
=> []
=> ? = 1
([],2)
=> [1,1]
=> [1]
=> 0
([(0,1)],2)
=> [2]
=> []
=> ? = 1
([],3)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2)],3)
=> [2,1]
=> [1]
=> 0
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,3}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,3}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 0
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,3,4,8,16}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 0
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,1,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 3
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,1,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,1,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,1,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,1,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,1,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,1,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,1,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,1,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,1,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,1,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,1,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,1,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,1,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,1,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,1,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,1,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,1,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,1,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,1,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,1,1,1,3,3,4,5,8,8,9,11,12,16,20,21,24,40,45,75,125}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,9,9,9,11,11,11,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 8
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 3
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,9,9,9,11,11,11,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,9,9,9,11,11,11,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,9,9,9,11,11,11,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,9,9,9,11,11,11,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,9,9,9,11,11,11,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,9,9,9,11,11,11,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,9,9,9,11,11,11,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,9,9,9,11,11,11,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,9,9,9,11,11,11,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,9,9,9,11,11,11,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,9,9,9,11,11,11,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,9,9,9,11,11,11,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,9,9,9,11,11,11,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 12
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 3
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,9,9,9,11,11,11,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,9,9,9,11,11,11,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,9,9,9,11,11,11,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,9,9,9,11,11,11,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,5,6,8,8,8,8,8,8,9,9,9,11,11,11,12,12,14,15,16,16,16,16,20,20,21,21,21,24,24,24,24,24,28,29,30,30,32,32,32,35,36,40,40,40,45,45,48,48,52,54,55,55,56,60,61,64,64,66,69,75,75,75,81,96,99,100,104,111,114,115,120,121,125,128,130,135,180,185,192,200,209,216,224,225,300,324,336,360,384,540,576,864,1296}
Description
Twelve times the variance of the major index among all standard Young tableaux of a partition.
For a partition $\lambda$ of $n$, this variance is given in [1, Proposition 3.2] by
$$\frac{1}{12}\Big(\sum_{k = 1}^n i^2 - \sum_{i,j \in \lambda} h_{ij}^2\Big),$$
where the second sum ranges over all cells in $\lambda$ and $h_{ij}$ is the hook length of the cell $(i,j) \in \lambda$.
The following 111 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000017The number of inversions of a standard tableau. St000117The number of centered tunnels of a Dyck path. St000142The number of even parts of a partition. St000143The largest repeated part of a partition. St000149The number of cells of the partition whose leg is zero and arm is odd. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000185The weighted size of a partition. St000256The number of parts from which one can substract 2 and still get an integer partition. St000257The number of distinct parts of a partition that occur at least twice. St000290The major index of a binary word. St000291The number of descents of a binary word. St000292The number of ascents of a binary word. St000293The number of inversions of a binary word. St000296The length of the symmetric border of a binary word. St000347The inversion sum of a binary word. St000348The non-inversion sum of a binary word. St000473The number of parts of a partition that are strictly bigger than the number of ones. St000480The number of lower covers of a partition in dominance order. St000481The number of upper covers of a partition in dominance order. St000513The number of invariant subsets of size 2 when acting with a permutation of given cycle type. St000628The balance of a binary word. St000629The defect of a binary word. St000661The number of rises of length 3 of a Dyck path. St000687The dimension of $Hom(I,P)$ for the LNakayama algebra of a Dyck path. St000691The number of changes of a binary word. St000697The number of 3-rim hooks removed from an integer partition to obtain its associated 3-core. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St000752The Grundy value for the game 'Couples are forever' on an integer partition. St000790The number of pairs of centered tunnels, one strictly containing the other, of a Dyck path. St000875The semilength of the longest Dyck word in the Catalan factorisation of a binary word. St000921The number of internal inversions of a binary word. St000966Number of peaks minus the global dimension of the corresponding LNakayama algebra. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001022Number of simple modules with projective dimension 3 in the Nakayama algebra corresponding to the Dyck path. St001025Number of simple modules with projective dimension 4 in the Nakayama algebra corresponding to the Dyck path. St001026The maximum of the projective dimensions of the indecomposable non-projective injective modules minus the minimum in the Nakayama algebra corresponding to the Dyck path. St001036The number of inner corners of the parallelogram polyomino associated with the Dyck path. St001037The number of inner corners of the upper path of the parallelogram polyomino associated with the Dyck path. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001092The number of distinct even parts of a partition. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St001113Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001137Number of simple modules that are 3-regular in the corresponding Nakayama algebra. St001140Number of indecomposable modules with projective and injective dimension at least two in the corresponding Nakayama algebra. St001141The number of occurrences of hills of size 3 in a Dyck path. St001163The number of simple modules with dominant dimension at least three in the corresponding Nakayama algebra. St001164Number of indecomposable injective modules whose socle has projective dimension at most g-1 (g the global dimension) minus the number of indecomposable projective-injective modules. St001167The number of simple modules that appear as the top of an indecomposable non-projective modules that is reflexive in the corresponding Nakayama algebra. St001172The number of 1-rises at odd height of a Dyck path. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St001186Number of simple modules with grade at least 3 in the corresponding Nakayama algebra. St001193The dimension of $Ext_A^1(A/AeA,A)$ in the corresponding Nakayama algebra $A$ such that $eA$ is a minimal faithful projective-injective module. St001214The aft of an integer partition. St001219Number of simple modules S in the corresponding Nakayama algebra such that the Auslander-Reiten sequence ending at S has the property that all modules in the exact sequence are reflexive. St001221The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001251The number of parts of a partition that are not congruent 1 modulo 3. St001252Half the sum of the even parts of a partition. St001253The number of non-projective indecomposable reflexive modules in the corresponding Nakayama algebra. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001266The largest vector space dimension of an indecomposable non-projective module that is reflexive in the corresponding Nakayama algebra. St001292The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001371The length of the longest Yamanouchi prefix of a binary word. St001420Half the length of a longest factor which is its own reverse-complement of a binary word. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St001423The number of distinct cubes in a binary word. St001435The number of missing boxes in the first row. St001436The index of a given binary word in the lex-order among all its cyclic shifts. St001438The number of missing boxes of a skew partition. St001485The modular major index of a binary word. St001584The area statistic between a Dyck path and its bounce path. St001586The number of odd parts smaller than the largest even part in an integer partition. St001588The number of distinct odd parts smaller than the largest even part in an integer partition. St001596The number of two-by-two squares inside a skew partition. St001695The natural comajor index of a standard Young tableau. St001698The comajor index of a standard tableau minus the weighted size of its shape. St001699The major index of a standard tableau minus the weighted size of its shape. St001712The number of natural descents of a standard Young tableau. St001730The number of times the path corresponding to a binary word crosses the base line. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St001177Twice the mean value of the major index among all standard Young tableaux of a partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St001827The number of two-component spanning forests of a graph. St001570The minimal number of edges to add to make a graph Hamiltonian. St001651The Frankl number of a lattice. St000940The number of characters of the symmetric group whose value on the partition is zero. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000791The number of pairs of left tunnels, one strictly containing the other, of a Dyck path. St000931The number of occurrences of the pattern UUU in a Dyck path. St000938The number of zeros of the symmetric group character corresponding to the partition. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St001502The global dimension minus the dominant dimension of magnitude 1 Nakayama algebras. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St001280The number of parts of an integer partition that are at least two. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001541The Gini index of an integer partition. St001587Half of the largest even part of an integer partition. St001657The number of twos in an integer partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St001961The sum of the greatest common divisors of all pairs of parts.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!