Values
([],1) => 1
([],2) => 0
([(0,1)],2) => 1
([],3) => 0
([(1,2)],3) => 0
([(0,2),(1,2)],3) => 1
([(0,1),(0,2),(1,2)],3) => 3
([],4) => 0
([(2,3)],4) => 0
([(1,3),(2,3)],4) => 0
([(0,3),(1,3),(2,3)],4) => 1
([(0,3),(1,2)],4) => 0
([(0,3),(1,2),(2,3)],4) => 1
([(1,2),(1,3),(2,3)],4) => 0
([(0,3),(1,2),(1,3),(2,3)],4) => 3
([(0,2),(0,3),(1,2),(1,3)],4) => 4
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 8
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 16
([],5) => 0
([(3,4)],5) => 0
([(2,4),(3,4)],5) => 0
([(1,4),(2,4),(3,4)],5) => 0
([(0,4),(1,4),(2,4),(3,4)],5) => 1
([(1,4),(2,3)],5) => 0
([(1,4),(2,3),(3,4)],5) => 0
([(0,1),(2,4),(3,4)],5) => 0
([(2,3),(2,4),(3,4)],5) => 0
([(0,4),(1,4),(2,3),(3,4)],5) => 1
([(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 3
([(1,3),(1,4),(2,3),(2,4)],5) => 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 4
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 8
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 12
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 20
([(0,4),(1,3),(2,3),(2,4)],5) => 1
([(0,1),(2,3),(2,4),(3,4)],5) => 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 9
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 5
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 11
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 21
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 8
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 16
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 40
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => 24
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 45
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 75
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 125
([],6) => 0
([(4,5)],6) => 0
([(3,5),(4,5)],6) => 0
([(2,5),(3,5),(4,5)],6) => 0
([(1,5),(2,5),(3,5),(4,5)],6) => 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 1
([(2,5),(3,4)],6) => 0
([(2,5),(3,4),(4,5)],6) => 0
([(1,2),(3,5),(4,5)],6) => 0
([(3,4),(3,5),(4,5)],6) => 0
([(1,5),(2,5),(3,4),(4,5)],6) => 0
([(0,1),(2,5),(3,5),(4,5)],6) => 0
([(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,5),(1,5),(2,4),(3,4)],6) => 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 4
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 3
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 8
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 4
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 12
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 8
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 20
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 32
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 48
([(0,5),(1,4),(2,3)],6) => 0
([(1,5),(2,4),(3,4),(3,5)],6) => 0
([(0,1),(2,5),(3,4),(4,5)],6) => 0
([(1,2),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 3
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 9
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 4
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => 5
>>> Load all 208 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of spanning trees of a graph.
A subgraph $H \subseteq G$ is a spanning tree if $V(H)=V(G)$ and $H$ is a tree (i.e. $H$ is connected and contains no cycles).
A subgraph $H \subseteq G$ is a spanning tree if $V(H)=V(G)$ and $H$ is a tree (i.e. $H$ is connected and contains no cycles).
Code
def statistic(g):
return g.spanning_trees_count()
Created
Jun 13, 2013 at 16:35 by Chris Berg
Updated
Dec 17, 2015 at 19:10 by Matthew Donahue
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!