searching the database
Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000103
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00036: Gelfand-Tsetlin patterns —to semistandard tableau⟶ Semistandard tableaux
St000103: Semistandard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000103: Semistandard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[2,0],[0]]
 => [[2,2]]
 => 4
[[2,0],[1]]
 => [[1,2]]
 => 3
[[2,0],[2]]
 => [[1,1]]
 => 2
[[1,1],[1]]
 => [[1],[2]]
 => 3
[[3,0],[0]]
 => [[2,2,2]]
 => 6
[[3,0],[1]]
 => [[1,2,2]]
 => 5
[[3,0],[2]]
 => [[1,1,2]]
 => 4
[[3,0],[3]]
 => [[1,1,1]]
 => 3
[[2,1],[1]]
 => [[1,2],[2]]
 => 5
[[2,1],[2]]
 => [[1,1],[2]]
 => 4
[[4,0],[0]]
 => [[2,2,2,2]]
 => 8
[[4,0],[1]]
 => [[1,2,2,2]]
 => 7
[[4,0],[2]]
 => [[1,1,2,2]]
 => 6
[[4,0],[3]]
 => [[1,1,1,2]]
 => 5
[[4,0],[4]]
 => [[1,1,1,1]]
 => 4
[[3,1],[1]]
 => [[1,2,2],[2]]
 => 7
[[3,1],[2]]
 => [[1,1,2],[2]]
 => 6
[[3,1],[3]]
 => [[1,1,1],[2]]
 => 5
[[2,2],[2]]
 => [[1,1],[2,2]]
 => 6
[[3,0,0],[0,0],[0]]
 => [[3,3,3]]
 => 9
[[3,0,0],[1,0],[0]]
 => [[2,3,3]]
 => 8
[[3,0,0],[1,0],[1]]
 => [[1,3,3]]
 => 7
[[3,0,0],[2,0],[0]]
 => [[2,2,3]]
 => 7
[[3,0,0],[2,0],[1]]
 => [[1,2,3]]
 => 6
[[3,0,0],[2,0],[2]]
 => [[1,1,3]]
 => 5
[[3,0,0],[3,0],[0]]
 => [[2,2,2]]
 => 6
[[3,0,0],[3,0],[1]]
 => [[1,2,2]]
 => 5
[[3,0,0],[3,0],[2]]
 => [[1,1,2]]
 => 4
[[3,0,0],[3,0],[3]]
 => [[1,1,1]]
 => 3
[[2,1,0],[1,0],[0]]
 => [[2,3],[3]]
 => 8
[[2,1,0],[1,0],[1]]
 => [[1,3],[3]]
 => 7
[[2,1,0],[1,1],[1]]
 => [[1,3],[2]]
 => 6
[[2,1,0],[2,0],[0]]
 => [[2,2],[3]]
 => 7
[[2,1,0],[2,0],[1]]
 => [[1,2],[3]]
 => 6
[[2,1,0],[2,0],[2]]
 => [[1,1],[3]]
 => 5
[[2,1,0],[2,1],[1]]
 => [[1,2],[2]]
 => 5
[[2,1,0],[2,1],[2]]
 => [[1,1],[2]]
 => 4
[[1,1,1],[1,1],[1]]
 => [[1],[2],[3]]
 => 6
[[5,0],[0]]
 => [[2,2,2,2,2]]
 => 10
[[5,0],[1]]
 => [[1,2,2,2,2]]
 => 9
[[5,0],[2]]
 => [[1,1,2,2,2]]
 => 8
[[5,0],[3]]
 => [[1,1,1,2,2]]
 => 7
[[5,0],[4]]
 => [[1,1,1,1,2]]
 => 6
[[5,0],[5]]
 => [[1,1,1,1,1]]
 => 5
[[4,1],[1]]
 => [[1,2,2,2],[2]]
 => 9
[[4,1],[2]]
 => [[1,1,2,2],[2]]
 => 8
[[4,1],[3]]
 => [[1,1,1,2],[2]]
 => 7
[[4,1],[4]]
 => [[1,1,1,1],[2]]
 => 6
[[3,2],[2]]
 => [[1,1,2],[2,2]]
 => 8
[[3,2],[3]]
 => [[1,1,1],[2,2]]
 => 7
Description
The sum of the entries of a semistandard tableau.
Matching statistic: St000114
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00036: Gelfand-Tsetlin patterns —to semistandard tableau⟶ Semistandard tableaux
Mp00076: Semistandard tableaux —to Gelfand-Tsetlin pattern⟶ Gelfand-Tsetlin patterns
Mp00078: Gelfand-Tsetlin patterns —Schuetzenberger involution⟶ Gelfand-Tsetlin patterns
St000114: Gelfand-Tsetlin patterns ⟶ ℤResult quality: 93% ●values known / values provided: 93%●distinct values known / distinct values provided: 95%
Mp00076: Semistandard tableaux —to Gelfand-Tsetlin pattern⟶ Gelfand-Tsetlin patterns
Mp00078: Gelfand-Tsetlin patterns —Schuetzenberger involution⟶ Gelfand-Tsetlin patterns
St000114: Gelfand-Tsetlin patterns ⟶ ℤResult quality: 93% ●values known / values provided: 93%●distinct values known / distinct values provided: 95%
Values
[[2,0],[0]]
 => [[2,2]]
 => [[2,0],[0]]
 => [[2,0],[2]]
 => 4
[[2,0],[1]]
 => [[1,2]]
 => [[2,0],[1]]
 => [[2,0],[1]]
 => 3
[[2,0],[2]]
 => [[1,1]]
 => [[2]]
 => [[2]]
 => 2
[[1,1],[1]]
 => [[1],[2]]
 => [[1,1],[1]]
 => [[1,1],[1]]
 => 3
[[3,0],[0]]
 => [[2,2,2]]
 => [[3,0],[0]]
 => [[3,0],[3]]
 => 6
[[3,0],[1]]
 => [[1,2,2]]
 => [[3,0],[1]]
 => [[3,0],[2]]
 => 5
[[3,0],[2]]
 => [[1,1,2]]
 => [[3,0],[2]]
 => [[3,0],[1]]
 => 4
[[3,0],[3]]
 => [[1,1,1]]
 => [[3]]
 => [[3]]
 => 3
[[2,1],[1]]
 => [[1,2],[2]]
 => [[2,1],[1]]
 => [[2,1],[2]]
 => 5
[[2,1],[2]]
 => [[1,1],[2]]
 => [[2,1],[2]]
 => [[2,1],[1]]
 => 4
[[4,0],[0]]
 => [[2,2,2,2]]
 => [[4,0],[0]]
 => [[4,0],[4]]
 => 8
[[4,0],[1]]
 => [[1,2,2,2]]
 => [[4,0],[1]]
 => [[4,0],[3]]
 => 7
[[4,0],[2]]
 => [[1,1,2,2]]
 => [[4,0],[2]]
 => [[4,0],[2]]
 => 6
[[4,0],[3]]
 => [[1,1,1,2]]
 => [[4,0],[3]]
 => [[4,0],[1]]
 => 5
[[4,0],[4]]
 => [[1,1,1,1]]
 => [[4]]
 => [[4]]
 => 4
[[3,1],[1]]
 => [[1,2,2],[2]]
 => [[3,1],[1]]
 => [[3,1],[3]]
 => 7
[[3,1],[2]]
 => [[1,1,2],[2]]
 => [[3,1],[2]]
 => [[3,1],[2]]
 => 6
[[3,1],[3]]
 => [[1,1,1],[2]]
 => [[3,1],[3]]
 => [[3,1],[1]]
 => 5
[[2,2],[2]]
 => [[1,1],[2,2]]
 => [[2,2],[2]]
 => [[2,2],[2]]
 => 6
[[3,0,0],[0,0],[0]]
 => [[3,3,3]]
 => [[3,0,0],[0,0],[0]]
 => [[3,0,0],[3,0],[3]]
 => 9
[[3,0,0],[1,0],[0]]
 => [[2,3,3]]
 => [[3,0,0],[1,0],[0]]
 => [[3,0,0],[3,0],[2]]
 => 8
[[3,0,0],[1,0],[1]]
 => [[1,3,3]]
 => [[3,0,0],[1,0],[1]]
 => [[3,0,0],[2,0],[2]]
 => 7
[[3,0,0],[2,0],[0]]
 => [[2,2,3]]
 => [[3,0,0],[2,0],[0]]
 => [[3,0,0],[3,0],[1]]
 => 7
[[3,0,0],[2,0],[1]]
 => [[1,2,3]]
 => [[3,0,0],[2,0],[1]]
 => [[3,0,0],[2,0],[1]]
 => 6
[[3,0,0],[2,0],[2]]
 => [[1,1,3]]
 => [[3,0,0],[2,0],[2]]
 => [[3,0,0],[1,0],[1]]
 => 5
[[3,0,0],[3,0],[0]]
 => [[2,2,2]]
 => [[3,0],[0]]
 => [[3,0],[3]]
 => 6
[[3,0,0],[3,0],[1]]
 => [[1,2,2]]
 => [[3,0],[1]]
 => [[3,0],[2]]
 => 5
[[3,0,0],[3,0],[2]]
 => [[1,1,2]]
 => [[3,0],[2]]
 => [[3,0],[1]]
 => 4
[[3,0,0],[3,0],[3]]
 => [[1,1,1]]
 => [[3]]
 => [[3]]
 => 3
[[2,1,0],[1,0],[0]]
 => [[2,3],[3]]
 => [[2,1,0],[1,0],[0]]
 => [[2,1,0],[2,1],[2]]
 => 8
[[2,1,0],[1,0],[1]]
 => [[1,3],[3]]
 => [[2,1,0],[1,0],[1]]
 => [[2,1,0],[2,0],[2]]
 => 7
[[2,1,0],[1,1],[1]]
 => [[1,3],[2]]
 => [[2,1,0],[1,1],[1]]
 => [[2,1,0],[2,0],[1]]
 => 6
[[2,1,0],[2,0],[0]]
 => [[2,2],[3]]
 => [[2,1,0],[2,0],[0]]
 => [[2,1,0],[2,1],[1]]
 => 7
[[2,1,0],[2,0],[1]]
 => [[1,2],[3]]
 => [[2,1,0],[2,0],[1]]
 => [[2,1,0],[1,1],[1]]
 => 6
[[2,1,0],[2,0],[2]]
 => [[1,1],[3]]
 => [[2,1,0],[2,0],[2]]
 => [[2,1,0],[1,0],[1]]
 => 5
[[2,1,0],[2,1],[1]]
 => [[1,2],[2]]
 => [[2,1],[1]]
 => [[2,1],[2]]
 => 5
[[2,1,0],[2,1],[2]]
 => [[1,1],[2]]
 => [[2,1],[2]]
 => [[2,1],[1]]
 => 4
[[1,1,1],[1,1],[1]]
 => [[1],[2],[3]]
 => [[1,1,1],[1,1],[1]]
 => [[1,1,1],[1,1],[1]]
 => 6
[[5,0],[0]]
 => [[2,2,2,2,2]]
 => [[5,0],[0]]
 => [[5,0],[5]]
 => 10
[[5,0],[1]]
 => [[1,2,2,2,2]]
 => [[5,0],[1]]
 => [[5,0],[4]]
 => 9
[[5,0],[2]]
 => [[1,1,2,2,2]]
 => [[5,0],[2]]
 => [[5,0],[3]]
 => 8
[[5,0],[3]]
 => [[1,1,1,2,2]]
 => [[5,0],[3]]
 => [[5,0],[2]]
 => 7
[[5,0],[4]]
 => [[1,1,1,1,2]]
 => [[5,0],[4]]
 => [[5,0],[1]]
 => 6
[[5,0],[5]]
 => [[1,1,1,1,1]]
 => [[5]]
 => [[5]]
 => 5
[[4,1],[1]]
 => [[1,2,2,2],[2]]
 => [[4,1],[1]]
 => [[4,1],[4]]
 => 9
[[4,1],[2]]
 => [[1,1,2,2],[2]]
 => [[4,1],[2]]
 => [[4,1],[3]]
 => 8
[[4,1],[3]]
 => [[1,1,1,2],[2]]
 => [[4,1],[3]]
 => [[4,1],[2]]
 => 7
[[4,1],[4]]
 => [[1,1,1,1],[2]]
 => [[4,1],[4]]
 => [[4,1],[1]]
 => 6
[[3,2],[2]]
 => [[1,1,2],[2,2]]
 => [[3,2],[2]]
 => [[3,2],[3]]
 => 8
[[3,2],[3]]
 => [[1,1,1],[2,2]]
 => [[3,2],[3]]
 => [[3,2],[2]]
 => 7
[[5,0,0,0],[0,0,0],[0,0],[0]]
 => [[4,4,4,4,4]]
 => [[5,0,0,0],[0,0,0],[0,0],[0]]
 => [[5,0,0,0],[5,0,0],[5,0],[5]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[1,0,0],[0,0],[0]]
 => [[3,4,4,4,4]]
 => [[5,0,0,0],[1,0,0],[0,0],[0]]
 => [[5,0,0,0],[5,0,0],[5,0],[4]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[1,0,0],[1,0],[0]]
 => [[2,4,4,4,4]]
 => [[5,0,0,0],[1,0,0],[1,0],[0]]
 => [[5,0,0,0],[5,0,0],[4,0],[4]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[1,0,0],[1,0],[1]]
 => [[1,4,4,4,4]]
 => [[5,0,0,0],[1,0,0],[1,0],[1]]
 => [[5,0,0,0],[4,0,0],[4,0],[4]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[2,0,0],[0,0],[0]]
 => [[3,3,4,4,4]]
 => [[5,0,0,0],[2,0,0],[0,0],[0]]
 => [[5,0,0,0],[5,0,0],[5,0],[3]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[2,0,0],[1,0],[0]]
 => [[2,3,4,4,4]]
 => [[5,0,0,0],[2,0,0],[1,0],[0]]
 => [[5,0,0,0],[5,0,0],[4,0],[3]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[2,0,0],[1,0],[1]]
 => [[1,3,4,4,4]]
 => [[5,0,0,0],[2,0,0],[1,0],[1]]
 => [[5,0,0,0],[4,0,0],[4,0],[3]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[2,0,0],[2,0],[0]]
 => [[2,2,4,4,4]]
 => [[5,0,0,0],[2,0,0],[2,0],[0]]
 => [[5,0,0,0],[5,0,0],[3,0],[3]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[2,0,0],[2,0],[1]]
 => [[1,2,4,4,4]]
 => [[5,0,0,0],[2,0,0],[2,0],[1]]
 => [[5,0,0,0],[4,0,0],[3,0],[3]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[2,0,0],[2,0],[2]]
 => [[1,1,4,4,4]]
 => [[5,0,0,0],[2,0,0],[2,0],[2]]
 => [[5,0,0,0],[3,0,0],[3,0],[3]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[3,0,0],[0,0],[0]]
 => [[3,3,3,4,4]]
 => [[5,0,0,0],[3,0,0],[0,0],[0]]
 => [[5,0,0,0],[5,0,0],[5,0],[2]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[3,0,0],[1,0],[0]]
 => [[2,3,3,4,4]]
 => [[5,0,0,0],[3,0,0],[1,0],[0]]
 => [[5,0,0,0],[5,0,0],[4,0],[2]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[3,0,0],[1,0],[1]]
 => [[1,3,3,4,4]]
 => [[5,0,0,0],[3,0,0],[1,0],[1]]
 => [[5,0,0,0],[4,0,0],[4,0],[2]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[3,0,0],[2,0],[0]]
 => [[2,2,3,4,4]]
 => [[5,0,0,0],[3,0,0],[2,0],[0]]
 => [[5,0,0,0],[5,0,0],[3,0],[2]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[3,0,0],[2,0],[1]]
 => [[1,2,3,4,4]]
 => [[5,0,0,0],[3,0,0],[2,0],[1]]
 => [[5,0,0,0],[4,0,0],[3,0],[2]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[3,0,0],[2,0],[2]]
 => [[1,1,3,4,4]]
 => [[5,0,0,0],[3,0,0],[2,0],[2]]
 => [[5,0,0,0],[3,0,0],[3,0],[2]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[3,0,0],[3,0],[0]]
 => [[2,2,2,4,4]]
 => [[5,0,0,0],[3,0,0],[3,0],[0]]
 => [[5,0,0,0],[5,0,0],[2,0],[2]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[3,0,0],[3,0],[1]]
 => [[1,2,2,4,4]]
 => [[5,0,0,0],[3,0,0],[3,0],[1]]
 => [[5,0,0,0],[4,0,0],[2,0],[2]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[3,0,0],[3,0],[2]]
 => [[1,1,2,4,4]]
 => [[5,0,0,0],[3,0,0],[3,0],[2]]
 => [[5,0,0,0],[3,0,0],[2,0],[2]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[3,0,0],[3,0],[3]]
 => [[1,1,1,4,4]]
 => [[5,0,0,0],[3,0,0],[3,0],[3]]
 => [[5,0,0,0],[2,0,0],[2,0],[2]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[4,0,0],[0,0],[0]]
 => [[3,3,3,3,4]]
 => [[5,0,0,0],[4,0,0],[0,0],[0]]
 => [[5,0,0,0],[5,0,0],[5,0],[1]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[4,0,0],[1,0],[0]]
 => [[2,3,3,3,4]]
 => [[5,0,0,0],[4,0,0],[1,0],[0]]
 => [[5,0,0,0],[5,0,0],[4,0],[1]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[4,0,0],[1,0],[1]]
 => [[1,3,3,3,4]]
 => [[5,0,0,0],[4,0,0],[1,0],[1]]
 => [[5,0,0,0],[4,0,0],[4,0],[1]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[4,0,0],[2,0],[0]]
 => [[2,2,3,3,4]]
 => [[5,0,0,0],[4,0,0],[2,0],[0]]
 => [[5,0,0,0],[5,0,0],[3,0],[1]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[4,0,0],[2,0],[1]]
 => [[1,2,3,3,4]]
 => [[5,0,0,0],[4,0,0],[2,0],[1]]
 => [[5,0,0,0],[4,0,0],[3,0],[1]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[4,0,0],[2,0],[2]]
 => [[1,1,3,3,4]]
 => [[5,0,0,0],[4,0,0],[2,0],[2]]
 => [[5,0,0,0],[3,0,0],[3,0],[1]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[4,0,0],[3,0],[0]]
 => [[2,2,2,3,4]]
 => [[5,0,0,0],[4,0,0],[3,0],[0]]
 => [[5,0,0,0],[5,0,0],[2,0],[1]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[4,0,0],[3,0],[1]]
 => [[1,2,2,3,4]]
 => [[5,0,0,0],[4,0,0],[3,0],[1]]
 => [[5,0,0,0],[4,0,0],[2,0],[1]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[4,0,0],[3,0],[2]]
 => [[1,1,2,3,4]]
 => [[5,0,0,0],[4,0,0],[3,0],[2]]
 => [[5,0,0,0],[3,0,0],[2,0],[1]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[4,0,0],[3,0],[3]]
 => [[1,1,1,3,4]]
 => [[5,0,0,0],[4,0,0],[3,0],[3]]
 => [[5,0,0,0],[2,0,0],[2,0],[1]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[4,0,0],[4,0],[0]]
 => [[2,2,2,2,4]]
 => [[5,0,0,0],[4,0,0],[4,0],[0]]
 => [[5,0,0,0],[5,0,0],[1,0],[1]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[4,0,0],[4,0],[1]]
 => [[1,2,2,2,4]]
 => [[5,0,0,0],[4,0,0],[4,0],[1]]
 => [[5,0,0,0],[4,0,0],[1,0],[1]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[4,0,0],[4,0],[2]]
 => [[1,1,2,2,4]]
 => [[5,0,0,0],[4,0,0],[4,0],[2]]
 => [[5,0,0,0],[3,0,0],[1,0],[1]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[4,0,0],[4,0],[3]]
 => [[1,1,1,2,4]]
 => [[5,0,0,0],[4,0,0],[4,0],[3]]
 => [[5,0,0,0],[2,0,0],[1,0],[1]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
[[5,0,0,0],[4,0,0],[4,0],[4]]
 => [[1,1,1,1,4]]
 => [[5,0,0,0],[4,0,0],[4,0],[4]]
 => [[5,0,0,0],[1,0,0],[1,0],[1]]
 => ? ∊ {8,9,10,10,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,18,18,19,20}
Description
The sum of the entries of the Gelfand-Tsetlin pattern.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!