Identifier
- St000103: Semistandard tableaux ⟶ ℤ
Values
=>
Cc0019;cc-rep
[[1]]=>1
[[1,1]]=>2
[[1,2]]=>3
[[2,2]]=>4
[[1],[2]]=>3
[[1,1,1]]=>3
[[1,1,2]]=>4
[[1,2,2]]=>5
[[2,2,2]]=>6
[[1,1],[2]]=>4
[[1,2],[2]]=>5
[[1,1,3]]=>5
[[1,2,3]]=>6
[[1,3,3]]=>7
[[2,2,3]]=>7
[[2,3,3]]=>8
[[3,3,3]]=>9
[[1,1],[3]]=>5
[[1,2],[3]]=>6
[[1,3],[2]]=>6
[[1,3],[3]]=>7
[[2,2],[3]]=>7
[[2,3],[3]]=>8
[[1],[2],[3]]=>6
[[1,1,1,1]]=>4
[[1,1,1,2]]=>5
[[1,1,2,2]]=>6
[[1,2,2,2]]=>7
[[2,2,2,2]]=>8
[[1,1,1],[2]]=>5
[[1,1,2],[2]]=>6
[[1,2,2],[2]]=>7
[[1,1],[2,2]]=>6
[[1,1,1,3]]=>6
[[1,1,2,3]]=>7
[[1,1,3,3]]=>8
[[1,2,2,3]]=>8
[[1,2,3,3]]=>9
[[1,3,3,3]]=>10
[[2,2,2,3]]=>9
[[2,2,3,3]]=>10
[[2,3,3,3]]=>11
[[3,3,3,3]]=>12
[[1,1,1],[3]]=>6
[[1,1,2],[3]]=>7
[[1,1,3],[2]]=>7
[[1,1,3],[3]]=>8
[[1,2,2],[3]]=>8
[[1,2,3],[2]]=>8
[[1,2,3],[3]]=>9
[[1,3,3],[2]]=>9
[[1,3,3],[3]]=>10
[[2,2,2],[3]]=>9
[[2,2,3],[3]]=>10
[[2,3,3],[3]]=>11
[[1,1],[2,3]]=>7
[[1,1],[3,3]]=>8
[[1,2],[2,3]]=>8
[[1,2],[3,3]]=>9
[[2,2],[3,3]]=>10
[[1,1],[2],[3]]=>7
[[1,2],[2],[3]]=>8
[[1,3],[2],[3]]=>9
[[1,1,1,4]]=>7
[[1,1,2,4]]=>8
[[1,1,3,4]]=>9
[[1,1,4,4]]=>10
[[1,2,2,4]]=>9
[[1,2,3,4]]=>10
[[1,2,4,4]]=>11
[[1,3,3,4]]=>11
[[1,3,4,4]]=>12
[[1,4,4,4]]=>13
[[2,2,2,4]]=>10
[[2,2,3,4]]=>11
[[2,2,4,4]]=>12
[[2,3,3,4]]=>12
[[2,3,4,4]]=>13
[[2,4,4,4]]=>14
[[3,3,3,4]]=>13
[[3,3,4,4]]=>14
[[3,4,4,4]]=>15
[[4,4,4,4]]=>16
[[1,1,1],[4]]=>7
[[1,1,2],[4]]=>8
[[1,1,4],[2]]=>8
[[1,1,3],[4]]=>9
[[1,1,4],[3]]=>9
[[1,1,4],[4]]=>10
[[1,2,2],[4]]=>9
[[1,2,4],[2]]=>9
[[1,2,3],[4]]=>10
[[1,2,4],[3]]=>10
[[1,3,4],[2]]=>10
[[1,2,4],[4]]=>11
[[1,4,4],[2]]=>11
[[1,3,3],[4]]=>11
[[1,3,4],[3]]=>11
[[1,3,4],[4]]=>12
[[1,4,4],[3]]=>12
[[1,4,4],[4]]=>13
[[2,2,2],[4]]=>10
[[2,2,3],[4]]=>11
[[2,2,4],[3]]=>11
[[2,2,4],[4]]=>12
[[2,3,3],[4]]=>12
[[2,3,4],[3]]=>12
[[2,3,4],[4]]=>13
[[2,4,4],[3]]=>13
[[2,4,4],[4]]=>14
[[3,3,3],[4]]=>13
[[3,3,4],[4]]=>14
[[3,4,4],[4]]=>15
[[1,1],[2,4]]=>8
[[1,1],[3,4]]=>9
[[1,1],[4,4]]=>10
[[1,2],[2,4]]=>9
[[1,2],[3,4]]=>10
[[1,3],[2,4]]=>10
[[1,2],[4,4]]=>11
[[1,3],[3,4]]=>11
[[1,3],[4,4]]=>12
[[2,2],[3,4]]=>11
[[2,2],[4,4]]=>12
[[2,3],[3,4]]=>12
[[2,3],[4,4]]=>13
[[3,3],[4,4]]=>14
[[1,1],[2],[4]]=>8
[[1,1],[3],[4]]=>9
[[1,2],[2],[4]]=>9
[[1,2],[3],[4]]=>10
[[1,3],[2],[4]]=>10
[[1,4],[2],[3]]=>10
[[1,4],[2],[4]]=>11
[[1,3],[3],[4]]=>11
[[1,4],[3],[4]]=>12
[[2,2],[3],[4]]=>11
[[2,3],[3],[4]]=>12
[[2,4],[3],[4]]=>13
[[1],[2],[3],[4]]=>10
[[1,1,1,1,1]]=>5
[[1,1,1,1,2]]=>6
[[1,1,1,2,2]]=>7
[[1,1,2,2,2]]=>8
[[1,2,2,2,2]]=>9
[[2,2,2,2,2]]=>10
[[1,1,1,1],[2]]=>6
[[1,1,1,2],[2]]=>7
[[1,1,2,2],[2]]=>8
[[1,2,2,2],[2]]=>9
[[1,1,1],[2,2]]=>7
[[1,1,2],[2,2]]=>8
[[1,1,1,1,3]]=>7
[[1,1,1,2,3]]=>8
[[1,1,1,3,3]]=>9
[[1,1,2,2,3]]=>9
[[1,1,2,3,3]]=>10
[[1,1,3,3,3]]=>11
[[1,2,2,2,3]]=>10
[[1,2,2,3,3]]=>11
[[1,2,3,3,3]]=>12
[[1,3,3,3,3]]=>13
[[2,2,2,2,3]]=>11
[[2,2,2,3,3]]=>12
[[2,2,3,3,3]]=>13
[[2,3,3,3,3]]=>14
[[3,3,3,3,3]]=>15
[[1,1,1,1],[3]]=>7
[[1,1,1,2],[3]]=>8
[[1,1,1,3],[2]]=>8
[[1,1,1,3],[3]]=>9
[[1,1,2,2],[3]]=>9
[[1,1,2,3],[2]]=>9
[[1,1,2,3],[3]]=>10
[[1,1,3,3],[2]]=>10
[[1,1,3,3],[3]]=>11
[[1,2,2,2],[3]]=>10
[[1,2,2,3],[2]]=>10
[[1,2,2,3],[3]]=>11
[[1,2,3,3],[2]]=>11
[[1,2,3,3],[3]]=>12
[[1,3,3,3],[2]]=>12
[[1,3,3,3],[3]]=>13
[[2,2,2,2],[3]]=>11
[[2,2,2,3],[3]]=>12
[[2,2,3,3],[3]]=>13
[[2,3,3,3],[3]]=>14
[[1,1,1],[2,3]]=>8
[[1,1,1],[3,3]]=>9
[[1,1,2],[2,3]]=>9
[[1,1,3],[2,2]]=>9
[[1,1,2],[3,3]]=>10
[[1,1,3],[2,3]]=>10
[[1,1,3],[3,3]]=>11
[[1,2,2],[2,3]]=>10
[[1,2,2],[3,3]]=>11
[[1,2,3],[2,3]]=>11
[[1,2,3],[3,3]]=>12
[[2,2,2],[3,3]]=>12
[[2,2,3],[3,3]]=>13
[[1,1,1],[2],[3]]=>8
[[1,1,2],[2],[3]]=>9
[[1,1,3],[2],[3]]=>10
[[1,2,2],[2],[3]]=>10
[[1,2,3],[2],[3]]=>11
[[1,3,3],[2],[3]]=>12
[[1,1],[2,2],[3]]=>9
[[1,1],[2,3],[3]]=>10
[[1,2],[2,3],[3]]=>11
[[1,1,1,1,4]]=>8
[[1,1,1,2,4]]=>9
[[1,1,1,3,4]]=>10
[[1,1,1,4,4]]=>11
[[1,1,2,2,4]]=>10
[[1,1,2,3,4]]=>11
[[1,1,2,4,4]]=>12
[[1,1,3,3,4]]=>12
[[1,1,3,4,4]]=>13
[[1,1,4,4,4]]=>14
[[1,2,2,2,4]]=>11
[[1,2,2,3,4]]=>12
[[1,2,2,4,4]]=>13
[[1,2,3,3,4]]=>13
[[1,2,3,4,4]]=>14
[[1,2,4,4,4]]=>15
[[1,3,3,3,4]]=>14
[[1,3,3,4,4]]=>15
[[1,3,4,4,4]]=>16
[[1,4,4,4,4]]=>17
[[2,2,2,2,4]]=>12
[[2,2,2,3,4]]=>13
[[2,2,2,4,4]]=>14
[[2,2,3,3,4]]=>14
[[2,2,3,4,4]]=>15
[[2,2,4,4,4]]=>16
[[2,3,3,3,4]]=>15
[[2,3,3,4,4]]=>16
[[2,3,4,4,4]]=>17
[[2,4,4,4,4]]=>18
[[3,3,3,3,4]]=>16
[[3,3,3,4,4]]=>17
[[3,3,4,4,4]]=>18
[[3,4,4,4,4]]=>19
[[4,4,4,4,4]]=>20
[[1,1,1,1],[4]]=>8
[[1,1,1,2],[4]]=>9
[[1,1,1,4],[2]]=>9
[[1,1,1,3],[4]]=>10
[[1,1,1,4],[3]]=>10
[[1,1,1,4],[4]]=>11
[[1,1,2,2],[4]]=>10
[[1,1,2,4],[2]]=>10
[[1,1,2,3],[4]]=>11
[[1,1,2,4],[3]]=>11
[[1,1,3,4],[2]]=>11
[[1,1,2,4],[4]]=>12
[[1,1,4,4],[2]]=>12
[[1,1,3,3],[4]]=>12
[[1,1,3,4],[3]]=>12
[[1,1,3,4],[4]]=>13
[[1,1,4,4],[3]]=>13
[[1,1,4,4],[4]]=>14
[[1,2,2,2],[4]]=>11
[[1,2,2,4],[2]]=>11
[[1,2,2,3],[4]]=>12
[[1,2,2,4],[3]]=>12
[[1,2,3,4],[2]]=>12
[[1,2,2,4],[4]]=>13
[[1,2,4,4],[2]]=>13
[[1,2,3,3],[4]]=>13
[[1,2,3,4],[3]]=>13
[[1,3,3,4],[2]]=>13
[[1,2,3,4],[4]]=>14
[[1,2,4,4],[3]]=>14
[[1,3,4,4],[2]]=>14
[[1,2,4,4],[4]]=>15
[[1,4,4,4],[2]]=>15
[[1,3,3,3],[4]]=>14
[[1,3,3,4],[3]]=>14
[[1,3,3,4],[4]]=>15
[[1,3,4,4],[3]]=>15
[[1,3,4,4],[4]]=>16
[[1,4,4,4],[3]]=>16
[[1,4,4,4],[4]]=>17
[[2,2,2,2],[4]]=>12
[[2,2,2,3],[4]]=>13
[[2,2,2,4],[3]]=>13
[[2,2,2,4],[4]]=>14
[[2,2,3,3],[4]]=>14
[[2,2,3,4],[3]]=>14
[[2,2,3,4],[4]]=>15
[[2,2,4,4],[3]]=>15
[[2,2,4,4],[4]]=>16
[[2,3,3,3],[4]]=>15
[[2,3,3,4],[3]]=>15
[[2,3,3,4],[4]]=>16
[[2,3,4,4],[3]]=>16
[[2,3,4,4],[4]]=>17
[[2,4,4,4],[3]]=>17
[[2,4,4,4],[4]]=>18
[[3,3,3,3],[4]]=>16
[[3,3,3,4],[4]]=>17
[[3,3,4,4],[4]]=>18
[[3,4,4,4],[4]]=>19
[[1,1,1],[2,4]]=>9
[[1,1,1],[3,4]]=>10
[[1,1,1],[4,4]]=>11
[[1,1,2],[2,4]]=>10
[[1,1,4],[2,2]]=>10
[[1,1,2],[3,4]]=>11
[[1,1,3],[2,4]]=>11
[[1,1,4],[2,3]]=>11
[[1,1,2],[4,4]]=>12
[[1,1,4],[2,4]]=>12
[[1,1,3],[3,4]]=>12
[[1,1,4],[3,3]]=>12
[[1,1,3],[4,4]]=>13
[[1,1,4],[3,4]]=>13
[[1,1,4],[4,4]]=>14
[[1,2,2],[2,4]]=>11
[[1,2,2],[3,4]]=>12
[[1,2,3],[2,4]]=>12
[[1,2,4],[2,3]]=>12
[[1,2,2],[4,4]]=>13
[[1,2,4],[2,4]]=>13
[[1,2,3],[3,4]]=>13
[[1,2,4],[3,3]]=>13
[[1,3,3],[2,4]]=>13
[[1,2,3],[4,4]]=>14
[[1,2,4],[3,4]]=>14
[[1,3,4],[2,4]]=>14
[[1,2,4],[4,4]]=>15
[[1,3,3],[3,4]]=>14
[[1,3,3],[4,4]]=>15
[[1,3,4],[3,4]]=>15
[[1,3,4],[4,4]]=>16
[[2,2,2],[3,4]]=>13
[[2,2,2],[4,4]]=>14
[[2,2,3],[3,4]]=>14
[[2,2,4],[3,3]]=>14
[[2,2,3],[4,4]]=>15
[[2,2,4],[3,4]]=>15
[[2,2,4],[4,4]]=>16
[[2,3,3],[3,4]]=>15
[[2,3,3],[4,4]]=>16
[[2,3,4],[3,4]]=>16
[[2,3,4],[4,4]]=>17
[[3,3,3],[4,4]]=>17
[[3,3,4],[4,4]]=>18
[[1,1,1],[2],[4]]=>9
[[1,1,1],[3],[4]]=>10
[[1,1,2],[2],[4]]=>10
[[1,1,2],[3],[4]]=>11
[[1,1,3],[2],[4]]=>11
[[1,1,4],[2],[3]]=>11
[[1,1,4],[2],[4]]=>12
[[1,1,3],[3],[4]]=>12
[[1,1,4],[3],[4]]=>13
[[1,2,2],[2],[4]]=>11
[[1,2,2],[3],[4]]=>12
[[1,2,3],[2],[4]]=>12
[[1,2,4],[2],[3]]=>12
[[1,2,4],[2],[4]]=>13
[[1,2,3],[3],[4]]=>13
[[1,3,3],[2],[4]]=>13
[[1,3,4],[2],[3]]=>13
[[1,2,4],[3],[4]]=>14
[[1,3,4],[2],[4]]=>14
[[1,4,4],[2],[3]]=>14
[[1,4,4],[2],[4]]=>15
[[1,3,3],[3],[4]]=>14
[[1,3,4],[3],[4]]=>15
[[1,4,4],[3],[4]]=>16
[[2,2,2],[3],[4]]=>13
[[2,2,3],[3],[4]]=>14
[[2,2,4],[3],[4]]=>15
[[2,3,3],[3],[4]]=>15
[[2,3,4],[3],[4]]=>16
[[2,4,4],[3],[4]]=>17
[[1,1],[2,2],[4]]=>10
[[1,1],[2,3],[4]]=>11
[[1,1],[2,4],[3]]=>11
[[1,1],[2,4],[4]]=>12
[[1,1],[3,3],[4]]=>12
[[1,1],[3,4],[4]]=>13
[[1,2],[2,3],[4]]=>12
[[1,2],[2,4],[3]]=>12
[[1,2],[2,4],[4]]=>13
[[1,2],[3,3],[4]]=>13
[[1,3],[2,4],[3]]=>13
[[1,2],[3,4],[4]]=>14
[[1,3],[2,4],[4]]=>14
[[1,3],[3,4],[4]]=>15
[[2,2],[3,3],[4]]=>14
[[2,2],[3,4],[4]]=>15
[[2,3],[3,4],[4]]=>16
[[1,1],[2],[3],[4]]=>11
[[1,2],[2],[3],[4]]=>12
[[1,3],[2],[3],[4]]=>13
[[1,4],[2],[3],[4]]=>14
[[1,1,1,1,5]]=>9
[[1,1,1,2,5]]=>10
[[1,1,1,3,5]]=>11
[[1,1,1,4,5]]=>12
[[1,1,1,5,5]]=>13
[[1,1,2,2,5]]=>11
[[1,1,2,3,5]]=>12
[[1,1,2,4,5]]=>13
[[1,1,2,5,5]]=>14
[[1,1,3,3,5]]=>13
[[1,1,3,4,5]]=>14
[[1,1,3,5,5]]=>15
[[1,1,4,4,5]]=>15
[[1,1,4,5,5]]=>16
[[1,1,5,5,5]]=>17
[[1,2,2,2,5]]=>12
[[1,2,2,3,5]]=>13
[[1,2,2,4,5]]=>14
[[1,2,2,5,5]]=>15
[[1,2,3,3,5]]=>14
[[1,2,3,4,5]]=>15
[[1,2,3,5,5]]=>16
[[1,2,4,4,5]]=>16
[[1,2,4,5,5]]=>17
[[1,2,5,5,5]]=>18
[[1,3,3,3,5]]=>15
[[1,3,3,4,5]]=>16
[[1,3,3,5,5]]=>17
[[1,3,4,4,5]]=>17
[[1,3,4,5,5]]=>18
[[1,3,5,5,5]]=>19
[[1,4,4,4,5]]=>18
[[1,4,4,5,5]]=>19
[[1,4,5,5,5]]=>20
[[1,5,5,5,5]]=>21
[[2,2,2,2,5]]=>13
[[2,2,2,3,5]]=>14
[[2,2,2,4,5]]=>15
[[2,2,2,5,5]]=>16
[[2,2,3,3,5]]=>15
[[2,2,3,4,5]]=>16
[[2,2,3,5,5]]=>17
[[2,2,4,4,5]]=>17
[[2,2,4,5,5]]=>18
[[2,2,5,5,5]]=>19
[[2,3,3,3,5]]=>16
[[2,3,3,4,5]]=>17
[[2,3,3,5,5]]=>18
[[2,3,4,4,5]]=>18
[[2,3,4,5,5]]=>19
[[2,3,5,5,5]]=>20
[[2,4,4,4,5]]=>19
[[2,4,4,5,5]]=>20
[[2,4,5,5,5]]=>21
[[2,5,5,5,5]]=>22
[[3,3,3,3,5]]=>17
[[3,3,3,4,5]]=>18
[[3,3,3,5,5]]=>19
[[3,3,4,4,5]]=>19
[[3,3,4,5,5]]=>20
[[3,3,5,5,5]]=>21
[[3,4,4,4,5]]=>20
[[3,4,4,5,5]]=>21
[[3,4,5,5,5]]=>22
[[3,5,5,5,5]]=>23
[[4,4,4,4,5]]=>21
[[4,4,4,5,5]]=>22
[[4,4,5,5,5]]=>23
[[4,5,5,5,5]]=>24
[[5,5,5,5,5]]=>25
[[1,1,1,1],[5]]=>9
[[1,1,1,2],[5]]=>10
[[1,1,1,5],[2]]=>10
[[1,1,1,3],[5]]=>11
[[1,1,1,5],[3]]=>11
[[1,1,1,4],[5]]=>12
[[1,1,1,5],[4]]=>12
[[1,1,1,5],[5]]=>13
[[1,1,2,2],[5]]=>11
[[1,1,2,5],[2]]=>11
[[1,1,2,3],[5]]=>12
[[1,1,2,5],[3]]=>12
[[1,1,3,5],[2]]=>12
[[1,1,2,4],[5]]=>13
[[1,1,2,5],[4]]=>13
[[1,1,4,5],[2]]=>13
[[1,1,2,5],[5]]=>14
[[1,1,5,5],[2]]=>14
[[1,1,3,3],[5]]=>13
[[1,1,3,5],[3]]=>13
[[1,1,3,4],[5]]=>14
[[1,1,3,5],[4]]=>14
[[1,1,4,5],[3]]=>14
[[1,1,3,5],[5]]=>15
[[1,1,5,5],[3]]=>15
[[1,1,4,4],[5]]=>15
[[1,1,4,5],[4]]=>15
[[1,1,4,5],[5]]=>16
[[1,1,5,5],[4]]=>16
[[1,1,5,5],[5]]=>17
[[1,2,2,2],[5]]=>12
[[1,2,2,5],[2]]=>12
[[1,2,2,3],[5]]=>13
[[1,2,2,5],[3]]=>13
[[1,2,3,5],[2]]=>13
[[1,2,2,4],[5]]=>14
[[1,2,2,5],[4]]=>14
[[1,2,4,5],[2]]=>14
[[1,2,2,5],[5]]=>15
[[1,2,5,5],[2]]=>15
[[1,2,3,3],[5]]=>14
[[1,2,3,5],[3]]=>14
[[1,3,3,5],[2]]=>14
[[1,2,3,4],[5]]=>15
[[1,2,3,5],[4]]=>15
[[1,2,4,5],[3]]=>15
[[1,3,4,5],[2]]=>15
[[1,2,3,5],[5]]=>16
[[1,2,5,5],[3]]=>16
[[1,3,5,5],[2]]=>16
[[1,2,4,4],[5]]=>16
[[1,2,4,5],[4]]=>16
[[1,4,4,5],[2]]=>16
[[1,2,4,5],[5]]=>17
[[1,2,5,5],[4]]=>17
[[1,4,5,5],[2]]=>17
[[1,2,5,5],[5]]=>18
[[1,5,5,5],[2]]=>18
[[1,3,3,3],[5]]=>15
[[1,3,3,5],[3]]=>15
[[1,3,3,4],[5]]=>16
[[1,3,3,5],[4]]=>16
[[1,3,4,5],[3]]=>16
[[1,3,3,5],[5]]=>17
[[1,3,5,5],[3]]=>17
[[1,3,4,4],[5]]=>17
[[1,3,4,5],[4]]=>17
[[1,4,4,5],[3]]=>17
[[1,3,4,5],[5]]=>18
[[1,3,5,5],[4]]=>18
[[1,4,5,5],[3]]=>18
[[1,3,5,5],[5]]=>19
[[1,5,5,5],[3]]=>19
[[1,4,4,4],[5]]=>18
[[1,4,4,5],[4]]=>18
[[1,4,4,5],[5]]=>19
[[1,4,5,5],[4]]=>19
[[1,4,5,5],[5]]=>20
[[1,5,5,5],[4]]=>20
[[1,5,5,5],[5]]=>21
[[2,2,2,2],[5]]=>13
[[2,2,2,3],[5]]=>14
[[2,2,2,5],[3]]=>14
[[2,2,2,4],[5]]=>15
[[2,2,2,5],[4]]=>15
[[2,2,2,5],[5]]=>16
[[2,2,3,3],[5]]=>15
[[2,2,3,5],[3]]=>15
[[2,2,3,4],[5]]=>16
[[2,2,3,5],[4]]=>16
[[2,2,4,5],[3]]=>16
[[2,2,3,5],[5]]=>17
[[2,2,5,5],[3]]=>17
[[2,2,4,4],[5]]=>17
[[2,2,4,5],[4]]=>17
[[2,2,4,5],[5]]=>18
[[2,2,5,5],[4]]=>18
[[2,2,5,5],[5]]=>19
[[2,3,3,3],[5]]=>16
[[2,3,3,5],[3]]=>16
[[2,3,3,4],[5]]=>17
[[2,3,3,5],[4]]=>17
[[2,3,4,5],[3]]=>17
[[2,3,3,5],[5]]=>18
[[2,3,5,5],[3]]=>18
[[2,3,4,4],[5]]=>18
[[2,3,4,5],[4]]=>18
[[2,4,4,5],[3]]=>18
[[2,3,4,5],[5]]=>19
[[2,3,5,5],[4]]=>19
[[2,4,5,5],[3]]=>19
[[2,3,5,5],[5]]=>20
[[2,5,5,5],[3]]=>20
[[2,4,4,4],[5]]=>19
[[2,4,4,5],[4]]=>19
[[2,4,4,5],[5]]=>20
[[2,4,5,5],[4]]=>20
[[2,4,5,5],[5]]=>21
[[2,5,5,5],[4]]=>21
[[2,5,5,5],[5]]=>22
[[3,3,3,3],[5]]=>17
[[3,3,3,4],[5]]=>18
[[3,3,3,5],[4]]=>18
[[3,3,3,5],[5]]=>19
[[3,3,4,4],[5]]=>19
[[3,3,4,5],[4]]=>19
[[3,3,4,5],[5]]=>20
[[3,3,5,5],[4]]=>20
[[3,3,5,5],[5]]=>21
[[3,4,4,4],[5]]=>20
[[3,4,4,5],[4]]=>20
[[3,4,4,5],[5]]=>21
[[3,4,5,5],[4]]=>21
[[3,4,5,5],[5]]=>22
[[3,5,5,5],[4]]=>22
[[3,5,5,5],[5]]=>23
[[4,4,4,4],[5]]=>21
[[4,4,4,5],[5]]=>22
[[4,4,5,5],[5]]=>23
[[4,5,5,5],[5]]=>24
[[1,1,1],[2,5]]=>10
[[1,1,1],[3,5]]=>11
[[1,1,1],[4,5]]=>12
[[1,1,1],[5,5]]=>13
[[1,1,2],[2,5]]=>11
[[1,1,5],[2,2]]=>11
[[1,1,2],[3,5]]=>12
[[1,1,3],[2,5]]=>12
[[1,1,5],[2,3]]=>12
[[1,1,2],[4,5]]=>13
[[1,1,4],[2,5]]=>13
[[1,1,5],[2,4]]=>13
[[1,1,2],[5,5]]=>14
[[1,1,5],[2,5]]=>14
[[1,1,3],[3,5]]=>13
[[1,1,5],[3,3]]=>13
[[1,1,3],[4,5]]=>14
[[1,1,4],[3,5]]=>14
[[1,1,5],[3,4]]=>14
[[1,1,3],[5,5]]=>15
[[1,1,5],[3,5]]=>15
[[1,1,4],[4,5]]=>15
[[1,1,5],[4,4]]=>15
[[1,1,4],[5,5]]=>16
[[1,1,5],[4,5]]=>16
[[1,1,5],[5,5]]=>17
[[1,2,2],[2,5]]=>12
[[1,2,2],[3,5]]=>13
[[1,2,3],[2,5]]=>13
[[1,2,5],[2,3]]=>13
[[1,2,2],[4,5]]=>14
[[1,2,4],[2,5]]=>14
[[1,2,5],[2,4]]=>14
[[1,2,2],[5,5]]=>15
[[1,2,5],[2,5]]=>15
[[1,2,3],[3,5]]=>14
[[1,2,5],[3,3]]=>14
[[1,3,3],[2,5]]=>14
[[1,2,3],[4,5]]=>15
[[1,2,4],[3,5]]=>15
[[1,2,5],[3,4]]=>15
[[1,3,4],[2,5]]=>15
[[1,3,5],[2,4]]=>15
[[1,2,3],[5,5]]=>16
[[1,2,5],[3,5]]=>16
[[1,3,5],[2,5]]=>16
[[1,2,4],[4,5]]=>16
[[1,2,5],[4,4]]=>16
[[1,4,4],[2,5]]=>16
[[1,2,4],[5,5]]=>17
[[1,2,5],[4,5]]=>17
[[1,4,5],[2,5]]=>17
[[1,2,5],[5,5]]=>18
[[1,3,3],[3,5]]=>15
[[1,3,3],[4,5]]=>16
[[1,3,4],[3,5]]=>16
[[1,3,5],[3,4]]=>16
[[1,3,3],[5,5]]=>17
[[1,3,5],[3,5]]=>17
[[1,3,4],[4,5]]=>17
[[1,3,5],[4,4]]=>17
[[1,4,4],[3,5]]=>17
[[1,3,4],[5,5]]=>18
[[1,3,5],[4,5]]=>18
[[1,4,5],[3,5]]=>18
[[1,3,5],[5,5]]=>19
[[1,4,4],[4,5]]=>18
[[1,4,4],[5,5]]=>19
[[1,4,5],[4,5]]=>19
[[1,4,5],[5,5]]=>20
[[2,2,2],[3,5]]=>14
[[2,2,2],[4,5]]=>15
[[2,2,2],[5,5]]=>16
[[2,2,3],[3,5]]=>15
[[2,2,5],[3,3]]=>15
[[2,2,3],[4,5]]=>16
[[2,2,4],[3,5]]=>16
[[2,2,5],[3,4]]=>16
[[2,2,3],[5,5]]=>17
[[2,2,5],[3,5]]=>17
[[2,2,4],[4,5]]=>17
[[2,2,5],[4,4]]=>17
[[2,2,4],[5,5]]=>18
[[2,2,5],[4,5]]=>18
[[2,2,5],[5,5]]=>19
[[2,3,3],[3,5]]=>16
[[2,3,3],[4,5]]=>17
[[2,3,4],[3,5]]=>17
[[2,3,5],[3,4]]=>17
[[2,3,3],[5,5]]=>18
[[2,3,5],[3,5]]=>18
[[2,3,4],[4,5]]=>18
[[2,3,5],[4,4]]=>18
[[2,4,4],[3,5]]=>18
[[2,3,4],[5,5]]=>19
[[2,3,5],[4,5]]=>19
[[2,4,5],[3,5]]=>19
[[2,3,5],[5,5]]=>20
[[2,4,4],[4,5]]=>19
[[2,4,4],[5,5]]=>20
[[2,4,5],[4,5]]=>20
[[2,4,5],[5,5]]=>21
[[3,3,3],[4,5]]=>18
[[3,3,3],[5,5]]=>19
[[3,3,4],[4,5]]=>19
[[3,3,5],[4,4]]=>19
[[3,3,4],[5,5]]=>20
[[3,3,5],[4,5]]=>20
[[3,3,5],[5,5]]=>21
[[3,4,4],[4,5]]=>20
[[3,4,4],[5,5]]=>21
[[3,4,5],[4,5]]=>21
[[3,4,5],[5,5]]=>22
[[4,4,4],[5,5]]=>22
[[4,4,5],[5,5]]=>23
[[1,1,1],[2],[5]]=>10
[[1,1,1],[3],[5]]=>11
[[1,1,1],[4],[5]]=>12
[[1,1,2],[2],[5]]=>11
[[1,1,2],[3],[5]]=>12
[[1,1,3],[2],[5]]=>12
[[1,1,5],[2],[3]]=>12
[[1,1,2],[4],[5]]=>13
[[1,1,4],[2],[5]]=>13
[[1,1,5],[2],[4]]=>13
[[1,1,5],[2],[5]]=>14
[[1,1,3],[3],[5]]=>13
[[1,1,3],[4],[5]]=>14
[[1,1,4],[3],[5]]=>14
[[1,1,5],[3],[4]]=>14
[[1,1,5],[3],[5]]=>15
[[1,1,4],[4],[5]]=>15
[[1,1,5],[4],[5]]=>16
[[1,2,2],[2],[5]]=>12
[[1,2,2],[3],[5]]=>13
[[1,2,3],[2],[5]]=>13
[[1,2,5],[2],[3]]=>13
[[1,2,2],[4],[5]]=>14
[[1,2,4],[2],[5]]=>14
[[1,2,5],[2],[4]]=>14
[[1,2,5],[2],[5]]=>15
[[1,2,3],[3],[5]]=>14
[[1,3,3],[2],[5]]=>14
[[1,3,5],[2],[3]]=>14
[[1,2,3],[4],[5]]=>15
[[1,2,4],[3],[5]]=>15
[[1,2,5],[3],[4]]=>15
[[1,3,4],[2],[5]]=>15
[[1,3,5],[2],[4]]=>15
[[1,4,5],[2],[3]]=>15
[[1,2,5],[3],[5]]=>16
[[1,3,5],[2],[5]]=>16
[[1,5,5],[2],[3]]=>16
[[1,2,4],[4],[5]]=>16
[[1,4,4],[2],[5]]=>16
[[1,4,5],[2],[4]]=>16
[[1,2,5],[4],[5]]=>17
[[1,4,5],[2],[5]]=>17
[[1,5,5],[2],[4]]=>17
[[1,5,5],[2],[5]]=>18
[[1,3,3],[3],[5]]=>15
[[1,3,3],[4],[5]]=>16
[[1,3,4],[3],[5]]=>16
[[1,3,5],[3],[4]]=>16
[[1,3,5],[3],[5]]=>17
[[1,3,4],[4],[5]]=>17
[[1,4,4],[3],[5]]=>17
[[1,4,5],[3],[4]]=>17
[[1,3,5],[4],[5]]=>18
[[1,4,5],[3],[5]]=>18
[[1,5,5],[3],[4]]=>18
[[1,5,5],[3],[5]]=>19
[[1,4,4],[4],[5]]=>18
[[1,4,5],[4],[5]]=>19
[[1,5,5],[4],[5]]=>20
[[2,2,2],[3],[5]]=>14
[[2,2,2],[4],[5]]=>15
[[2,2,3],[3],[5]]=>15
[[2,2,3],[4],[5]]=>16
[[2,2,4],[3],[5]]=>16
[[2,2,5],[3],[4]]=>16
[[2,2,5],[3],[5]]=>17
[[2,2,4],[4],[5]]=>17
[[2,2,5],[4],[5]]=>18
[[2,3,3],[3],[5]]=>16
[[2,3,3],[4],[5]]=>17
[[2,3,4],[3],[5]]=>17
[[2,3,5],[3],[4]]=>17
[[2,3,5],[3],[5]]=>18
[[2,3,4],[4],[5]]=>18
[[2,4,4],[3],[5]]=>18
[[2,4,5],[3],[4]]=>18
[[2,3,5],[4],[5]]=>19
[[2,4,5],[3],[5]]=>19
[[2,5,5],[3],[4]]=>19
[[2,5,5],[3],[5]]=>20
[[2,4,4],[4],[5]]=>19
[[2,4,5],[4],[5]]=>20
[[2,5,5],[4],[5]]=>21
[[3,3,3],[4],[5]]=>18
[[3,3,4],[4],[5]]=>19
[[3,3,5],[4],[5]]=>20
[[3,4,4],[4],[5]]=>20
[[3,4,5],[4],[5]]=>21
[[3,5,5],[4],[5]]=>22
[[1,1],[2,2],[5]]=>11
[[1,1],[2,3],[5]]=>12
[[1,1],[2,5],[3]]=>12
[[1,1],[2,4],[5]]=>13
[[1,1],[2,5],[4]]=>13
[[1,1],[2,5],[5]]=>14
[[1,1],[3,3],[5]]=>13
[[1,1],[3,4],[5]]=>14
[[1,1],[3,5],[4]]=>14
[[1,1],[3,5],[5]]=>15
[[1,1],[4,4],[5]]=>15
[[1,1],[4,5],[5]]=>16
[[1,2],[2,3],[5]]=>13
[[1,2],[2,5],[3]]=>13
[[1,2],[2,4],[5]]=>14
[[1,2],[2,5],[4]]=>14
[[1,2],[2,5],[5]]=>15
[[1,2],[3,3],[5]]=>14
[[1,3],[2,5],[3]]=>14
[[1,2],[3,4],[5]]=>15
[[1,2],[3,5],[4]]=>15
[[1,3],[2,4],[5]]=>15
[[1,3],[2,5],[4]]=>15
[[1,4],[2,5],[3]]=>15
[[1,2],[3,5],[5]]=>16
[[1,3],[2,5],[5]]=>16
[[1,2],[4,4],[5]]=>16
[[1,4],[2,5],[4]]=>16
[[1,2],[4,5],[5]]=>17
[[1,4],[2,5],[5]]=>17
[[1,3],[3,4],[5]]=>16
[[1,3],[3,5],[4]]=>16
[[1,3],[3,5],[5]]=>17
[[1,3],[4,4],[5]]=>17
[[1,4],[3,5],[4]]=>17
[[1,3],[4,5],[5]]=>18
[[1,4],[3,5],[5]]=>18
[[1,4],[4,5],[5]]=>19
[[2,2],[3,3],[5]]=>15
[[2,2],[3,4],[5]]=>16
[[2,2],[3,5],[4]]=>16
[[2,2],[3,5],[5]]=>17
[[2,2],[4,4],[5]]=>17
[[2,2],[4,5],[5]]=>18
[[2,3],[3,4],[5]]=>17
[[2,3],[3,5],[4]]=>17
[[2,3],[3,5],[5]]=>18
[[2,3],[4,4],[5]]=>18
[[2,4],[3,5],[4]]=>18
[[2,3],[4,5],[5]]=>19
[[2,4],[3,5],[5]]=>19
[[2,4],[4,5],[5]]=>20
[[3,3],[4,4],[5]]=>19
[[3,3],[4,5],[5]]=>20
[[3,4],[4,5],[5]]=>21
[[1,1],[2],[3],[5]]=>12
[[1,1],[2],[4],[5]]=>13
[[1,1],[3],[4],[5]]=>14
[[1,2],[2],[3],[5]]=>13
[[1,2],[2],[4],[5]]=>14
[[1,3],[2],[3],[5]]=>14
[[1,2],[3],[4],[5]]=>15
[[1,3],[2],[4],[5]]=>15
[[1,4],[2],[3],[5]]=>15
[[1,5],[2],[3],[4]]=>15
[[1,5],[2],[3],[5]]=>16
[[1,4],[2],[4],[5]]=>16
[[1,5],[2],[4],[5]]=>17
[[1,3],[3],[4],[5]]=>16
[[1,4],[3],[4],[5]]=>17
[[1,5],[3],[4],[5]]=>18
[[2,2],[3],[4],[5]]=>16
[[2,3],[3],[4],[5]]=>17
[[2,4],[3],[4],[5]]=>18
[[2,5],[3],[4],[5]]=>19
[[1],[2],[3],[4],[5]]=>15
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The sum of the entries of a semistandard tableau.
Code
def statistic(s): return sum(s.entries())
Created
Jun 14, 2013 at 00:58 by Jessica Striker
Updated
Oct 19, 2015 at 16:36 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!