Your data matches 5 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000103: Semistandard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1,2]]
=> 3
[[2,2]]
=> 4
[[1],[2]]
=> 3
[[1,1,2]]
=> 4
[[1,2,2]]
=> 5
[[2,2,2]]
=> 6
[[1,1],[2]]
=> 4
[[1,2],[2]]
=> 5
[[1,1,3]]
=> 5
[[1,2,3]]
=> 6
[[1,3,3]]
=> 7
[[2,2,3]]
=> 7
[[2,3,3]]
=> 8
[[3,3,3]]
=> 9
[[1,1],[3]]
=> 5
[[1,2],[3]]
=> 6
[[1,3],[2]]
=> 6
[[1,3],[3]]
=> 7
[[2,2],[3]]
=> 7
[[2,3],[3]]
=> 8
[[1],[2],[3]]
=> 6
[[1,1,1,2]]
=> 5
[[1,1,2,2]]
=> 6
[[1,2,2,2]]
=> 7
[[2,2,2,2]]
=> 8
[[1,1,1],[2]]
=> 5
[[1,1,2],[2]]
=> 6
[[1,2,2],[2]]
=> 7
[[1,1],[2,2]]
=> 6
[[1,1,1,3]]
=> 6
[[1,1,2,3]]
=> 7
[[1,1,3,3]]
=> 8
[[1,2,2,3]]
=> 8
[[1,2,3,3]]
=> 9
[[1,3,3,3]]
=> 10
[[2,2,2,3]]
=> 9
[[2,2,3,3]]
=> 10
[[2,3,3,3]]
=> 11
[[3,3,3,3]]
=> 12
[[1,1,1],[3]]
=> 6
[[1,1,2],[3]]
=> 7
[[1,1,3],[2]]
=> 7
[[1,1,3],[3]]
=> 8
[[1,2,2],[3]]
=> 8
[[1,2,3],[2]]
=> 8
[[1,2,3],[3]]
=> 9
[[1,3,3],[2]]
=> 9
[[1,3,3],[3]]
=> 10
[[2,2,2],[3]]
=> 9
[[2,2,3],[3]]
=> 10
Description
The sum of the entries of a semistandard tableau.
Mp00076: Semistandard tableaux to Gelfand-Tsetlin patternGelfand-Tsetlin patterns
Mp00078: Gelfand-Tsetlin patterns Schuetzenberger involutionGelfand-Tsetlin patterns
St000114: Gelfand-Tsetlin patterns ⟶ ℤResult quality: 44% values known / values provided: 44%distinct values known / distinct values provided: 76%
Values
[[1,2]]
=> [[2,0],[1]]
=> [[2,0],[1]]
=> 3
[[2,2]]
=> [[2,0],[0]]
=> [[2,0],[2]]
=> 4
[[1],[2]]
=> [[1,1],[1]]
=> [[1,1],[1]]
=> 3
[[1,1,2]]
=> [[3,0],[2]]
=> [[3,0],[1]]
=> 4
[[1,2,2]]
=> [[3,0],[1]]
=> [[3,0],[2]]
=> 5
[[2,2,2]]
=> [[3,0],[0]]
=> [[3,0],[3]]
=> 6
[[1,1],[2]]
=> [[2,1],[2]]
=> [[2,1],[1]]
=> 4
[[1,2],[2]]
=> [[2,1],[1]]
=> [[2,1],[2]]
=> 5
[[1,1,3]]
=> [[3,0,0],[2,0],[2]]
=> [[3,0,0],[1,0],[1]]
=> 5
[[1,2,3]]
=> [[3,0,0],[2,0],[1]]
=> [[3,0,0],[2,0],[1]]
=> 6
[[1,3,3]]
=> [[3,0,0],[1,0],[1]]
=> [[3,0,0],[2,0],[2]]
=> 7
[[2,2,3]]
=> [[3,0,0],[2,0],[0]]
=> [[3,0,0],[3,0],[1]]
=> 7
[[2,3,3]]
=> [[3,0,0],[1,0],[0]]
=> [[3,0,0],[3,0],[2]]
=> 8
[[3,3,3]]
=> [[3,0,0],[0,0],[0]]
=> [[3,0,0],[3,0],[3]]
=> 9
[[1,1],[3]]
=> [[2,1,0],[2,0],[2]]
=> [[2,1,0],[1,0],[1]]
=> 5
[[1,2],[3]]
=> [[2,1,0],[2,0],[1]]
=> [[2,1,0],[1,1],[1]]
=> 6
[[1,3],[2]]
=> [[2,1,0],[1,1],[1]]
=> [[2,1,0],[2,0],[1]]
=> 6
[[1,3],[3]]
=> [[2,1,0],[1,0],[1]]
=> [[2,1,0],[2,0],[2]]
=> 7
[[2,2],[3]]
=> [[2,1,0],[2,0],[0]]
=> [[2,1,0],[2,1],[1]]
=> 7
[[2,3],[3]]
=> [[2,1,0],[1,0],[0]]
=> [[2,1,0],[2,1],[2]]
=> 8
[[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> [[1,1,1],[1,1],[1]]
=> 6
[[1,1,1,2]]
=> [[4,0],[3]]
=> [[4,0],[1]]
=> 5
[[1,1,2,2]]
=> [[4,0],[2]]
=> [[4,0],[2]]
=> 6
[[1,2,2,2]]
=> [[4,0],[1]]
=> [[4,0],[3]]
=> 7
[[2,2,2,2]]
=> [[4,0],[0]]
=> [[4,0],[4]]
=> 8
[[1,1,1],[2]]
=> [[3,1],[3]]
=> [[3,1],[1]]
=> 5
[[1,1,2],[2]]
=> [[3,1],[2]]
=> [[3,1],[2]]
=> 6
[[1,2,2],[2]]
=> [[3,1],[1]]
=> [[3,1],[3]]
=> 7
[[1,1],[2,2]]
=> [[2,2],[2]]
=> [[2,2],[2]]
=> 6
[[1,1,1,3]]
=> [[4,0,0],[3,0],[3]]
=> [[4,0,0],[1,0],[1]]
=> 6
[[1,1,2,3]]
=> [[4,0,0],[3,0],[2]]
=> [[4,0,0],[2,0],[1]]
=> 7
[[1,1,3,3]]
=> [[4,0,0],[2,0],[2]]
=> [[4,0,0],[2,0],[2]]
=> 8
[[1,2,2,3]]
=> [[4,0,0],[3,0],[1]]
=> [[4,0,0],[3,0],[1]]
=> 8
[[1,2,3,3]]
=> [[4,0,0],[2,0],[1]]
=> [[4,0,0],[3,0],[2]]
=> 9
[[1,3,3,3]]
=> [[4,0,0],[1,0],[1]]
=> [[4,0,0],[3,0],[3]]
=> 10
[[2,2,2,3]]
=> [[4,0,0],[3,0],[0]]
=> [[4,0,0],[4,0],[1]]
=> 9
[[2,2,3,3]]
=> [[4,0,0],[2,0],[0]]
=> [[4,0,0],[4,0],[2]]
=> 10
[[2,3,3,3]]
=> [[4,0,0],[1,0],[0]]
=> [[4,0,0],[4,0],[3]]
=> 11
[[3,3,3,3]]
=> [[4,0,0],[0,0],[0]]
=> [[4,0,0],[4,0],[4]]
=> 12
[[1,1,1],[3]]
=> [[3,1,0],[3,0],[3]]
=> [[3,1,0],[1,0],[1]]
=> 6
[[1,1,2],[3]]
=> [[3,1,0],[3,0],[2]]
=> [[3,1,0],[1,1],[1]]
=> 7
[[1,1,3],[2]]
=> [[3,1,0],[2,1],[2]]
=> [[3,1,0],[2,0],[1]]
=> 7
[[1,1,3],[3]]
=> [[3,1,0],[2,0],[2]]
=> [[3,1,0],[2,0],[2]]
=> 8
[[1,2,2],[3]]
=> [[3,1,0],[3,0],[1]]
=> [[3,1,0],[2,1],[1]]
=> 8
[[1,2,3],[2]]
=> [[3,1,0],[2,1],[1]]
=> [[3,1,0],[3,0],[1]]
=> 8
[[1,2,3],[3]]
=> [[3,1,0],[2,0],[1]]
=> [[3,1,0],[2,1],[2]]
=> 9
[[1,3,3],[2]]
=> [[3,1,0],[1,1],[1]]
=> [[3,1,0],[3,0],[2]]
=> 9
[[1,3,3],[3]]
=> [[3,1,0],[1,0],[1]]
=> [[3,1,0],[3,0],[3]]
=> 10
[[2,2,2],[3]]
=> [[3,1,0],[3,0],[0]]
=> [[3,1,0],[3,1],[1]]
=> 9
[[2,2,3],[3]]
=> [[3,1,0],[2,0],[0]]
=> [[3,1,0],[3,1],[2]]
=> 10
[[1,1,1,1,4]]
=> [[5,0,0,0],[4,0,0],[4,0],[4]]
=> [[5,0,0,0],[1,0,0],[1,0],[1]]
=> ? = 8
[[1,1,1,2,4]]
=> [[5,0,0,0],[4,0,0],[4,0],[3]]
=> [[5,0,0,0],[2,0,0],[1,0],[1]]
=> ? = 9
[[1,1,1,3,4]]
=> [[5,0,0,0],[4,0,0],[3,0],[3]]
=> [[5,0,0,0],[2,0,0],[2,0],[1]]
=> ? = 10
[[1,1,1,4,4]]
=> [[5,0,0,0],[3,0,0],[3,0],[3]]
=> [[5,0,0,0],[2,0,0],[2,0],[2]]
=> ? = 11
[[1,1,2,2,4]]
=> [[5,0,0,0],[4,0,0],[4,0],[2]]
=> [[5,0,0,0],[3,0,0],[1,0],[1]]
=> ? = 10
[[1,1,2,3,4]]
=> [[5,0,0,0],[4,0,0],[3,0],[2]]
=> [[5,0,0,0],[3,0,0],[2,0],[1]]
=> ? = 11
[[1,1,2,4,4]]
=> [[5,0,0,0],[3,0,0],[3,0],[2]]
=> [[5,0,0,0],[3,0,0],[2,0],[2]]
=> ? = 12
[[1,1,3,3,4]]
=> [[5,0,0,0],[4,0,0],[2,0],[2]]
=> [[5,0,0,0],[3,0,0],[3,0],[1]]
=> ? = 12
[[1,1,3,4,4]]
=> [[5,0,0,0],[3,0,0],[2,0],[2]]
=> [[5,0,0,0],[3,0,0],[3,0],[2]]
=> ? = 13
[[1,1,4,4,4]]
=> [[5,0,0,0],[2,0,0],[2,0],[2]]
=> [[5,0,0,0],[3,0,0],[3,0],[3]]
=> ? = 14
[[1,2,2,2,4]]
=> [[5,0,0,0],[4,0,0],[4,0],[1]]
=> [[5,0,0,0],[4,0,0],[1,0],[1]]
=> ? = 11
[[1,2,2,3,4]]
=> [[5,0,0,0],[4,0,0],[3,0],[1]]
=> [[5,0,0,0],[4,0,0],[2,0],[1]]
=> ? = 12
[[1,2,2,4,4]]
=> [[5,0,0,0],[3,0,0],[3,0],[1]]
=> [[5,0,0,0],[4,0,0],[2,0],[2]]
=> ? = 13
[[1,2,3,3,4]]
=> [[5,0,0,0],[4,0,0],[2,0],[1]]
=> [[5,0,0,0],[4,0,0],[3,0],[1]]
=> ? = 13
[[1,2,3,4,4]]
=> [[5,0,0,0],[3,0,0],[2,0],[1]]
=> [[5,0,0,0],[4,0,0],[3,0],[2]]
=> ? = 14
[[1,2,4,4,4]]
=> [[5,0,0,0],[2,0,0],[2,0],[1]]
=> [[5,0,0,0],[4,0,0],[3,0],[3]]
=> ? = 15
[[1,3,3,3,4]]
=> [[5,0,0,0],[4,0,0],[1,0],[1]]
=> [[5,0,0,0],[4,0,0],[4,0],[1]]
=> ? = 14
[[1,3,3,4,4]]
=> [[5,0,0,0],[3,0,0],[1,0],[1]]
=> [[5,0,0,0],[4,0,0],[4,0],[2]]
=> ? = 15
[[1,3,4,4,4]]
=> [[5,0,0,0],[2,0,0],[1,0],[1]]
=> [[5,0,0,0],[4,0,0],[4,0],[3]]
=> ? = 16
[[1,4,4,4,4]]
=> [[5,0,0,0],[1,0,0],[1,0],[1]]
=> [[5,0,0,0],[4,0,0],[4,0],[4]]
=> ? = 17
[[2,2,2,2,4]]
=> [[5,0,0,0],[4,0,0],[4,0],[0]]
=> [[5,0,0,0],[5,0,0],[1,0],[1]]
=> ? = 12
[[2,2,2,3,4]]
=> [[5,0,0,0],[4,0,0],[3,0],[0]]
=> [[5,0,0,0],[5,0,0],[2,0],[1]]
=> ? = 13
[[2,2,2,4,4]]
=> [[5,0,0,0],[3,0,0],[3,0],[0]]
=> [[5,0,0,0],[5,0,0],[2,0],[2]]
=> ? = 14
[[2,2,3,3,4]]
=> [[5,0,0,0],[4,0,0],[2,0],[0]]
=> [[5,0,0,0],[5,0,0],[3,0],[1]]
=> ? = 14
[[2,2,3,4,4]]
=> [[5,0,0,0],[3,0,0],[2,0],[0]]
=> [[5,0,0,0],[5,0,0],[3,0],[2]]
=> ? = 15
[[2,2,4,4,4]]
=> [[5,0,0,0],[2,0,0],[2,0],[0]]
=> [[5,0,0,0],[5,0,0],[3,0],[3]]
=> ? = 16
[[2,3,3,3,4]]
=> [[5,0,0,0],[4,0,0],[1,0],[0]]
=> [[5,0,0,0],[5,0,0],[4,0],[1]]
=> ? = 15
[[2,3,3,4,4]]
=> [[5,0,0,0],[3,0,0],[1,0],[0]]
=> [[5,0,0,0],[5,0,0],[4,0],[2]]
=> ? = 16
[[2,3,4,4,4]]
=> [[5,0,0,0],[2,0,0],[1,0],[0]]
=> [[5,0,0,0],[5,0,0],[4,0],[3]]
=> ? = 17
[[2,4,4,4,4]]
=> [[5,0,0,0],[1,0,0],[1,0],[0]]
=> [[5,0,0,0],[5,0,0],[4,0],[4]]
=> ? = 18
[[3,3,3,3,4]]
=> [[5,0,0,0],[4,0,0],[0,0],[0]]
=> [[5,0,0,0],[5,0,0],[5,0],[1]]
=> ? = 16
[[3,3,3,4,4]]
=> [[5,0,0,0],[3,0,0],[0,0],[0]]
=> [[5,0,0,0],[5,0,0],[5,0],[2]]
=> ? = 17
[[3,3,4,4,4]]
=> [[5,0,0,0],[2,0,0],[0,0],[0]]
=> [[5,0,0,0],[5,0,0],[5,0],[3]]
=> ? = 18
[[3,4,4,4,4]]
=> [[5,0,0,0],[1,0,0],[0,0],[0]]
=> [[5,0,0,0],[5,0,0],[5,0],[4]]
=> ? = 19
[[4,4,4,4,4]]
=> [[5,0,0,0],[0,0,0],[0,0],[0]]
=> [[5,0,0,0],[5,0,0],[5,0],[5]]
=> ? = 20
[[1,1,1,1,5]]
=> [[5,0,0,0,0],[4,0,0,0],[4,0,0],[4,0],[4]]
=> ?
=> ? = 9
[[1,1,1,2,5]]
=> [[5,0,0,0,0],[4,0,0,0],[4,0,0],[4,0],[3]]
=> ?
=> ? = 10
[[1,1,1,3,5]]
=> [[5,0,0,0,0],[4,0,0,0],[4,0,0],[3,0],[3]]
=> ?
=> ? = 11
[[1,1,1,4,5]]
=> [[5,0,0,0,0],[4,0,0,0],[3,0,0],[3,0],[3]]
=> ?
=> ? = 12
[[1,1,1,5,5]]
=> [[5,0,0,0,0],[3,0,0,0],[3,0,0],[3,0],[3]]
=> ?
=> ? = 13
[[1,1,2,2,5]]
=> [[5,0,0,0,0],[4,0,0,0],[4,0,0],[4,0],[2]]
=> ?
=> ? = 11
[[1,1,2,3,5]]
=> [[5,0,0,0,0],[4,0,0,0],[4,0,0],[3,0],[2]]
=> ?
=> ? = 12
[[1,1,2,4,5]]
=> [[5,0,0,0,0],[4,0,0,0],[3,0,0],[3,0],[2]]
=> ?
=> ? = 13
[[1,1,2,5,5]]
=> [[5,0,0,0,0],[3,0,0,0],[3,0,0],[3,0],[2]]
=> ?
=> ? = 14
[[1,1,3,3,5]]
=> [[5,0,0,0,0],[4,0,0,0],[4,0,0],[2,0],[2]]
=> ?
=> ? = 13
[[1,1,3,4,5]]
=> [[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[2]]
=> ?
=> ? = 14
[[1,1,3,5,5]]
=> [[5,0,0,0,0],[3,0,0,0],[3,0,0],[2,0],[2]]
=> ?
=> ? = 15
[[1,1,4,4,5]]
=> [[5,0,0,0,0],[4,0,0,0],[2,0,0],[2,0],[2]]
=> ?
=> ? = 15
[[1,1,4,5,5]]
=> [[5,0,0,0,0],[3,0,0,0],[2,0,0],[2,0],[2]]
=> ?
=> ? = 16
[[1,1,5,5,5]]
=> [[5,0,0,0,0],[2,0,0,0],[2,0,0],[2,0],[2]]
=> ?
=> ? = 17
Description
The sum of the entries of the Gelfand-Tsetlin pattern.
Matching statistic: St001605
Mp00225: Semistandard tableaux weightInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001605: Integer partitions ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 4%
Values
[[1,2]]
=> [1,1]
=> [1]
=> []
=> ? = 3 - 13
[[2,2]]
=> [2]
=> []
=> ?
=> ? = 4 - 13
[[1],[2]]
=> [1,1]
=> [1]
=> []
=> ? = 3 - 13
[[1,1,2]]
=> [2,1]
=> [1]
=> []
=> ? = 4 - 13
[[1,2,2]]
=> [2,1]
=> [1]
=> []
=> ? = 5 - 13
[[2,2,2]]
=> [3]
=> []
=> ?
=> ? = 6 - 13
[[1,1],[2]]
=> [2,1]
=> [1]
=> []
=> ? = 4 - 13
[[1,2],[2]]
=> [2,1]
=> [1]
=> []
=> ? = 5 - 13
[[1,1,3]]
=> [2,1]
=> [1]
=> []
=> ? = 5 - 13
[[1,2,3]]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? = 6 - 13
[[1,3,3]]
=> [2,1]
=> [1]
=> []
=> ? = 7 - 13
[[2,2,3]]
=> [2,1]
=> [1]
=> []
=> ? = 7 - 13
[[2,3,3]]
=> [2,1]
=> [1]
=> []
=> ? = 8 - 13
[[3,3,3]]
=> [3]
=> []
=> ?
=> ? = 9 - 13
[[1,1],[3]]
=> [2,1]
=> [1]
=> []
=> ? = 5 - 13
[[1,2],[3]]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? = 6 - 13
[[1,3],[2]]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? = 6 - 13
[[1,3],[3]]
=> [2,1]
=> [1]
=> []
=> ? = 7 - 13
[[2,2],[3]]
=> [2,1]
=> [1]
=> []
=> ? = 7 - 13
[[2,3],[3]]
=> [2,1]
=> [1]
=> []
=> ? = 8 - 13
[[1],[2],[3]]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? = 6 - 13
[[1,1,1,2]]
=> [3,1]
=> [1]
=> []
=> ? = 5 - 13
[[1,1,2,2]]
=> [2,2]
=> [2]
=> []
=> ? = 6 - 13
[[1,2,2,2]]
=> [3,1]
=> [1]
=> []
=> ? = 7 - 13
[[2,2,2,2]]
=> [4]
=> []
=> ?
=> ? = 8 - 13
[[1,1,1],[2]]
=> [3,1]
=> [1]
=> []
=> ? = 5 - 13
[[1,1,2],[2]]
=> [2,2]
=> [2]
=> []
=> ? = 6 - 13
[[1,2,2],[2]]
=> [3,1]
=> [1]
=> []
=> ? = 7 - 13
[[1,1],[2,2]]
=> [2,2]
=> [2]
=> []
=> ? = 6 - 13
[[1,1,1,3]]
=> [3,1]
=> [1]
=> []
=> ? = 6 - 13
[[1,1,2,3]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 7 - 13
[[1,1,3,3]]
=> [2,2]
=> [2]
=> []
=> ? = 8 - 13
[[1,2,2,3]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 8 - 13
[[1,2,3,3]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 9 - 13
[[1,3,3,3]]
=> [3,1]
=> [1]
=> []
=> ? = 10 - 13
[[2,2,2,3]]
=> [3,1]
=> [1]
=> []
=> ? = 9 - 13
[[2,2,3,3]]
=> [2,2]
=> [2]
=> []
=> ? = 10 - 13
[[2,3,3,3]]
=> [3,1]
=> [1]
=> []
=> ? = 11 - 13
[[3,3,3,3]]
=> [4]
=> []
=> ?
=> ? = 12 - 13
[[1,1,1],[3]]
=> [3,1]
=> [1]
=> []
=> ? = 6 - 13
[[1,1,2],[3]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 7 - 13
[[1,1,3],[2]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 7 - 13
[[1,1,3],[3]]
=> [2,2]
=> [2]
=> []
=> ? = 8 - 13
[[1,2,2],[3]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 8 - 13
[[1,2,3],[2]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 8 - 13
[[1,2,3],[3]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 9 - 13
[[1,3,3],[2]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 9 - 13
[[1,3,3],[3]]
=> [3,1]
=> [1]
=> []
=> ? = 10 - 13
[[2,2,2],[3]]
=> [3,1]
=> [1]
=> []
=> ? = 9 - 13
[[2,2,3],[3]]
=> [2,2]
=> [2]
=> []
=> ? = 10 - 13
[[1,2,3,4,5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2 = 15 - 13
[[1,2,3,4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2 = 15 - 13
[[1,2,3,5],[4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2 = 15 - 13
[[1,2,4,5],[3]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2 = 15 - 13
[[1,3,4,5],[2]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2 = 15 - 13
[[1,2,3],[4,5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2 = 15 - 13
[[1,2,4],[3,5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2 = 15 - 13
[[1,2,5],[3,4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2 = 15 - 13
[[1,3,4],[2,5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2 = 15 - 13
[[1,3,5],[2,4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2 = 15 - 13
[[1,2,3],[4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2 = 15 - 13
[[1,2,4],[3],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2 = 15 - 13
[[1,2,5],[3],[4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2 = 15 - 13
[[1,3,4],[2],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2 = 15 - 13
[[1,3,5],[2],[4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2 = 15 - 13
[[1,4,5],[2],[3]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2 = 15 - 13
[[1,2],[3,4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2 = 15 - 13
[[1,2],[3,5],[4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2 = 15 - 13
[[1,3],[2,4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2 = 15 - 13
[[1,3],[2,5],[4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2 = 15 - 13
[[1,4],[2,5],[3]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2 = 15 - 13
[[1,2],[3],[4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2 = 15 - 13
[[1,3],[2],[4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2 = 15 - 13
[[1,4],[2],[3],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2 = 15 - 13
[[1,5],[2],[3],[4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2 = 15 - 13
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2 = 15 - 13
Description
The number of colourings of a cycle such that the multiplicities of colours are given by a partition. Two colourings are considered equal, if they are obtained by an action of the cyclic group. This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Matching statistic: St001603
Mp00225: Semistandard tableaux weightInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001603: Integer partitions ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 4%
Values
[[1,2]]
=> [1,1]
=> [1]
=> []
=> ? = 3 - 14
[[2,2]]
=> [2]
=> []
=> ?
=> ? = 4 - 14
[[1],[2]]
=> [1,1]
=> [1]
=> []
=> ? = 3 - 14
[[1,1,2]]
=> [2,1]
=> [1]
=> []
=> ? = 4 - 14
[[1,2,2]]
=> [2,1]
=> [1]
=> []
=> ? = 5 - 14
[[2,2,2]]
=> [3]
=> []
=> ?
=> ? = 6 - 14
[[1,1],[2]]
=> [2,1]
=> [1]
=> []
=> ? = 4 - 14
[[1,2],[2]]
=> [2,1]
=> [1]
=> []
=> ? = 5 - 14
[[1,1,3]]
=> [2,1]
=> [1]
=> []
=> ? = 5 - 14
[[1,2,3]]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? = 6 - 14
[[1,3,3]]
=> [2,1]
=> [1]
=> []
=> ? = 7 - 14
[[2,2,3]]
=> [2,1]
=> [1]
=> []
=> ? = 7 - 14
[[2,3,3]]
=> [2,1]
=> [1]
=> []
=> ? = 8 - 14
[[3,3,3]]
=> [3]
=> []
=> ?
=> ? = 9 - 14
[[1,1],[3]]
=> [2,1]
=> [1]
=> []
=> ? = 5 - 14
[[1,2],[3]]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? = 6 - 14
[[1,3],[2]]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? = 6 - 14
[[1,3],[3]]
=> [2,1]
=> [1]
=> []
=> ? = 7 - 14
[[2,2],[3]]
=> [2,1]
=> [1]
=> []
=> ? = 7 - 14
[[2,3],[3]]
=> [2,1]
=> [1]
=> []
=> ? = 8 - 14
[[1],[2],[3]]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? = 6 - 14
[[1,1,1,2]]
=> [3,1]
=> [1]
=> []
=> ? = 5 - 14
[[1,1,2,2]]
=> [2,2]
=> [2]
=> []
=> ? = 6 - 14
[[1,2,2,2]]
=> [3,1]
=> [1]
=> []
=> ? = 7 - 14
[[2,2,2,2]]
=> [4]
=> []
=> ?
=> ? = 8 - 14
[[1,1,1],[2]]
=> [3,1]
=> [1]
=> []
=> ? = 5 - 14
[[1,1,2],[2]]
=> [2,2]
=> [2]
=> []
=> ? = 6 - 14
[[1,2,2],[2]]
=> [3,1]
=> [1]
=> []
=> ? = 7 - 14
[[1,1],[2,2]]
=> [2,2]
=> [2]
=> []
=> ? = 6 - 14
[[1,1,1,3]]
=> [3,1]
=> [1]
=> []
=> ? = 6 - 14
[[1,1,2,3]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 7 - 14
[[1,1,3,3]]
=> [2,2]
=> [2]
=> []
=> ? = 8 - 14
[[1,2,2,3]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 8 - 14
[[1,2,3,3]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 9 - 14
[[1,3,3,3]]
=> [3,1]
=> [1]
=> []
=> ? = 10 - 14
[[2,2,2,3]]
=> [3,1]
=> [1]
=> []
=> ? = 9 - 14
[[2,2,3,3]]
=> [2,2]
=> [2]
=> []
=> ? = 10 - 14
[[2,3,3,3]]
=> [3,1]
=> [1]
=> []
=> ? = 11 - 14
[[3,3,3,3]]
=> [4]
=> []
=> ?
=> ? = 12 - 14
[[1,1,1],[3]]
=> [3,1]
=> [1]
=> []
=> ? = 6 - 14
[[1,1,2],[3]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 7 - 14
[[1,1,3],[2]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 7 - 14
[[1,1,3],[3]]
=> [2,2]
=> [2]
=> []
=> ? = 8 - 14
[[1,2,2],[3]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 8 - 14
[[1,2,3],[2]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 8 - 14
[[1,2,3],[3]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 9 - 14
[[1,3,3],[2]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 9 - 14
[[1,3,3],[3]]
=> [3,1]
=> [1]
=> []
=> ? = 10 - 14
[[2,2,2],[3]]
=> [3,1]
=> [1]
=> []
=> ? = 9 - 14
[[2,2,3],[3]]
=> [2,2]
=> [2]
=> []
=> ? = 10 - 14
[[1,2,3,4,5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 15 - 14
[[1,2,3,4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 15 - 14
[[1,2,3,5],[4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 15 - 14
[[1,2,4,5],[3]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 15 - 14
[[1,3,4,5],[2]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 15 - 14
[[1,2,3],[4,5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 15 - 14
[[1,2,4],[3,5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 15 - 14
[[1,2,5],[3,4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 15 - 14
[[1,3,4],[2,5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 15 - 14
[[1,3,5],[2,4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 15 - 14
[[1,2,3],[4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 15 - 14
[[1,2,4],[3],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 15 - 14
[[1,2,5],[3],[4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 15 - 14
[[1,3,4],[2],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 15 - 14
[[1,3,5],[2],[4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 15 - 14
[[1,4,5],[2],[3]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 15 - 14
[[1,2],[3,4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 15 - 14
[[1,2],[3,5],[4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 15 - 14
[[1,3],[2,4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 15 - 14
[[1,3],[2,5],[4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 15 - 14
[[1,4],[2,5],[3]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 15 - 14
[[1,2],[3],[4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 15 - 14
[[1,3],[2],[4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 15 - 14
[[1,4],[2],[3],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 15 - 14
[[1,5],[2],[3],[4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 15 - 14
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 15 - 14
Description
The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. Two colourings are considered equal, if they are obtained by an action of the dihedral group. This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Matching statistic: St001604
Mp00225: Semistandard tableaux weightInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001604: Integer partitions ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 4%
Values
[[1,2]]
=> [1,1]
=> [1]
=> []
=> ? = 3 - 15
[[2,2]]
=> [2]
=> []
=> ?
=> ? = 4 - 15
[[1],[2]]
=> [1,1]
=> [1]
=> []
=> ? = 3 - 15
[[1,1,2]]
=> [2,1]
=> [1]
=> []
=> ? = 4 - 15
[[1,2,2]]
=> [2,1]
=> [1]
=> []
=> ? = 5 - 15
[[2,2,2]]
=> [3]
=> []
=> ?
=> ? = 6 - 15
[[1,1],[2]]
=> [2,1]
=> [1]
=> []
=> ? = 4 - 15
[[1,2],[2]]
=> [2,1]
=> [1]
=> []
=> ? = 5 - 15
[[1,1,3]]
=> [2,1]
=> [1]
=> []
=> ? = 5 - 15
[[1,2,3]]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? = 6 - 15
[[1,3,3]]
=> [2,1]
=> [1]
=> []
=> ? = 7 - 15
[[2,2,3]]
=> [2,1]
=> [1]
=> []
=> ? = 7 - 15
[[2,3,3]]
=> [2,1]
=> [1]
=> []
=> ? = 8 - 15
[[3,3,3]]
=> [3]
=> []
=> ?
=> ? = 9 - 15
[[1,1],[3]]
=> [2,1]
=> [1]
=> []
=> ? = 5 - 15
[[1,2],[3]]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? = 6 - 15
[[1,3],[2]]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? = 6 - 15
[[1,3],[3]]
=> [2,1]
=> [1]
=> []
=> ? = 7 - 15
[[2,2],[3]]
=> [2,1]
=> [1]
=> []
=> ? = 7 - 15
[[2,3],[3]]
=> [2,1]
=> [1]
=> []
=> ? = 8 - 15
[[1],[2],[3]]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? = 6 - 15
[[1,1,1,2]]
=> [3,1]
=> [1]
=> []
=> ? = 5 - 15
[[1,1,2,2]]
=> [2,2]
=> [2]
=> []
=> ? = 6 - 15
[[1,2,2,2]]
=> [3,1]
=> [1]
=> []
=> ? = 7 - 15
[[2,2,2,2]]
=> [4]
=> []
=> ?
=> ? = 8 - 15
[[1,1,1],[2]]
=> [3,1]
=> [1]
=> []
=> ? = 5 - 15
[[1,1,2],[2]]
=> [2,2]
=> [2]
=> []
=> ? = 6 - 15
[[1,2,2],[2]]
=> [3,1]
=> [1]
=> []
=> ? = 7 - 15
[[1,1],[2,2]]
=> [2,2]
=> [2]
=> []
=> ? = 6 - 15
[[1,1,1,3]]
=> [3,1]
=> [1]
=> []
=> ? = 6 - 15
[[1,1,2,3]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 7 - 15
[[1,1,3,3]]
=> [2,2]
=> [2]
=> []
=> ? = 8 - 15
[[1,2,2,3]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 8 - 15
[[1,2,3,3]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 9 - 15
[[1,3,3,3]]
=> [3,1]
=> [1]
=> []
=> ? = 10 - 15
[[2,2,2,3]]
=> [3,1]
=> [1]
=> []
=> ? = 9 - 15
[[2,2,3,3]]
=> [2,2]
=> [2]
=> []
=> ? = 10 - 15
[[2,3,3,3]]
=> [3,1]
=> [1]
=> []
=> ? = 11 - 15
[[3,3,3,3]]
=> [4]
=> []
=> ?
=> ? = 12 - 15
[[1,1,1],[3]]
=> [3,1]
=> [1]
=> []
=> ? = 6 - 15
[[1,1,2],[3]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 7 - 15
[[1,1,3],[2]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 7 - 15
[[1,1,3],[3]]
=> [2,2]
=> [2]
=> []
=> ? = 8 - 15
[[1,2,2],[3]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 8 - 15
[[1,2,3],[2]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 8 - 15
[[1,2,3],[3]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 9 - 15
[[1,3,3],[2]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 9 - 15
[[1,3,3],[3]]
=> [3,1]
=> [1]
=> []
=> ? = 10 - 15
[[2,2,2],[3]]
=> [3,1]
=> [1]
=> []
=> ? = 9 - 15
[[2,2,3],[3]]
=> [2,2]
=> [2]
=> []
=> ? = 10 - 15
[[1,2,3,4,5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 15 - 15
[[1,2,3,4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 15 - 15
[[1,2,3,5],[4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 15 - 15
[[1,2,4,5],[3]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 15 - 15
[[1,3,4,5],[2]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 15 - 15
[[1,2,3],[4,5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 15 - 15
[[1,2,4],[3,5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 15 - 15
[[1,2,5],[3,4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 15 - 15
[[1,3,4],[2,5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 15 - 15
[[1,3,5],[2,4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 15 - 15
[[1,2,3],[4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 15 - 15
[[1,2,4],[3],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 15 - 15
[[1,2,5],[3],[4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 15 - 15
[[1,3,4],[2],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 15 - 15
[[1,3,5],[2],[4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 15 - 15
[[1,4,5],[2],[3]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 15 - 15
[[1,2],[3,4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 15 - 15
[[1,2],[3,5],[4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 15 - 15
[[1,3],[2,4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 15 - 15
[[1,3],[2,5],[4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 15 - 15
[[1,4],[2,5],[3]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 15 - 15
[[1,2],[3],[4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 15 - 15
[[1,3],[2],[4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 15 - 15
[[1,4],[2],[3],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 15 - 15
[[1,5],[2],[3],[4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 15 - 15
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0 = 15 - 15
Description
The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. Equivalently, this is the multiplicity of the irreducible representation corresponding to a partition in the cycle index of the dihedral group. This statistic is only defined for partitions of size at least 3, to avoid ambiguity.