Your data matches 189 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000181: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 1
([],2)
=> 2
([(0,1)],2)
=> 1
([],3)
=> 3
([(1,2)],3)
=> 2
([(0,1),(0,2)],3)
=> 1
([(0,2),(2,1)],3)
=> 1
([(0,2),(1,2)],3)
=> 1
([],4)
=> 4
([(2,3)],4)
=> 3
([(1,2),(1,3)],4)
=> 2
([(0,1),(0,2),(0,3)],4)
=> 1
([(0,2),(0,3),(3,1)],4)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(1,2),(2,3)],4)
=> 2
([(0,3),(3,1),(3,2)],4)
=> 1
([(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(3,2)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
([(0,3),(2,1),(3,2)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> 1
([],5)
=> 5
([(3,4)],5)
=> 4
([(2,3),(2,4)],5)
=> 3
([(1,2),(1,3),(1,4)],5)
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(4,2)],5)
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(2,3),(3,4)],5)
=> 3
([(1,4),(4,2),(4,3)],5)
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> 1
([(2,4),(3,4)],5)
=> 3
([(1,4),(2,4),(4,3)],5)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> 1
([(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
Description
The number of connected components of the Hasse diagram for the poset.
Mp00198: Posets incomparability graphGraphs
St000286: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> 1
([],2)
=> ([(0,1)],2)
=> 2
([(0,1)],2)
=> ([],2)
=> 1
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> 1
([(0,2),(2,1)],3)
=> ([],3)
=> 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> 1
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
Description
The number of connected components of the complement of a graph. The complement of a graph is the graph on the same vertex set with complementary edges.
Mp00074: Posets to graphGraphs
St000287: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> 2
([(0,1)],2)
=> ([(0,1)],2)
=> 1
([],3)
=> ([],3)
=> 3
([(1,2)],3)
=> ([(1,2)],3)
=> 2
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([],4)
=> ([],4)
=> 4
([(2,3)],4)
=> ([(2,3)],4)
=> 3
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
([],5)
=> ([],5)
=> 5
([(3,4)],5)
=> ([(3,4)],5)
=> 4
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> 3
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 3
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 3
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
Description
The number of connected components of a graph.
Mp00074: Posets to graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
St000010: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1]
=> 1
([],2)
=> ([],2)
=> [1,1]
=> 2
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 1
([],3)
=> ([],3)
=> [1,1,1]
=> 3
([(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 2
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1
([],4)
=> ([],4)
=> [1,1,1,1]
=> 4
([(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 3
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 2
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [4]
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 1
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 2
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [4]
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [4]
=> 1
([],5)
=> ([],5)
=> [1,1,1,1,1]
=> 5
([(3,4)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 4
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 3
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> 1
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 3
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 3
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> 1
Description
The length of the partition.
Mp00074: Posets to graphGraphs
Mp00147: Graphs squareGraphs
St000273: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> ([],2)
=> 2
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([],3)
=> ([],3)
=> ([],3)
=> 3
([(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([],4)
=> ([],4)
=> ([],4)
=> 4
([(2,3)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 3
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([],5)
=> ([],5)
=> ([],5)
=> 5
([(3,4)],5)
=> ([(3,4)],5)
=> ([(3,4)],5)
=> 4
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
Description
The domination number of a graph. The domination number of a graph is given by the minimum size of a dominating set of vertices. A dominating set of vertices is a subset of the vertex set of such that every vertex is either in this subset or adjacent to an element of this subset.
Mp00074: Posets to graphGraphs
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
St000383: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1] => 1
([],2)
=> ([],2)
=> [2] => 2
([(0,1)],2)
=> ([(0,1)],2)
=> [1,1] => 1
([],3)
=> ([],3)
=> [3] => 3
([(1,2)],3)
=> ([(1,2)],3)
=> [1,2] => 2
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1,1] => 1
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> [1,1,1] => 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1,1] => 1
([],4)
=> ([],4)
=> [4] => 4
([(2,3)],4)
=> ([(2,3)],4)
=> [1,3] => 3
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1,2] => 2
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => 1
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1,2] => 2
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1,2] => 2
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [2,2] => 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => 1
([],5)
=> ([],5)
=> [5] => 5
([(3,4)],5)
=> ([(3,4)],5)
=> [1,4] => 4
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => 3
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => 1
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => 1
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => 3
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => 3
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => 1
Description
The last part of an integer composition.
Mp00074: Posets to graphGraphs
Mp00147: Graphs squareGraphs
St000544: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> ([],2)
=> 2
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([],3)
=> ([],3)
=> ([],3)
=> 3
([(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([],4)
=> ([],4)
=> ([],4)
=> 4
([(2,3)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 3
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([],5)
=> ([],5)
=> ([],5)
=> 5
([(3,4)],5)
=> ([(3,4)],5)
=> ([(3,4)],5)
=> 4
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
Description
The cop number of a graph. This is the minimal number of cops needed to catch the robber. The algorithm is from [2].
Mp00074: Posets to graphGraphs
Mp00147: Graphs squareGraphs
St000553: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> ([],2)
=> 2
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([],3)
=> ([],3)
=> ([],3)
=> 3
([(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([],4)
=> ([],4)
=> ([],4)
=> 4
([(2,3)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 3
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([],5)
=> ([],5)
=> ([],5)
=> 5
([(3,4)],5)
=> ([(3,4)],5)
=> ([(3,4)],5)
=> 4
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
Description
The number of blocks of a graph. A cut vertex is a vertex whose deletion increases the number of connected components. A block is a maximal connected subgraph which itself has no cut vertices. Two distinct blocks cannot overlap in more than a single cut vertex.
Mp00074: Posets to graphGraphs
Mp00264: Graphs delete endpointsGraphs
St000773: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> ([],2)
=> 2
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> 1
([],3)
=> ([],3)
=> ([],3)
=> 3
([(1,2)],3)
=> ([(1,2)],3)
=> ([],2)
=> 2
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> 1
([],4)
=> ([],4)
=> ([],4)
=> 4
([(2,3)],4)
=> ([(2,3)],4)
=> ([],3)
=> 3
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> ([],2)
=> 2
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([],2)
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([],2)
=> 2
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([],2)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> 1
([],5)
=> ([],5)
=> ([],5)
=> 5
([(3,4)],5)
=> ([(3,4)],5)
=> ([],4)
=> 4
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> ([],3)
=> 3
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([],2)
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([],3)
=> 3
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([],3)
=> 3
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([],2)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> 1
Description
The multiplicity of the largest Laplacian eigenvalue in a graph.
Mp00074: Posets to graphGraphs
Mp00147: Graphs squareGraphs
St000916: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> ([],2)
=> 2
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([],3)
=> ([],3)
=> ([],3)
=> 3
([(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([],4)
=> ([],4)
=> ([],4)
=> 4
([(2,3)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 3
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([],5)
=> ([],5)
=> ([],5)
=> 5
([(3,4)],5)
=> ([(3,4)],5)
=> ([(3,4)],5)
=> 4
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
Description
The packing number of a graph. This is the size of a largest subset of vertices of a graph, such that any two distinct vertices in the subset have disjoint closed neighbourhoods, or, equivalently, have distance greater than two.
The following 179 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001322The size of a minimal independent dominating set in a graph. St001339The irredundance number of a graph. St001363The Euler characteristic of a graph according to Knill. St001829The common independence number of a graph. St000147The largest part of an integer partition. St000288The number of ones in a binary word. St000378The diagonal inversion number of an integer partition. St000382The first part of an integer composition. St000733The row containing the largest entry of a standard tableau. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001316The domatic number of a graph. St001828The Euler characteristic of a graph. St000157The number of descents of a standard tableau. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000519The largest length of a factor maximising the subword complexity. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000100The number of linear extensions of a poset. St000633The size of the automorphism group of a poset. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000910The number of maximal chains of minimal length in a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001128The exponens consonantiae of a partition. St000744The length of the path to the largest entry in a standard Young tableau. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St000993The multiplicity of the largest part of an integer partition. St000667The greatest common divisor of the parts of the partition. St001571The Cartan determinant of the integer partition. St000456The monochromatic index of a connected graph. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001031The height of the bicoloured Motzkin path associated with the Dyck path. St001038The minimal height of a column in the parallelogram polyomino associated with the Dyck path. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001498The normalised height of a Nakayama algebra with magnitude 1. St000068The number of minimal elements in a poset. St000298The order dimension or Dushnik-Miller dimension of a poset. St000307The number of rowmotion orbits of a poset. St000527The width of the poset. St000528The height of a poset. St000640The rank of the largest boolean interval in a poset. St000907The number of maximal antichains of minimal length in a poset. St000908The length of the shortest maximal antichain in a poset. St000909The number of maximal chains of maximal size in a poset. St000911The number of maximal antichains of maximal size in a poset. St000912The number of maximal antichains in a poset. St000914The sum of the values of the Möbius function of a poset. St001268The size of the largest ordinal summand in the poset. St001343The dimension of the reduced incidence algebra of a poset. St001399The distinguishing number of a poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001533The largest coefficient of the Poincare polynomial of the poset cone. St001717The largest size of an interval in a poset. St001779The order of promotion on the set of linear extensions of a poset. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000706The product of the factorials of the multiplicities of an integer partition. St001568The smallest positive integer that does not appear twice in the partition. St001592The maximal number of simple paths between any two different vertices of a graph. St001890The maximum magnitude of the Möbius function of a poset. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St000781The number of proper colouring schemes of a Ferrers diagram. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001389The number of partitions of the same length below the given integer partition. St001432The order dimension of the partition. St001527The cyclic permutation representation number of an integer partition. St001599The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001780The order of promotion on the set of standard tableaux of given shape. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001924The number of cells in an integer partition whose arm and leg length coincide. St001933The largest multiplicity of a part in an integer partition. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St000455The second largest eigenvalue of a graph if it is integral. St000284The Plancherel distribution on integer partitions. St000460The hook length of the last cell along the main diagonal of an integer partition. St000618The number of self-evacuating tableaux of given shape. St000668The least common multiple of the parts of the partition. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000870The product of the hook lengths of the diagonal cells in an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001249Sum of the odd parts of a partition. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001360The number of covering relations in Young's lattice below a partition. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001602The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on endofunctions. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001611The number of multiset partitions such that the multiplicities of elements are given by a partition. St001627The number of coloured connected graphs such that the multiplicities of colours are given by a partition. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St001280The number of parts of an integer partition that are at least two. St001877Number of indecomposable injective modules with projective dimension 2. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001481The minimal height of a peak of a Dyck path. St000968We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n−1}]$ by adding $c_0$ to $c_{n−1}$. St001006Number of simple modules with projective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001008Number of indecomposable injective modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001191Number of simple modules $S$ with $Ext_A^i(S,A)=0$ for all $i=0,1,...,g-1$ in the corresponding Nakayama algebra $A$ with global dimension $g$. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St000120The number of left tunnels of a Dyck path. St000954Number of times the corresponding LNakayama algebra has $Ext^i(D(A),A)=0$ for $i>0$. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001217The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1. St001230The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property. St001613The binary logarithm of the size of the center of a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices. St001637The number of (upper) dissectors of a poset. St001668The number of points of the poset minus the width of the poset. St001570The minimal number of edges to add to make a graph Hamiltonian. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001563The value of the power-sum symmetric function evaluated at 1. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St000524The number of posets with the same order polynomial. St000525The number of posets with the same zeta polynomial. St000526The number of posets with combinatorially isomorphic order polytopes. St000717The number of ordinal summands of a poset. St000906The length of the shortest maximal chain in a poset. St000937The number of positive values of the symmetric group character corresponding to the partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000774The maximal multiplicity of a Laplacian eigenvalue in a graph. St000344The number of strongly connected outdegree sequences of a graph. St000379The number of Hamiltonian cycles in a graph. St001368The number of vertices of maximal degree in a graph. St001118The acyclic chromatic index of a graph. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000310The minimal degree of a vertex of a graph. St001330The hat guessing number of a graph. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000567The sum of the products of all pairs of parts. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000681The Grundy value of Chomp on Ferrers diagrams. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000929The constant term of the character polynomial of an integer partition. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees.