Your data matches 27 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00040: Integer compositions to partitionInteger partitions
St000185: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1]
=> 0
[1,1] => [1,1]
=> 1
[2] => [2]
=> 0
[1,1,1] => [1,1,1]
=> 3
[1,2] => [2,1]
=> 1
[2,1] => [2,1]
=> 1
[3] => [3]
=> 0
[1,1,1,1] => [1,1,1,1]
=> 6
[1,1,2] => [2,1,1]
=> 3
[1,2,1] => [2,1,1]
=> 3
[1,3] => [3,1]
=> 1
[2,1,1] => [2,1,1]
=> 3
[2,2] => [2,2]
=> 2
[3,1] => [3,1]
=> 1
[4] => [4]
=> 0
[1,1,1,1,1] => [1,1,1,1,1]
=> 10
[1,1,1,2] => [2,1,1,1]
=> 6
[1,1,2,1] => [2,1,1,1]
=> 6
[1,1,3] => [3,1,1]
=> 3
[1,2,1,1] => [2,1,1,1]
=> 6
[1,2,2] => [2,2,1]
=> 4
[1,3,1] => [3,1,1]
=> 3
[1,4] => [4,1]
=> 1
[2,1,1,1] => [2,1,1,1]
=> 6
[2,1,2] => [2,2,1]
=> 4
[2,2,1] => [2,2,1]
=> 4
[2,3] => [3,2]
=> 2
[3,1,1] => [3,1,1]
=> 3
[3,2] => [3,2]
=> 2
[4,1] => [4,1]
=> 1
[5] => [5]
=> 0
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> 15
[1,1,1,1,2] => [2,1,1,1,1]
=> 10
[1,1,1,2,1] => [2,1,1,1,1]
=> 10
[1,1,1,3] => [3,1,1,1]
=> 6
[1,1,2,1,1] => [2,1,1,1,1]
=> 10
[1,1,2,2] => [2,2,1,1]
=> 7
[1,1,3,1] => [3,1,1,1]
=> 6
[1,1,4] => [4,1,1]
=> 3
[1,2,1,1,1] => [2,1,1,1,1]
=> 10
[1,2,1,2] => [2,2,1,1]
=> 7
[1,2,2,1] => [2,2,1,1]
=> 7
[1,2,3] => [3,2,1]
=> 4
[1,3,1,1] => [3,1,1,1]
=> 6
[1,3,2] => [3,2,1]
=> 4
[1,4,1] => [4,1,1]
=> 3
[1,5] => [5,1]
=> 1
[2,1,1,1,1] => [2,1,1,1,1]
=> 10
[2,1,1,2] => [2,2,1,1]
=> 7
[2,1,2,1] => [2,2,1,1]
=> 7
Description
The weighted size of a partition. Let $\lambda = (\lambda_0\geq\lambda_1 \geq \dots\geq\lambda_m)$ be an integer partition. Then the weighted size of $\lambda$ is $$\sum_{i=0}^m i \cdot \lambda_i.$$ This is also the sum of the leg lengths of the cells in $\lambda$, or $$ \sum_i \binom{\lambda^{\prime}_i}{2} $$ where $\lambda^{\prime}$ is the conjugate partition of $\lambda$. This is the minimal number of inversions a permutation with the given shape can have, see [1, cor.2.2]. This is also the smallest possible sum of the entries of a semistandard tableau (allowing 0 as a part) of shape $\lambda=(\lambda_0,\lambda_1,\ldots,\lambda_m)$, obtained uniquely by placing $i-1$ in all the cells of the $i$th row of $\lambda$, see [2, eq.7.103].
Matching statistic: St000169
Mp00040: Integer compositions to partitionInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
St000169: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1]
=> [[1]]
=> 0
[1,1] => [1,1]
=> [[1],[2]]
=> 1
[2] => [2]
=> [[1,2]]
=> 0
[1,1,1] => [1,1,1]
=> [[1],[2],[3]]
=> 3
[1,2] => [2,1]
=> [[1,2],[3]]
=> 1
[2,1] => [2,1]
=> [[1,2],[3]]
=> 1
[3] => [3]
=> [[1,2,3]]
=> 0
[1,1,1,1] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 6
[1,1,2] => [2,1,1]
=> [[1,2],[3],[4]]
=> 3
[1,2,1] => [2,1,1]
=> [[1,2],[3],[4]]
=> 3
[1,3] => [3,1]
=> [[1,2,3],[4]]
=> 1
[2,1,1] => [2,1,1]
=> [[1,2],[3],[4]]
=> 3
[2,2] => [2,2]
=> [[1,2],[3,4]]
=> 2
[3,1] => [3,1]
=> [[1,2,3],[4]]
=> 1
[4] => [4]
=> [[1,2,3,4]]
=> 0
[1,1,1,1,1] => [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 10
[1,1,1,2] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 6
[1,1,2,1] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 6
[1,1,3] => [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[1,2,1,1] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 6
[1,2,2] => [2,2,1]
=> [[1,2],[3,4],[5]]
=> 4
[1,3,1] => [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[1,4] => [4,1]
=> [[1,2,3,4],[5]]
=> 1
[2,1,1,1] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 6
[2,1,2] => [2,2,1]
=> [[1,2],[3,4],[5]]
=> 4
[2,2,1] => [2,2,1]
=> [[1,2],[3,4],[5]]
=> 4
[2,3] => [3,2]
=> [[1,2,3],[4,5]]
=> 2
[3,1,1] => [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[3,2] => [3,2]
=> [[1,2,3],[4,5]]
=> 2
[4,1] => [4,1]
=> [[1,2,3,4],[5]]
=> 1
[5] => [5]
=> [[1,2,3,4,5]]
=> 0
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 15
[1,1,1,1,2] => [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 10
[1,1,1,2,1] => [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 10
[1,1,1,3] => [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> 6
[1,1,2,1,1] => [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 10
[1,1,2,2] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> 7
[1,1,3,1] => [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> 6
[1,1,4] => [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> 3
[1,2,1,1,1] => [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 10
[1,2,1,2] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> 7
[1,2,2,1] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> 7
[1,2,3] => [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 4
[1,3,1,1] => [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> 6
[1,3,2] => [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 4
[1,4,1] => [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> 3
[1,5] => [5,1]
=> [[1,2,3,4,5],[6]]
=> 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 10
[2,1,1,2] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> 7
[2,1,2,1] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> 7
Description
The cocharge of a standard tableau. The '''cocharge''' of a standard tableau $T$, denoted $\mathrm{cc}(T)$, is defined to be the cocharge of the reading word of the tableau. The cocharge of a permutation $w_1 w_2\cdots w_n$ can be computed by the following algorithm: 1) Starting from $w_n$, scan the entries right-to-left until finding the entry $1$ with a superscript $0$. 2) Continue scanning until the $2$ is found, and label this with a superscript $1$. Then scan until the $3$ is found, labeling with a $2$, and so on, incrementing the label each time, until the beginning of the word is reached. Then go back to the end and scan again from right to left, and *do not* increment the superscript label for the first number found in the next scan. Then continue scanning and labeling, each time incrementing the superscript only if we have not cycled around the word since the last labeling. 3) The cocharge is defined as the sum of the superscript labels on the letters.
Matching statistic: St000330
Mp00040: Integer compositions to partitionInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
St000330: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1]
=> [[1]]
=> 0
[1,1] => [1,1]
=> [[1],[2]]
=> 1
[2] => [2]
=> [[1,2]]
=> 0
[1,1,1] => [1,1,1]
=> [[1],[2],[3]]
=> 3
[1,2] => [2,1]
=> [[1,3],[2]]
=> 1
[2,1] => [2,1]
=> [[1,3],[2]]
=> 1
[3] => [3]
=> [[1,2,3]]
=> 0
[1,1,1,1] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 6
[1,1,2] => [2,1,1]
=> [[1,4],[2],[3]]
=> 3
[1,2,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> 3
[1,3] => [3,1]
=> [[1,3,4],[2]]
=> 1
[2,1,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> 3
[2,2] => [2,2]
=> [[1,2],[3,4]]
=> 2
[3,1] => [3,1]
=> [[1,3,4],[2]]
=> 1
[4] => [4]
=> [[1,2,3,4]]
=> 0
[1,1,1,1,1] => [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 10
[1,1,1,2] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 6
[1,1,2,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 6
[1,1,3] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> 3
[1,2,1,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 6
[1,2,2] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> 4
[1,3,1] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> 3
[1,4] => [4,1]
=> [[1,3,4,5],[2]]
=> 1
[2,1,1,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 6
[2,1,2] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> 4
[2,2,1] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> 4
[2,3] => [3,2]
=> [[1,2,5],[3,4]]
=> 2
[3,1,1] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> 3
[3,2] => [3,2]
=> [[1,2,5],[3,4]]
=> 2
[4,1] => [4,1]
=> [[1,3,4,5],[2]]
=> 1
[5] => [5]
=> [[1,2,3,4,5]]
=> 0
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 15
[1,1,1,1,2] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[1,1,1,2,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[1,1,1,3] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 6
[1,1,2,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[1,1,2,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 7
[1,1,3,1] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 6
[1,1,4] => [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 3
[1,2,1,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[1,2,1,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 7
[1,2,2,1] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 7
[1,2,3] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 4
[1,3,1,1] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 6
[1,3,2] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 4
[1,4,1] => [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 3
[1,5] => [5,1]
=> [[1,3,4,5,6],[2]]
=> 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[2,1,1,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 7
[2,1,2,1] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 7
Description
The (standard) major index of a standard tableau. A descent of a standard tableau $T$ is an index $i$ such that $i+1$ appears in a row strictly below the row of $i$. The (standard) major index is the the sum of the descents.
Mp00040: Integer compositions to partitionInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
St000336: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1]
=> [[1]]
=> 0
[1,1] => [1,1]
=> [[1],[2]]
=> 1
[2] => [2]
=> [[1,2]]
=> 0
[1,1,1] => [1,1,1]
=> [[1],[2],[3]]
=> 3
[1,2] => [2,1]
=> [[1,3],[2]]
=> 1
[2,1] => [2,1]
=> [[1,3],[2]]
=> 1
[3] => [3]
=> [[1,2,3]]
=> 0
[1,1,1,1] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 6
[1,1,2] => [2,1,1]
=> [[1,4],[2],[3]]
=> 3
[1,2,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> 3
[1,3] => [3,1]
=> [[1,3,4],[2]]
=> 1
[2,1,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> 3
[2,2] => [2,2]
=> [[1,2],[3,4]]
=> 2
[3,1] => [3,1]
=> [[1,3,4],[2]]
=> 1
[4] => [4]
=> [[1,2,3,4]]
=> 0
[1,1,1,1,1] => [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 10
[1,1,1,2] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 6
[1,1,2,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 6
[1,1,3] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> 3
[1,2,1,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 6
[1,2,2] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> 4
[1,3,1] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> 3
[1,4] => [4,1]
=> [[1,3,4,5],[2]]
=> 1
[2,1,1,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 6
[2,1,2] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> 4
[2,2,1] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> 4
[2,3] => [3,2]
=> [[1,2,5],[3,4]]
=> 2
[3,1,1] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> 3
[3,2] => [3,2]
=> [[1,2,5],[3,4]]
=> 2
[4,1] => [4,1]
=> [[1,3,4,5],[2]]
=> 1
[5] => [5]
=> [[1,2,3,4,5]]
=> 0
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 15
[1,1,1,1,2] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[1,1,1,2,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[1,1,1,3] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 6
[1,1,2,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[1,1,2,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 7
[1,1,3,1] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 6
[1,1,4] => [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 3
[1,2,1,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[1,2,1,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 7
[1,2,2,1] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 7
[1,2,3] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 4
[1,3,1,1] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 6
[1,3,2] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 4
[1,4,1] => [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 3
[1,5] => [5,1]
=> [[1,3,4,5,6],[2]]
=> 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[2,1,1,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 7
[2,1,2,1] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 7
Description
The leg major index of a standard tableau. The leg length of a cell is the number of cells strictly below in the same column. This statistic is the sum of all leg lengths. Therefore, this is actually a statistic on the underlying integer partition. It happens to coincide with the (leg) major index of a tabloid restricted to standard Young tableaux, defined as follows: the descent set of a tabloid is the set of cells, not in the top row, whose entry is strictly larger than the entry directly above it. The leg major index is the sum of the leg lengths of the descents plus the number of descents.
Matching statistic: St000009
Mp00040: Integer compositions to partitionInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00084: Standard tableaux conjugateStandard tableaux
St000009: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1]
=> [[1]]
=> [[1]]
=> 0
[1,1] => [1,1]
=> [[1],[2]]
=> [[1,2]]
=> 1
[2] => [2]
=> [[1,2]]
=> [[1],[2]]
=> 0
[1,1,1] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,2,3]]
=> 3
[1,2] => [2,1]
=> [[1,2],[3]]
=> [[1,3],[2]]
=> 1
[2,1] => [2,1]
=> [[1,2],[3]]
=> [[1,3],[2]]
=> 1
[3] => [3]
=> [[1,2,3]]
=> [[1],[2],[3]]
=> 0
[1,1,1,1] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [[1,2,3,4]]
=> 6
[1,1,2] => [2,1,1]
=> [[1,2],[3],[4]]
=> [[1,3,4],[2]]
=> 3
[1,2,1] => [2,1,1]
=> [[1,2],[3],[4]]
=> [[1,3,4],[2]]
=> 3
[1,3] => [3,1]
=> [[1,2,3],[4]]
=> [[1,4],[2],[3]]
=> 1
[2,1,1] => [2,1,1]
=> [[1,2],[3],[4]]
=> [[1,3,4],[2]]
=> 3
[2,2] => [2,2]
=> [[1,2],[3,4]]
=> [[1,3],[2,4]]
=> 2
[3,1] => [3,1]
=> [[1,2,3],[4]]
=> [[1,4],[2],[3]]
=> 1
[4] => [4]
=> [[1,2,3,4]]
=> [[1],[2],[3],[4]]
=> 0
[1,1,1,1,1] => [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [[1,2,3,4,5]]
=> 10
[1,1,1,2] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[1,3,4,5],[2]]
=> 6
[1,1,2,1] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[1,3,4,5],[2]]
=> 6
[1,1,3] => [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> 3
[1,2,1,1] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[1,3,4,5],[2]]
=> 6
[1,2,2] => [2,2,1]
=> [[1,2],[3,4],[5]]
=> [[1,3,5],[2,4]]
=> 4
[1,3,1] => [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> 3
[1,4] => [4,1]
=> [[1,2,3,4],[5]]
=> [[1,5],[2],[3],[4]]
=> 1
[2,1,1,1] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[1,3,4,5],[2]]
=> 6
[2,1,2] => [2,2,1]
=> [[1,2],[3,4],[5]]
=> [[1,3,5],[2,4]]
=> 4
[2,2,1] => [2,2,1]
=> [[1,2],[3,4],[5]]
=> [[1,3,5],[2,4]]
=> 4
[2,3] => [3,2]
=> [[1,2,3],[4,5]]
=> [[1,4],[2,5],[3]]
=> 2
[3,1,1] => [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> 3
[3,2] => [3,2]
=> [[1,2,3],[4,5]]
=> [[1,4],[2,5],[3]]
=> 2
[4,1] => [4,1]
=> [[1,2,3,4],[5]]
=> [[1,5],[2],[3],[4]]
=> 1
[5] => [5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 0
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [[1,2,3,4,5,6]]
=> 15
[1,1,1,1,2] => [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [[1,3,4,5,6],[2]]
=> 10
[1,1,1,2,1] => [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [[1,3,4,5,6],[2]]
=> 10
[1,1,1,3] => [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [[1,4,5,6],[2],[3]]
=> 6
[1,1,2,1,1] => [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [[1,3,4,5,6],[2]]
=> 10
[1,1,2,2] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [[1,3,5,6],[2,4]]
=> 7
[1,1,3,1] => [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [[1,4,5,6],[2],[3]]
=> 6
[1,1,4] => [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [[1,5,6],[2],[3],[4]]
=> 3
[1,2,1,1,1] => [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [[1,3,4,5,6],[2]]
=> 10
[1,2,1,2] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [[1,3,5,6],[2,4]]
=> 7
[1,2,2,1] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [[1,3,5,6],[2,4]]
=> 7
[1,2,3] => [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [[1,4,6],[2,5],[3]]
=> 4
[1,3,1,1] => [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [[1,4,5,6],[2],[3]]
=> 6
[1,3,2] => [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [[1,4,6],[2,5],[3]]
=> 4
[1,4,1] => [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [[1,5,6],[2],[3],[4]]
=> 3
[1,5] => [5,1]
=> [[1,2,3,4,5],[6]]
=> [[1,6],[2],[3],[4],[5]]
=> 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [[1,3,4,5,6],[2]]
=> 10
[2,1,1,2] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [[1,3,5,6],[2,4]]
=> 7
[2,1,2,1] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [[1,3,5,6],[2,4]]
=> 7
Description
The charge of a standard tableau.
Matching statistic: St000566
Mp00040: Integer compositions to partitionInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000566: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1]
=> [1]
=> ? = 0
[1,1] => [1,1]
=> [2]
=> 1
[2] => [2]
=> [1,1]
=> 0
[1,1,1] => [1,1,1]
=> [3]
=> 3
[1,2] => [2,1]
=> [2,1]
=> 1
[2,1] => [2,1]
=> [2,1]
=> 1
[3] => [3]
=> [1,1,1]
=> 0
[1,1,1,1] => [1,1,1,1]
=> [4]
=> 6
[1,1,2] => [2,1,1]
=> [3,1]
=> 3
[1,2,1] => [2,1,1]
=> [3,1]
=> 3
[1,3] => [3,1]
=> [2,1,1]
=> 1
[2,1,1] => [2,1,1]
=> [3,1]
=> 3
[2,2] => [2,2]
=> [2,2]
=> 2
[3,1] => [3,1]
=> [2,1,1]
=> 1
[4] => [4]
=> [1,1,1,1]
=> 0
[1,1,1,1,1] => [1,1,1,1,1]
=> [5]
=> 10
[1,1,1,2] => [2,1,1,1]
=> [4,1]
=> 6
[1,1,2,1] => [2,1,1,1]
=> [4,1]
=> 6
[1,1,3] => [3,1,1]
=> [3,1,1]
=> 3
[1,2,1,1] => [2,1,1,1]
=> [4,1]
=> 6
[1,2,2] => [2,2,1]
=> [3,2]
=> 4
[1,3,1] => [3,1,1]
=> [3,1,1]
=> 3
[1,4] => [4,1]
=> [2,1,1,1]
=> 1
[2,1,1,1] => [2,1,1,1]
=> [4,1]
=> 6
[2,1,2] => [2,2,1]
=> [3,2]
=> 4
[2,2,1] => [2,2,1]
=> [3,2]
=> 4
[2,3] => [3,2]
=> [2,2,1]
=> 2
[3,1,1] => [3,1,1]
=> [3,1,1]
=> 3
[3,2] => [3,2]
=> [2,2,1]
=> 2
[4,1] => [4,1]
=> [2,1,1,1]
=> 1
[5] => [5]
=> [1,1,1,1,1]
=> 0
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [6]
=> 15
[1,1,1,1,2] => [2,1,1,1,1]
=> [5,1]
=> 10
[1,1,1,2,1] => [2,1,1,1,1]
=> [5,1]
=> 10
[1,1,1,3] => [3,1,1,1]
=> [4,1,1]
=> 6
[1,1,2,1,1] => [2,1,1,1,1]
=> [5,1]
=> 10
[1,1,2,2] => [2,2,1,1]
=> [4,2]
=> 7
[1,1,3,1] => [3,1,1,1]
=> [4,1,1]
=> 6
[1,1,4] => [4,1,1]
=> [3,1,1,1]
=> 3
[1,2,1,1,1] => [2,1,1,1,1]
=> [5,1]
=> 10
[1,2,1,2] => [2,2,1,1]
=> [4,2]
=> 7
[1,2,2,1] => [2,2,1,1]
=> [4,2]
=> 7
[1,2,3] => [3,2,1]
=> [3,2,1]
=> 4
[1,3,1,1] => [3,1,1,1]
=> [4,1,1]
=> 6
[1,3,2] => [3,2,1]
=> [3,2,1]
=> 4
[1,4,1] => [4,1,1]
=> [3,1,1,1]
=> 3
[1,5] => [5,1]
=> [2,1,1,1,1]
=> 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [5,1]
=> 10
[2,1,1,2] => [2,2,1,1]
=> [4,2]
=> 7
[2,1,2,1] => [2,2,1,1]
=> [4,2]
=> 7
[2,1,3] => [3,2,1]
=> [3,2,1]
=> 4
Description
The number of ways to select a row of a Ferrers shape and two cells in this row. Equivalently, if $\lambda = (\lambda_0\geq\lambda_1 \geq \dots\geq\lambda_m)$ is an integer partition, then the statistic is $$\frac{1}{2} \sum_{i=0}^m \lambda_i(\lambda_i -1).$$
Matching statistic: St000391
Mp00040: Integer compositions to partitionInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
Mp00134: Standard tableaux descent wordBinary words
St000391: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1]
=> [[1]]
=> => ? = 0
[1,1] => [1,1]
=> [[1],[2]]
=> 1 => 1
[2] => [2]
=> [[1,2]]
=> 0 => 0
[1,1,1] => [1,1,1]
=> [[1],[2],[3]]
=> 11 => 3
[1,2] => [2,1]
=> [[1,3],[2]]
=> 10 => 1
[2,1] => [2,1]
=> [[1,3],[2]]
=> 10 => 1
[3] => [3]
=> [[1,2,3]]
=> 00 => 0
[1,1,1,1] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 111 => 6
[1,1,2] => [2,1,1]
=> [[1,4],[2],[3]]
=> 110 => 3
[1,2,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> 110 => 3
[1,3] => [3,1]
=> [[1,3,4],[2]]
=> 100 => 1
[2,1,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> 110 => 3
[2,2] => [2,2]
=> [[1,2],[3,4]]
=> 010 => 2
[3,1] => [3,1]
=> [[1,3,4],[2]]
=> 100 => 1
[4] => [4]
=> [[1,2,3,4]]
=> 000 => 0
[1,1,1,1,1] => [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1111 => 10
[1,1,1,2] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 1110 => 6
[1,1,2,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 1110 => 6
[1,1,3] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> 1100 => 3
[1,2,1,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 1110 => 6
[1,2,2] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> 1010 => 4
[1,3,1] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> 1100 => 3
[1,4] => [4,1]
=> [[1,3,4,5],[2]]
=> 1000 => 1
[2,1,1,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 1110 => 6
[2,1,2] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> 1010 => 4
[2,2,1] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> 1010 => 4
[2,3] => [3,2]
=> [[1,2,5],[3,4]]
=> 0100 => 2
[3,1,1] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> 1100 => 3
[3,2] => [3,2]
=> [[1,2,5],[3,4]]
=> 0100 => 2
[4,1] => [4,1]
=> [[1,3,4,5],[2]]
=> 1000 => 1
[5] => [5]
=> [[1,2,3,4,5]]
=> 0000 => 0
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 11111 => 15
[1,1,1,1,2] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 11110 => 10
[1,1,1,2,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 11110 => 10
[1,1,1,3] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 11100 => 6
[1,1,2,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 11110 => 10
[1,1,2,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 11010 => 7
[1,1,3,1] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 11100 => 6
[1,1,4] => [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 11000 => 3
[1,2,1,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 11110 => 10
[1,2,1,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 11010 => 7
[1,2,2,1] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 11010 => 7
[1,2,3] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 10100 => 4
[1,3,1,1] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 11100 => 6
[1,3,2] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 10100 => 4
[1,4,1] => [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 11000 => 3
[1,5] => [5,1]
=> [[1,3,4,5,6],[2]]
=> 10000 => 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 11110 => 10
[2,1,1,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 11010 => 7
[2,1,2,1] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 11010 => 7
[2,1,3] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 10100 => 4
Description
The sum of the positions of the ones in a binary word.
Mp00040: Integer compositions to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
St000423: Permutations ⟶ ℤResult quality: 56% values known / values provided: 56%distinct values known / distinct values provided: 63%
Values
[1] => [1]
=> [1,0,1,0]
=> [1,2] => 0
[1,1] => [1,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[2] => [2]
=> [1,1,0,0,1,0]
=> [2,1,3] => 0
[1,1,1] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 3
[1,2] => [2,1]
=> [1,0,1,0,1,0]
=> [1,2,3] => 1
[2,1] => [2,1]
=> [1,0,1,0,1,0]
=> [1,2,3] => 1
[3] => [3]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 0
[1,1,1,1] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 6
[1,1,2] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 3
[1,2,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 3
[1,3] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[2,1,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 3
[2,2] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[3,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[4] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => 0
[1,1,1,1,1] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,5,4,3,2] => 10
[1,1,1,2] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => 6
[1,1,2,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => 6
[1,1,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 3
[1,2,1,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => 6
[1,2,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 4
[1,3,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 3
[1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,2,3,1,5] => 1
[2,1,1,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => 6
[2,1,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 4
[2,2,1] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 4
[2,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 2
[3,1,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 3
[3,2] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 2
[4,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,2,3,1,5] => 1
[5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,4,3,2,1,6] => 0
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,6,5,4,3,2] => ? ∊ {0,15}
[1,1,1,1,2] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,6,4,5,3,2] => 10
[1,1,1,2,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,6,4,5,3,2] => 10
[1,1,1,3] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 6
[1,1,2,1,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,6,4,5,3,2] => 10
[1,1,2,2] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 7
[1,1,3,1] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 6
[1,1,4] => [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 3
[1,2,1,1,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,6,4,5,3,2] => 10
[1,2,1,2] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 7
[1,2,2,1] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 7
[1,2,3] => [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 4
[1,3,1,1] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 6
[1,3,2] => [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 4
[1,4,1] => [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 3
[1,5] => [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [5,3,4,2,1,6] => 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,6,4,5,3,2] => 10
[2,1,1,2] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 7
[2,1,2,1] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 7
[2,1,3] => [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 4
[6] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,5,4,3,2,1,7] => ? ∊ {0,15}
[1,1,1,1,1,1,1] => [1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,8,7,6,5,4,3,2] => ? ∊ {0,1,1,15,15,15,15,15,15,21}
[1,1,1,1,1,2] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,7,6,4,5,3,2] => ? ∊ {0,1,1,15,15,15,15,15,15,21}
[1,1,1,1,2,1] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,7,6,4,5,3,2] => ? ∊ {0,1,1,15,15,15,15,15,15,21}
[1,1,1,2,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,7,6,4,5,3,2] => ? ∊ {0,1,1,15,15,15,15,15,15,21}
[1,1,2,1,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,7,6,4,5,3,2] => ? ∊ {0,1,1,15,15,15,15,15,15,21}
[1,2,1,1,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,7,6,4,5,3,2] => ? ∊ {0,1,1,15,15,15,15,15,15,21}
[1,6] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [6,5,3,4,2,1,7] => ? ∊ {0,1,1,15,15,15,15,15,15,21}
[2,1,1,1,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,7,6,4,5,3,2] => ? ∊ {0,1,1,15,15,15,15,15,15,21}
[6,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [6,5,3,4,2,1,7] => ? ∊ {0,1,1,15,15,15,15,15,15,21}
[7] => [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [7,6,5,4,3,2,1,8] => ? ∊ {0,1,1,15,15,15,15,15,15,21}
[1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,9,8,7,6,5,4,3,2] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,1,1,1,1,2] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,8,7,5,6,4,3,2] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,1,1,1,2,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,8,7,5,6,4,3,2] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,1,1,1,3] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,7,5,4,6,3,2] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,1,1,2,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,8,7,5,6,4,3,2] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,1,1,2,2] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,1,1,3,1] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,7,5,4,6,3,2] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,1,2,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,8,7,5,6,4,3,2] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,1,2,1,2] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,1,2,2,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,1,3,1,1] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,7,5,4,6,3,2] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,2,1,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,8,7,5,6,4,3,2] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,2,1,1,2] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,2,1,2,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,2,2,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,3,1,1,1] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,7,5,4,6,3,2] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,6] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [6,3,5,4,2,1,7] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,2,1,1,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,8,7,5,6,4,3,2] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,2,1,1,1,2] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,2,1,1,2,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,2,1,2,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,2,2,1,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,3,1,1,1,1] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,7,5,4,6,3,2] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,6,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [6,3,5,4,2,1,7] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,7] => [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [7,6,4,5,3,2,1,8] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[2,1,1,1,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,8,7,5,6,4,3,2] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[2,1,1,1,1,2] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[2,1,1,1,2,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[2,1,1,2,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[2,1,2,1,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[2,2,1,1,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[2,6] => [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [6,4,3,5,2,1,7] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[3,1,1,1,1,1] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,7,5,4,6,3,2] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[6,1,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [6,3,5,4,2,1,7] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[6,2] => [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [6,4,3,5,2,1,7] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[7,1] => [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [7,6,4,5,3,2,1,8] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[8] => [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [8,7,6,5,4,3,2,1,9] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,10,9,8,7,6,5,4,3,2] => ? ∊ {0,1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,6,6,6,6,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
Description
The number of occurrences of the pattern 123 or of the pattern 132 in a permutation.
Matching statistic: St000436
Mp00040: Integer compositions to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St000436: Permutations ⟶ ℤResult quality: 54% values known / values provided: 54%distinct values known / distinct values provided: 59%
Values
[1] => [1]
=> [1,0,1,0]
=> [2,1] => 0
[1,1] => [1,1]
=> [1,0,1,1,0,0]
=> [2,3,1] => 1
[2] => [2]
=> [1,1,0,0,1,0]
=> [3,1,2] => 0
[1,1,1] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 3
[1,2] => [2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => 1
[2,1] => [2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => 1
[3] => [3]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 0
[1,1,1,1] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 6
[1,1,2] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 3
[1,2,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 3
[1,3] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 1
[2,1,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 3
[2,2] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 2
[3,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 1
[4] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => 0
[1,1,1,1,1] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 10
[1,1,1,2] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 6
[1,1,2,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 6
[1,1,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 3
[1,2,1,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 6
[1,2,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 4
[1,3,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 3
[1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => 1
[2,1,1,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 6
[2,1,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 4
[2,2,1] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 4
[2,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2
[3,1,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 3
[3,2] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2
[4,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => 1
[5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5] => 0
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => ? ∊ {0,15}
[1,1,1,1,2] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => 10
[1,1,1,2,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => 10
[1,1,1,3] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 6
[1,1,2,1,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => 10
[1,1,2,2] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 7
[1,1,3,1] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 6
[1,1,4] => [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => 3
[1,2,1,1,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => 10
[1,2,1,2] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 7
[1,2,2,1] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 7
[1,2,3] => [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 4
[1,3,1,1] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 6
[1,3,2] => [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 4
[1,4,1] => [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => 3
[1,5] => [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [6,2,1,3,4,5] => 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => 10
[2,1,1,2] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 7
[2,1,2,1] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 7
[2,1,3] => [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 4
[6] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [7,1,2,3,4,5,6] => ? ∊ {0,15}
[1,1,1,1,1,1,1] => [1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => ? ∊ {0,1,1,15,15,15,15,15,15,21}
[1,1,1,1,1,2] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? ∊ {0,1,1,15,15,15,15,15,15,21}
[1,1,1,1,2,1] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? ∊ {0,1,1,15,15,15,15,15,15,21}
[1,1,1,2,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? ∊ {0,1,1,15,15,15,15,15,15,21}
[1,1,2,1,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? ∊ {0,1,1,15,15,15,15,15,15,21}
[1,2,1,1,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? ∊ {0,1,1,15,15,15,15,15,15,21}
[1,6] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? ∊ {0,1,1,15,15,15,15,15,15,21}
[2,1,1,1,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? ∊ {0,1,1,15,15,15,15,15,15,21}
[6,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? ∊ {0,1,1,15,15,15,15,15,15,21}
[7] => [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [8,1,2,3,4,5,6,7] => ? ∊ {0,1,1,15,15,15,15,15,15,21}
[1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,9,1] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,1,1,1,1,2] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,1,1,1,2,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,1,1,1,3] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [4,2,3,5,6,7,1] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,1,1,2,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,1,1,2,2] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,1,1,3,1] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [4,2,3,5,6,7,1] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,1,2,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,1,2,1,2] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,1,2,2,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,1,3,1,1] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [4,2,3,5,6,7,1] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,2,1,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,2,1,1,2] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,2,1,2,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,2,2,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,3,1,1,1] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [4,2,3,5,6,7,1] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,6] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,2,1,1,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,2,1,1,1,2] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,2,1,1,2,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,2,1,2,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,2,2,1,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,3,1,1,1,1] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [4,2,3,5,6,7,1] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,6,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,7] => [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [8,2,1,3,4,5,6,7] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[2,1,1,1,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[2,1,1,1,1,2] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[2,1,1,1,2,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[2,1,1,2,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[2,1,2,1,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[2,2,1,1,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[2,6] => [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [7,3,1,2,4,5,6] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[3,1,1,1,1,1] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [4,2,3,5,6,7,1] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[6,1,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[6,2] => [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [7,3,1,2,4,5,6] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[7,1] => [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [8,2,1,3,4,5,6,7] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[8] => [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [9,1,2,3,4,5,6,7,8] => ? ∊ {0,1,1,2,2,3,3,3,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,21,21,21,21,21,21,21,28}
[1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,9,10,1] => ? ∊ {0,1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,6,6,6,6,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
Description
The number of occurrences of the pattern 231 or of the pattern 321 in a permutation.
Matching statistic: St000008
Mp00040: Integer compositions to partitionInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
Mp00207: Standard tableaux horizontal strip sizesInteger compositions
St000008: Integer compositions ⟶ ℤResult quality: 32% values known / values provided: 32%distinct values known / distinct values provided: 78%
Values
[1] => [1]
=> [[1]]
=> [1] => 0
[1,1] => [1,1]
=> [[1],[2]]
=> [1,1] => 1
[2] => [2]
=> [[1,2]]
=> [2] => 0
[1,1,1] => [1,1,1]
=> [[1],[2],[3]]
=> [1,1,1] => 3
[1,2] => [2,1]
=> [[1,3],[2]]
=> [1,2] => 1
[2,1] => [2,1]
=> [[1,3],[2]]
=> [1,2] => 1
[3] => [3]
=> [[1,2,3]]
=> [3] => 0
[1,1,1,1] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [1,1,1,1] => 6
[1,1,2] => [2,1,1]
=> [[1,4],[2],[3]]
=> [1,1,2] => 3
[1,2,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> [1,1,2] => 3
[1,3] => [3,1]
=> [[1,3,4],[2]]
=> [1,3] => 1
[2,1,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> [1,1,2] => 3
[2,2] => [2,2]
=> [[1,2],[3,4]]
=> [2,2] => 2
[3,1] => [3,1]
=> [[1,3,4],[2]]
=> [1,3] => 1
[4] => [4]
=> [[1,2,3,4]]
=> [4] => 0
[1,1,1,1,1] => [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [1,1,1,1,1] => 10
[1,1,1,2] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [1,1,1,2] => 6
[1,1,2,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [1,1,1,2] => 6
[1,1,3] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> [1,1,3] => 3
[1,2,1,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [1,1,1,2] => 6
[1,2,2] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> [1,2,2] => 4
[1,3,1] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> [1,1,3] => 3
[1,4] => [4,1]
=> [[1,3,4,5],[2]]
=> [1,4] => 1
[2,1,1,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [1,1,1,2] => 6
[2,1,2] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> [1,2,2] => 4
[2,2,1] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> [1,2,2] => 4
[2,3] => [3,2]
=> [[1,2,5],[3,4]]
=> [2,3] => 2
[3,1,1] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> [1,1,3] => 3
[3,2] => [3,2]
=> [[1,2,5],[3,4]]
=> [2,3] => 2
[4,1] => [4,1]
=> [[1,3,4,5],[2]]
=> [1,4] => 1
[5] => [5]
=> [[1,2,3,4,5]]
=> [5] => 0
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1] => 15
[1,1,1,1,2] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => 10
[1,1,1,2,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => 10
[1,1,1,3] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => 6
[1,1,2,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => 10
[1,1,2,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => 7
[1,1,3,1] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => 6
[1,1,4] => [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [1,1,4] => 3
[1,2,1,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => 10
[1,2,1,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => 7
[1,2,2,1] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => 7
[1,2,3] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [1,2,3] => 4
[1,3,1,1] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => 6
[1,3,2] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [1,2,3] => 4
[1,4,1] => [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [1,1,4] => 3
[1,5] => [5,1]
=> [[1,3,4,5,6],[2]]
=> [1,5] => 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => 10
[2,1,1,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => 7
[2,1,2,1] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => 7
[1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> [1,1,1,1,1,1,1,1,1] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,1,1,1,1,2] => [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> [1,1,1,1,1,1,1,2] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,1,1,1,2,1] => [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> [1,1,1,1,1,1,1,2] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,1,1,1,3] => [3,1,1,1,1,1,1]
=> [[1,8,9],[2],[3],[4],[5],[6],[7]]
=> [1,1,1,1,1,1,3] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,1,1,2,1,1] => [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> [1,1,1,1,1,1,1,2] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,1,1,2,2] => [2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> [1,1,1,1,1,2,2] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,1,1,3,1] => [3,1,1,1,1,1,1]
=> [[1,8,9],[2],[3],[4],[5],[6],[7]]
=> [1,1,1,1,1,1,3] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,1,1,4] => [4,1,1,1,1,1]
=> [[1,7,8,9],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,4] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,1,2,1,1,1] => [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> [1,1,1,1,1,1,1,2] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,1,2,1,2] => [2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> [1,1,1,1,1,2,2] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,1,2,2,1] => [2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> [1,1,1,1,1,2,2] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,1,2,3] => [3,2,1,1,1,1]
=> [[1,6,9],[2,8],[3],[4],[5],[7]]
=> [1,1,1,1,2,3] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,1,3,1,1] => [3,1,1,1,1,1,1]
=> [[1,8,9],[2],[3],[4],[5],[6],[7]]
=> [1,1,1,1,1,1,3] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,1,3,2] => [3,2,1,1,1,1]
=> [[1,6,9],[2,8],[3],[4],[5],[7]]
=> [1,1,1,1,2,3] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,1,4,1] => [4,1,1,1,1,1]
=> [[1,7,8,9],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,4] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,1,5] => [5,1,1,1,1]
=> [[1,6,7,8,9],[2],[3],[4],[5]]
=> [1,1,1,1,5] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,2,1,1,1,1] => [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> [1,1,1,1,1,1,1,2] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,2,1,1,2] => [2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> [1,1,1,1,1,2,2] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,2,1,2,1] => [2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> [1,1,1,1,1,2,2] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,2,1,3] => [3,2,1,1,1,1]
=> [[1,6,9],[2,8],[3],[4],[5],[7]]
=> [1,1,1,1,2,3] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,2,2,1,1] => [2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> [1,1,1,1,1,2,2] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,2,2,2] => [2,2,2,1,1,1]
=> [[1,5],[2,7],[3,9],[4],[6],[8]]
=> [1,1,1,2,2,2] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,2,3,1] => [3,2,1,1,1,1]
=> [[1,6,9],[2,8],[3],[4],[5],[7]]
=> [1,1,1,1,2,3] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,2,4] => [4,2,1,1,1]
=> [[1,5,8,9],[2,7],[3],[4],[6]]
=> [1,1,1,2,4] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,3,1,1,1] => [3,1,1,1,1,1,1]
=> [[1,8,9],[2],[3],[4],[5],[6],[7]]
=> [1,1,1,1,1,1,3] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,3,1,2] => [3,2,1,1,1,1]
=> [[1,6,9],[2,8],[3],[4],[5],[7]]
=> [1,1,1,1,2,3] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,3,2,1] => [3,2,1,1,1,1]
=> [[1,6,9],[2,8],[3],[4],[5],[7]]
=> [1,1,1,1,2,3] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,3,3] => [3,3,1,1,1]
=> [[1,5,6],[2,8,9],[3],[4],[7]]
=> [1,1,1,3,3] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,4,1,1] => [4,1,1,1,1,1]
=> [[1,7,8,9],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,4] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,4,2] => [4,2,1,1,1]
=> [[1,5,8,9],[2,7],[3],[4],[6]]
=> [1,1,1,2,4] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,5,1] => [5,1,1,1,1]
=> [[1,6,7,8,9],[2],[3],[4],[5]]
=> [1,1,1,1,5] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,1,6] => [6,1,1,1]
=> [[1,5,6,7,8,9],[2],[3],[4]]
=> [1,1,1,6] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,2,1,1,1,1,1] => [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> [1,1,1,1,1,1,1,2] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,2,1,1,1,2] => [2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> [1,1,1,1,1,2,2] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,2,1,1,2,1] => [2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> [1,1,1,1,1,2,2] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,2,1,1,3] => [3,2,1,1,1,1]
=> [[1,6,9],[2,8],[3],[4],[5],[7]]
=> [1,1,1,1,2,3] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,2,1,2,1,1] => [2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> [1,1,1,1,1,2,2] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,2,1,2,2] => [2,2,2,1,1,1]
=> [[1,5],[2,7],[3,9],[4],[6],[8]]
=> [1,1,1,2,2,2] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,2,1,3,1] => [3,2,1,1,1,1]
=> [[1,6,9],[2,8],[3],[4],[5],[7]]
=> [1,1,1,1,2,3] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,2,1,4] => [4,2,1,1,1]
=> [[1,5,8,9],[2,7],[3],[4],[6]]
=> [1,1,1,2,4] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,2,2,1,1,1] => [2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> [1,1,1,1,1,2,2] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,2,2,1,2] => [2,2,2,1,1,1]
=> [[1,5],[2,7],[3,9],[4],[6],[8]]
=> [1,1,1,2,2,2] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,2,2,2,1] => [2,2,2,1,1,1]
=> [[1,5],[2,7],[3,9],[4],[6],[8]]
=> [1,1,1,2,2,2] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,2,2,3] => [3,2,2,1,1]
=> [[1,4,9],[2,6],[3,8],[5],[7]]
=> [1,1,2,2,3] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,2,3,1,1] => [3,2,1,1,1,1]
=> [[1,6,9],[2,8],[3],[4],[5],[7]]
=> [1,1,1,1,2,3] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,2,3,2] => [3,2,2,1,1]
=> [[1,4,9],[2,6],[3,8],[5],[7]]
=> [1,1,2,2,3] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,2,4,1] => [4,2,1,1,1]
=> [[1,5,8,9],[2,7],[3],[4],[6]]
=> [1,1,1,2,4] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,2,5] => [5,2,1,1]
=> [[1,4,7,8,9],[2,6],[3],[5]]
=> [1,1,2,5] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,3,1,1,1,1] => [3,1,1,1,1,1,1]
=> [[1,8,9],[2],[3],[4],[5],[6],[7]]
=> [1,1,1,1,1,1,3] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
[1,1,3,1,1,2] => [3,2,1,1,1,1]
=> [[1,6,9],[2,8],[3],[4],[5],[7]]
=> [1,1,1,1,2,3] => ? ∊ {0,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,28,28,28,28,28,28,28,28,36}
Description
The major index of the composition. The descents of a composition $[c_1,c_2,\dots,c_k]$ are the partial sums $c_1, c_1+c_2,\dots, c_1+\dots+c_{k-1}$, excluding the sum of all parts. The major index of a composition is the sum of its descents. For details about the major index see [[Permutations/Descents-Major]].
The following 17 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001697The shifted natural comajor index of a standard Young tableau. St000012The area of a Dyck path. St000683The number of points below the Dyck path such that the diagonal to the north-east hits the path between two down steps, and the diagonal to the north-west hits the path between two up steps. St000984The number of boxes below precisely one peak. St000492The rob statistic of a set partition. St000493The los statistic of a set partition. St000498The lcs statistic of a set partition. St000577The number of occurrences of the pattern {{1},{2}} such that 1 is a maximal element. St001924The number of cells in an integer partition whose arm and leg length coincide. St000446The disorder of a permutation. St001874Lusztig's a-function for the symmetric group. St000004The major index of a permutation. St000305The inverse major index of a permutation. St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001754The number of tolerances of a finite lattice. St001645The pebbling number of a connected graph.