Identifier
Values
[2] => 1
[1,1] => 0
[3] => 3
[2,1] => 1
[1,1,1] => 0
[4] => 6
[3,1] => 3
[2,2] => 2
[2,1,1] => 1
[1,1,1,1] => 0
[5] => 10
[4,1] => 6
[3,2] => 4
[3,1,1] => 3
[2,2,1] => 2
[2,1,1,1] => 1
[1,1,1,1,1] => 0
[6] => 15
[5,1] => 10
[4,2] => 7
[4,1,1] => 6
[3,3] => 6
[3,2,1] => 4
[3,1,1,1] => 3
[2,2,2] => 3
[2,2,1,1] => 2
[2,1,1,1,1] => 1
[1,1,1,1,1,1] => 0
[7] => 21
[6,1] => 15
[5,2] => 11
[5,1,1] => 10
[4,3] => 9
[4,2,1] => 7
[4,1,1,1] => 6
[3,3,1] => 6
[3,2,2] => 5
[3,2,1,1] => 4
[3,1,1,1,1] => 3
[2,2,2,1] => 3
[2,2,1,1,1] => 2
[2,1,1,1,1,1] => 1
[1,1,1,1,1,1,1] => 0
[8] => 28
[7,1] => 21
[6,2] => 16
[6,1,1] => 15
[5,3] => 13
[5,2,1] => 11
[5,1,1,1] => 10
[4,4] => 12
[4,3,1] => 9
[4,2,2] => 8
[4,2,1,1] => 7
[4,1,1,1,1] => 6
[3,3,2] => 7
[3,3,1,1] => 6
[3,2,2,1] => 5
[3,2,1,1,1] => 4
[3,1,1,1,1,1] => 3
[2,2,2,2] => 4
[2,2,2,1,1] => 3
[2,2,1,1,1,1] => 2
[2,1,1,1,1,1,1] => 1
[1,1,1,1,1,1,1,1] => 0
[9] => 36
[8,1] => 28
[7,2] => 22
[7,1,1] => 21
[6,3] => 18
[6,2,1] => 16
[6,1,1,1] => 15
[5,4] => 16
[5,3,1] => 13
[5,2,2] => 12
[5,2,1,1] => 11
[5,1,1,1,1] => 10
[4,4,1] => 12
[4,3,2] => 10
[4,3,1,1] => 9
[4,2,2,1] => 8
[4,2,1,1,1] => 7
[4,1,1,1,1,1] => 6
[3,3,3] => 9
[3,3,2,1] => 7
[3,3,1,1,1] => 6
[3,2,2,2] => 6
[3,2,2,1,1] => 5
[3,2,1,1,1,1] => 4
[3,1,1,1,1,1,1] => 3
[2,2,2,2,1] => 4
[2,2,2,1,1,1] => 3
[2,2,1,1,1,1,1] => 2
[2,1,1,1,1,1,1,1] => 1
[1,1,1,1,1,1,1,1,1] => 0
[10] => 45
[9,1] => 36
[8,2] => 29
[8,1,1] => 28
[7,3] => 24
[7,2,1] => 22
>>> Load all 270 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of ways to select a row of a Ferrers shape and two cells in this row. Equivalently, if $\lambda = (\lambda_0\geq\lambda_1 \geq \dots\geq\lambda_m)$ is an integer partition, then the statistic is
$$\frac{1}{2} \sum_{i=0}^m \lambda_i(\lambda_i -1).$$
$$\frac{1}{2} \sum_{i=0}^m \lambda_i(\lambda_i -1).$$
References
[1] Xi, N."The leading coefficient of certain Kazhdan-Lusztig polynomials of the permutation group Sn," , p. 4. Xi, N. The leading coefficient of certain Kazhdan-Lusztig polynomials of the permutation group $S_n$ arXiv:math/0401430
[2] Lusztig, G. Cells in affine Weyl groups MathSciNet:0803338
[2] Lusztig, G. Cells in affine Weyl groups MathSciNet:0803338
Code
def statistic(pi):
return sum(binomial(p, Integer(2)) for p in pi)
Created
Aug 07, 2016 at 13:27 by Martin Rubey
Updated
Sep 07, 2024 at 01:41 by Sara Billey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!