Processing math: 20%

Your data matches 31 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000566
St000566: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[2]
=> 1
[1,1]
=> 0
[3]
=> 3
[2,1]
=> 1
[1,1,1]
=> 0
[4]
=> 6
[3,1]
=> 3
[2,2]
=> 2
[2,1,1]
=> 1
[1,1,1,1]
=> 0
[5]
=> 10
[4,1]
=> 6
[3,2]
=> 4
[3,1,1]
=> 3
[2,2,1]
=> 2
[2,1,1,1]
=> 1
[1,1,1,1,1]
=> 0
[6]
=> 15
[5,1]
=> 10
[4,2]
=> 7
[4,1,1]
=> 6
[3,3]
=> 6
[3,2,1]
=> 4
[3,1,1,1]
=> 3
[2,2,2]
=> 3
[2,2,1,1]
=> 2
[2,1,1,1,1]
=> 1
[1,1,1,1,1,1]
=> 0
[7]
=> 21
[6,1]
=> 15
[5,2]
=> 11
[5,1,1]
=> 10
[4,3]
=> 9
[4,2,1]
=> 7
[4,1,1,1]
=> 6
[3,3,1]
=> 6
[3,2,2]
=> 5
[3,2,1,1]
=> 4
[3,1,1,1,1]
=> 3
[2,2,2,1]
=> 3
[2,2,1,1,1]
=> 2
[2,1,1,1,1,1]
=> 1
[1,1,1,1,1,1,1]
=> 0
[8]
=> 28
[7,1]
=> 21
[6,2]
=> 16
[6,1,1]
=> 15
[5,3]
=> 13
[5,2,1]
=> 11
[5,1,1,1]
=> 10
Description
The number of ways to select a row of a Ferrers shape and two cells in this row. Equivalently, if λ=(λ0λ1λm) is an integer partition, then the statistic is 12mi=0λi(λi1).
Matching statistic: St000185
Mp00044: Integer partitions conjugateInteger partitions
St000185: Integer partitions ⟶ ℤResult quality: 69% values known / values provided: 69%distinct values known / distinct values provided: 77%
Values
[2]
=> [1,1]
=> 1
[1,1]
=> [2]
=> 0
[3]
=> [1,1,1]
=> 3
[2,1]
=> [2,1]
=> 1
[1,1,1]
=> [3]
=> 0
[4]
=> [1,1,1,1]
=> 6
[3,1]
=> [2,1,1]
=> 3
[2,2]
=> [2,2]
=> 2
[2,1,1]
=> [3,1]
=> 1
[1,1,1,1]
=> [4]
=> 0
[5]
=> [1,1,1,1,1]
=> 10
[4,1]
=> [2,1,1,1]
=> 6
[3,2]
=> [2,2,1]
=> 4
[3,1,1]
=> [3,1,1]
=> 3
[2,2,1]
=> [3,2]
=> 2
[2,1,1,1]
=> [4,1]
=> 1
[1,1,1,1,1]
=> [5]
=> 0
[6]
=> [1,1,1,1,1,1]
=> 15
[5,1]
=> [2,1,1,1,1]
=> 10
[4,2]
=> [2,2,1,1]
=> 7
[4,1,1]
=> [3,1,1,1]
=> 6
[3,3]
=> [2,2,2]
=> 6
[3,2,1]
=> [3,2,1]
=> 4
[3,1,1,1]
=> [4,1,1]
=> 3
[2,2,2]
=> [3,3]
=> 3
[2,2,1,1]
=> [4,2]
=> 2
[2,1,1,1,1]
=> [5,1]
=> 1
[1,1,1,1,1,1]
=> [6]
=> 0
[7]
=> [1,1,1,1,1,1,1]
=> 21
[6,1]
=> [2,1,1,1,1,1]
=> 15
[5,2]
=> [2,2,1,1,1]
=> 11
[5,1,1]
=> [3,1,1,1,1]
=> 10
[4,3]
=> [2,2,2,1]
=> 9
[4,2,1]
=> [3,2,1,1]
=> 7
[4,1,1,1]
=> [4,1,1,1]
=> 6
[3,3,1]
=> [3,2,2]
=> 6
[3,2,2]
=> [3,3,1]
=> 5
[3,2,1,1]
=> [4,2,1]
=> 4
[3,1,1,1,1]
=> [5,1,1]
=> 3
[2,2,2,1]
=> [4,3]
=> 3
[2,2,1,1,1]
=> [5,2]
=> 2
[2,1,1,1,1,1]
=> [6,1]
=> 1
[1,1,1,1,1,1,1]
=> [7]
=> 0
[8]
=> [1,1,1,1,1,1,1,1]
=> 28
[7,1]
=> [2,1,1,1,1,1,1]
=> 21
[6,2]
=> [2,2,1,1,1,1]
=> 16
[6,1,1]
=> [3,1,1,1,1,1]
=> 15
[5,3]
=> [2,2,2,1,1]
=> 13
[5,2,1]
=> [3,2,1,1,1]
=> 11
[5,1,1,1]
=> [4,1,1,1,1]
=> 10
[11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 55
[10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> ? = 45
[9,2]
=> [2,2,1,1,1,1,1,1,1]
=> ? = 37
[9,1,1]
=> [3,1,1,1,1,1,1,1,1]
=> ? = 36
[8,3]
=> [2,2,2,1,1,1,1,1]
=> ? = 31
[8,2,1]
=> [3,2,1,1,1,1,1,1]
=> ? = 29
[8,1,1,1]
=> [4,1,1,1,1,1,1,1]
=> ? = 28
[7,4]
=> [2,2,2,2,1,1,1]
=> ? = 27
[7,3,1]
=> [3,2,2,1,1,1,1]
=> ? = 24
[7,2,2]
=> [3,3,1,1,1,1,1]
=> ? = 23
[7,2,1,1]
=> [4,2,1,1,1,1,1]
=> ? = 22
[7,1,1,1,1]
=> [5,1,1,1,1,1,1]
=> ? = 21
[6,4,1]
=> [3,2,2,2,1,1]
=> ? = 21
[6,3,2]
=> [3,3,2,1,1,1]
=> ? = 19
[6,3,1,1]
=> [4,2,2,1,1,1]
=> ? = 18
[6,2,2,1]
=> [4,3,1,1,1,1]
=> ? = 17
[6,2,1,1,1]
=> [5,2,1,1,1,1]
=> ? = 16
[6,1,1,1,1,1]
=> [6,1,1,1,1,1]
=> ? = 15
[5,2,1,1,1,1]
=> [6,2,1,1,1]
=> ? = 11
[5,1,1,1,1,1,1]
=> [7,1,1,1,1]
=> ? = 10
[4,3,1,1,1,1]
=> [6,2,2,1]
=> ? = 9
[4,2,2,1,1,1]
=> [6,3,1,1]
=> ? = 8
[4,2,1,1,1,1,1]
=> [7,2,1,1]
=> ? = 7
[4,1,1,1,1,1,1,1]
=> [8,1,1,1]
=> ? = 6
[3,3,2,1,1,1]
=> [6,3,2]
=> ? = 7
[3,3,1,1,1,1,1]
=> [7,2,2]
=> ? = 6
[3,2,2,1,1,1,1]
=> [7,3,1]
=> ? = 5
[3,2,1,1,1,1,1,1]
=> [8,2,1]
=> ? = 4
[3,1,1,1,1,1,1,1,1]
=> [9,1,1]
=> ? = 3
[2,2,1,1,1,1,1,1,1]
=> [9,2]
=> ? = 2
[2,1,1,1,1,1,1,1,1,1]
=> [10,1]
=> ? = 1
[1,1,1,1,1,1,1,1,1,1,1]
=> [11]
=> ? = 0
[12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 66
[11,1]
=> [2,1,1,1,1,1,1,1,1,1,1]
=> ? = 55
[10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> ? = 46
[10,1,1]
=> [3,1,1,1,1,1,1,1,1,1]
=> ? = 45
[9,3]
=> [2,2,2,1,1,1,1,1,1]
=> ? = 39
[9,2,1]
=> [3,2,1,1,1,1,1,1,1]
=> ? = 37
[9,1,1,1]
=> [4,1,1,1,1,1,1,1,1]
=> ? = 36
[8,4]
=> [2,2,2,2,1,1,1,1]
=> ? = 34
[8,3,1]
=> [3,2,2,1,1,1,1,1]
=> ? = 31
[8,2,2]
=> [3,3,1,1,1,1,1,1]
=> ? = 30
[8,2,1,1]
=> [4,2,1,1,1,1,1,1]
=> ? = 29
[8,1,1,1,1]
=> [5,1,1,1,1,1,1,1]
=> ? = 28
[7,5]
=> [2,2,2,2,2,1,1]
=> ? = 31
[7,4,1]
=> [3,2,2,2,1,1,1]
=> ? = 27
[7,3,2]
=> [3,3,2,1,1,1,1]
=> ? = 25
[7,3,1,1]
=> [4,2,2,1,1,1,1]
=> ? = 24
[7,2,2,1]
=> [4,3,1,1,1,1,1]
=> ? = 23
[7,2,1,1,1]
=> [5,2,1,1,1,1,1]
=> ? = 22
Description
The weighted size of a partition. Let λ=(λ0λ1λm) be an integer partition. Then the weighted size of λ is mi=0iλi. This is also the sum of the leg lengths of the cells in λ, or \sum_i \binom{\lambda^{\prime}_i}{2} where \lambda^{\prime} is the conjugate partition of \lambda. This is the minimal number of inversions a permutation with the given shape can have, see [1, cor.2.2]. This is also the smallest possible sum of the entries of a semistandard tableau (allowing 0 as a part) of shape \lambda=(\lambda_0,\lambda_1,\ldots,\lambda_m), obtained uniquely by placing i-1 in all the cells of the ith row of \lambda, see [2, eq.7.103].
Matching statistic: St000169
Mp00044: Integer partitions conjugateInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
St000169: Standard tableaux ⟶ ℤResult quality: 64% values known / values provided: 64%distinct values known / distinct values provided: 74%
Values
[2]
=> [1,1]
=> [[1],[2]]
=> 1
[1,1]
=> [2]
=> [[1,2]]
=> 0
[3]
=> [1,1,1]
=> [[1],[2],[3]]
=> 3
[2,1]
=> [2,1]
=> [[1,2],[3]]
=> 1
[1,1,1]
=> [3]
=> [[1,2,3]]
=> 0
[4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 6
[3,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 3
[2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 2
[2,1,1]
=> [3,1]
=> [[1,2,3],[4]]
=> 1
[1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 0
[5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 10
[4,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 6
[3,2]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 4
[3,1,1]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[2,2,1]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 2
[2,1,1,1]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 1
[1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> 0
[6]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 15
[5,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 10
[4,2]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> 7
[4,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> 6
[3,3]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 6
[3,2,1]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 4
[3,1,1,1]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> 3
[2,2,2]
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> 3
[2,2,1,1]
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> 2
[2,1,1,1,1]
=> [5,1]
=> [[1,2,3,4,5],[6]]
=> 1
[1,1,1,1,1,1]
=> [6]
=> [[1,2,3,4,5,6]]
=> 0
[7]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> 21
[6,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> 15
[5,2]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> 11
[5,1,1]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> 10
[4,3]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> 9
[4,2,1]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> 7
[4,1,1,1]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> 6
[3,3,1]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> 6
[3,2,2]
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> 5
[3,2,1,1]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> 4
[3,1,1,1,1]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> 3
[2,2,2,1]
=> [4,3]
=> [[1,2,3,4],[5,6,7]]
=> 3
[2,2,1,1,1]
=> [5,2]
=> [[1,2,3,4,5],[6,7]]
=> 2
[2,1,1,1,1,1]
=> [6,1]
=> [[1,2,3,4,5,6],[7]]
=> 1
[1,1,1,1,1,1,1]
=> [7]
=> [[1,2,3,4,5,6,7]]
=> 0
[8]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> 28
[7,1]
=> [2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> 21
[6,2]
=> [2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> 16
[6,1,1]
=> [3,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8]]
=> 15
[5,3]
=> [2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> 13
[5,2,1]
=> [3,2,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8]]
=> 11
[5,1,1,1]
=> [4,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8]]
=> 10
[11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 55
[10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 45
[9,2]
=> [2,2,1,1,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 37
[9,1,1]
=> [3,1,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 36
[8,3]
=> [2,2,2,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11]]
=> ? = 31
[8,2,1]
=> [3,2,1,1,1,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8],[9],[10],[11]]
=> ? = 29
[8,1,1,1]
=> [4,1,1,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 28
[7,4]
=> [2,2,2,2,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11]]
=> ? = 27
[7,3,1]
=> [3,2,2,1,1,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9],[10],[11]]
=> ? = 24
[7,2,2]
=> [3,3,1,1,1,1,1]
=> [[1,2,3],[4,5,6],[7],[8],[9],[10],[11]]
=> ? = 23
[7,2,1,1]
=> [4,2,1,1,1,1,1]
=> [[1,2,3,4],[5,6],[7],[8],[9],[10],[11]]
=> ? = 22
[7,1,1,1,1]
=> [5,1,1,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9],[10],[11]]
=> ? = 21
[6,5]
=> [2,2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11]]
=> ? = 25
[6,4,1]
=> [3,2,2,2,1,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10],[11]]
=> ? = 21
[6,3,2]
=> [3,3,2,1,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9],[10],[11]]
=> ? = 19
[6,3,1,1]
=> [4,2,2,1,1,1]
=> [[1,2,3,4],[5,6],[7,8],[9],[10],[11]]
=> ? = 18
[6,2,2,1]
=> [4,3,1,1,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9],[10],[11]]
=> ? = 17
[6,2,1,1,1]
=> [5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> ? = 16
[6,1,1,1,1,1]
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? = 15
[5,5,1]
=> [3,2,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11]]
=> ? = 20
[5,2,1,1,1,1]
=> [6,2,1,1,1]
=> [[1,2,3,4,5,6],[7,8],[9],[10],[11]]
=> ? = 11
[5,1,1,1,1,1,1]
=> [7,1,1,1,1]
=> [[1,2,3,4,5,6,7],[8],[9],[10],[11]]
=> ? = 10
[4,3,1,1,1,1]
=> [6,2,2,1]
=> [[1,2,3,4,5,6],[7,8],[9,10],[11]]
=> ? = 9
[4,2,2,1,1,1]
=> [6,3,1,1]
=> [[1,2,3,4,5,6],[7,8,9],[10],[11]]
=> ? = 8
[4,2,1,1,1,1,1]
=> [7,2,1,1]
=> [[1,2,3,4,5,6,7],[8,9],[10],[11]]
=> ? = 7
[4,1,1,1,1,1,1,1]
=> [8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> ? = 6
[3,3,2,1,1,1]
=> [6,3,2]
=> [[1,2,3,4,5,6],[7,8,9],[10,11]]
=> ? = 7
[3,3,1,1,1,1,1]
=> [7,2,2]
=> [[1,2,3,4,5,6,7],[8,9],[10,11]]
=> ? = 6
[3,2,2,2,2]
=> [5,5,1]
=> [[1,2,3,4,5],[6,7,8,9,10],[11]]
=> ? = 7
[3,2,2,2,1,1]
=> [6,4,1]
=> [[1,2,3,4,5,6],[7,8,9,10],[11]]
=> ? = 6
[3,2,2,1,1,1,1]
=> [7,3,1]
=> [[1,2,3,4,5,6,7],[8,9,10],[11]]
=> ? = 5
[3,2,1,1,1,1,1,1]
=> [8,2,1]
=> [[1,2,3,4,5,6,7,8],[9,10],[11]]
=> ? = 4
[3,1,1,1,1,1,1,1,1]
=> [9,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11]]
=> ? = 3
[2,2,2,2,2,1]
=> [6,5]
=> [[1,2,3,4,5,6],[7,8,9,10,11]]
=> ? = 5
[2,2,2,2,1,1,1]
=> [7,4]
=> [[1,2,3,4,5,6,7],[8,9,10,11]]
=> ? = 4
[2,2,2,1,1,1,1,1]
=> [8,3]
=> [[1,2,3,4,5,6,7,8],[9,10,11]]
=> ? = 3
[2,2,1,1,1,1,1,1,1]
=> [9,2]
=> [[1,2,3,4,5,6,7,8,9],[10,11]]
=> ? = 2
[2,1,1,1,1,1,1,1,1,1]
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 1
[1,1,1,1,1,1,1,1,1,1,1]
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? = 0
[12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 66
[11,1]
=> [2,1,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 55
[10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 46
[10,1,1]
=> [3,1,1,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 45
[9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[9,2,1]
=> [3,2,1,1,1,1,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 37
[9,1,1,1]
=> [4,1,1,1,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 36
[8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[8,3,1]
=> [3,2,2,1,1,1,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9],[10],[11],[12]]
=> ? = 31
[8,2,2]
=> [3,3,1,1,1,1,1,1]
=> [[1,2,3],[4,5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 30
[8,2,1,1]
=> [4,2,1,1,1,1,1,1]
=> [[1,2,3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 29
Description
The cocharge of a standard tableau. The '''cocharge''' of a standard tableau T, denoted \mathrm{cc}(T), is defined to be the cocharge of the reading word of the tableau. The cocharge of a permutation w_1 w_2\cdots w_n can be computed by the following algorithm: 1) Starting from w_n, scan the entries right-to-left until finding the entry 1 with a superscript 0. 2) Continue scanning until the 2 is found, and label this with a superscript 1. Then scan until the 3 is found, labeling with a 2, and so on, incrementing the label each time, until the beginning of the word is reached. Then go back to the end and scan again from right to left, and *do not* increment the superscript label for the first number found in the next scan. Then continue scanning and labeling, each time incrementing the superscript only if we have not cycled around the word since the last labeling. 3) The cocharge is defined as the sum of the superscript labels on the letters.
Matching statistic: St000330
Mp00044: Integer partitions conjugateInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
St000330: Standard tableaux ⟶ ℤResult quality: 64% values known / values provided: 64%distinct values known / distinct values provided: 74%
Values
[2]
=> [1,1]
=> [[1],[2]]
=> 1
[1,1]
=> [2]
=> [[1,2]]
=> 0
[3]
=> [1,1,1]
=> [[1],[2],[3]]
=> 3
[2,1]
=> [2,1]
=> [[1,3],[2]]
=> 1
[1,1,1]
=> [3]
=> [[1,2,3]]
=> 0
[4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 6
[3,1]
=> [2,1,1]
=> [[1,4],[2],[3]]
=> 3
[2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 2
[2,1,1]
=> [3,1]
=> [[1,3,4],[2]]
=> 1
[1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 0
[5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 10
[4,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 6
[3,2]
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 4
[3,1,1]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 3
[2,2,1]
=> [3,2]
=> [[1,2,5],[3,4]]
=> 2
[2,1,1,1]
=> [4,1]
=> [[1,3,4,5],[2]]
=> 1
[1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> 0
[6]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 15
[5,1]
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[4,2]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 7
[4,1,1]
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 6
[3,3]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 6
[3,2,1]
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 4
[3,1,1,1]
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 3
[2,2,2]
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> 3
[2,2,1,1]
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 2
[2,1,1,1,1]
=> [5,1]
=> [[1,3,4,5,6],[2]]
=> 1
[1,1,1,1,1,1]
=> [6]
=> [[1,2,3,4,5,6]]
=> 0
[7]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> 21
[6,1]
=> [2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> 15
[5,2]
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> 11
[5,1,1]
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> 10
[4,3]
=> [2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> 9
[4,2,1]
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> 7
[4,1,1,1]
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> 6
[3,3,1]
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> 6
[3,2,2]
=> [3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> 5
[3,2,1,1]
=> [4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> 4
[3,1,1,1,1]
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> 3
[2,2,2,1]
=> [4,3]
=> [[1,2,3,7],[4,5,6]]
=> 3
[2,2,1,1,1]
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> 2
[2,1,1,1,1,1]
=> [6,1]
=> [[1,3,4,5,6,7],[2]]
=> 1
[1,1,1,1,1,1,1]
=> [7]
=> [[1,2,3,4,5,6,7]]
=> 0
[8]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> 28
[7,1]
=> [2,1,1,1,1,1,1]
=> [[1,8],[2],[3],[4],[5],[6],[7]]
=> 21
[6,2]
=> [2,2,1,1,1,1]
=> [[1,6],[2,8],[3],[4],[5],[7]]
=> 16
[6,1,1]
=> [3,1,1,1,1,1]
=> [[1,7,8],[2],[3],[4],[5],[6]]
=> 15
[5,3]
=> [2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5],[7]]
=> 13
[5,2,1]
=> [3,2,1,1,1]
=> [[1,5,8],[2,7],[3],[4],[6]]
=> 11
[5,1,1,1]
=> [4,1,1,1,1]
=> [[1,6,7,8],[2],[3],[4],[5]]
=> 10
[11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 55
[10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,11],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> ? = 45
[9,2]
=> [2,2,1,1,1,1,1,1,1]
=> [[1,9],[2,11],[3],[4],[5],[6],[7],[8],[10]]
=> ? = 37
[9,1,1]
=> [3,1,1,1,1,1,1,1,1]
=> [[1,10,11],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 36
[8,3]
=> [2,2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3,11],[4],[5],[6],[8],[10]]
=> ? = 31
[8,2,1]
=> [3,2,1,1,1,1,1,1]
=> [[1,8,11],[2,10],[3],[4],[5],[6],[7],[9]]
=> ? = 29
[8,1,1,1]
=> [4,1,1,1,1,1,1,1]
=> [[1,9,10,11],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 28
[7,4]
=> [2,2,2,2,1,1,1]
=> [[1,5],[2,7],[3,9],[4,11],[6],[8],[10]]
=> ? = 27
[7,3,1]
=> [3,2,2,1,1,1,1]
=> [[1,6,11],[2,8],[3,10],[4],[5],[7],[9]]
=> ? = 24
[7,2,2]
=> [3,3,1,1,1,1,1]
=> [[1,7,8],[2,10,11],[3],[4],[5],[6],[9]]
=> ? = 23
[7,2,1,1]
=> [4,2,1,1,1,1,1]
=> [[1,7,10,11],[2,9],[3],[4],[5],[6],[8]]
=> ? = 22
[7,1,1,1,1]
=> [5,1,1,1,1,1,1]
=> [[1,8,9,10,11],[2],[3],[4],[5],[6],[7]]
=> ? = 21
[6,5]
=> [2,2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? = 25
[6,4,1]
=> [3,2,2,2,1,1]
=> [[1,4,11],[2,6],[3,8],[5,10],[7],[9]]
=> ? = 21
[6,3,2]
=> [3,3,2,1,1,1]
=> [[1,5,8],[2,7,11],[3,10],[4],[6],[9]]
=> ? = 19
[6,3,1,1]
=> [4,2,2,1,1,1]
=> [[1,5,10,11],[2,7],[3,9],[4],[6],[8]]
=> ? = 18
[6,2,2,1]
=> [4,3,1,1,1,1]
=> [[1,6,7,11],[2,9,10],[3],[4],[5],[8]]
=> ? = 17
[6,2,1,1,1]
=> [5,2,1,1,1,1]
=> [[1,6,9,10,11],[2,8],[3],[4],[5],[7]]
=> ? = 16
[6,1,1,1,1,1]
=> [6,1,1,1,1,1]
=> [[1,7,8,9,10,11],[2],[3],[4],[5],[6]]
=> ? = 15
[5,5,1]
=> [3,2,2,2,2]
=> [[1,2,11],[3,4],[5,6],[7,8],[9,10]]
=> ? = 20
[5,2,1,1,1,1]
=> [6,2,1,1,1]
=> [[1,5,8,9,10,11],[2,7],[3],[4],[6]]
=> ? = 11
[5,1,1,1,1,1,1]
=> [7,1,1,1,1]
=> [[1,6,7,8,9,10,11],[2],[3],[4],[5]]
=> ? = 10
[4,3,1,1,1,1]
=> [6,2,2,1]
=> [[1,3,8,9,10,11],[2,5],[4,7],[6]]
=> ? = 9
[4,2,2,1,1,1]
=> [6,3,1,1]
=> [[1,4,5,9,10,11],[2,7,8],[3],[6]]
=> ? = 8
[4,2,1,1,1,1,1]
=> [7,2,1,1]
=> [[1,4,7,8,9,10,11],[2,6],[3],[5]]
=> ? = 7
[4,1,1,1,1,1,1,1]
=> [8,1,1,1]
=> [[1,5,6,7,8,9,10,11],[2],[3],[4]]
=> ? = 6
[3,3,2,1,1,1]
=> [6,3,2]
=> [[1,2,5,9,10,11],[3,4,8],[6,7]]
=> ? = 7
[3,3,1,1,1,1,1]
=> [7,2,2]
=> [[1,2,7,8,9,10,11],[3,4],[5,6]]
=> ? = 6
[3,2,2,2,2]
=> [5,5,1]
=> [[1,3,4,5,6],[2,8,9,10,11],[7]]
=> ? = 7
[3,2,2,2,1,1]
=> [6,4,1]
=> [[1,3,4,5,10,11],[2,7,8,9],[6]]
=> ? = 6
[3,2,2,1,1,1,1]
=> [7,3,1]
=> [[1,3,4,8,9,10,11],[2,6,7],[5]]
=> ? = 5
[3,2,1,1,1,1,1,1]
=> [8,2,1]
=> [[1,3,6,7,8,9,10,11],[2,5],[4]]
=> ? = 4
[3,1,1,1,1,1,1,1,1]
=> [9,1,1]
=> [[1,4,5,6,7,8,9,10,11],[2],[3]]
=> ? = 3
[2,2,2,2,2,1]
=> [6,5]
=> [[1,2,3,4,5,11],[6,7,8,9,10]]
=> ? = 5
[2,2,2,2,1,1,1]
=> [7,4]
=> [[1,2,3,4,9,10,11],[5,6,7,8]]
=> ? = 4
[2,2,2,1,1,1,1,1]
=> [8,3]
=> [[1,2,3,7,8,9,10,11],[4,5,6]]
=> ? = 3
[2,2,1,1,1,1,1,1,1]
=> [9,2]
=> [[1,2,5,6,7,8,9,10,11],[3,4]]
=> ? = 2
[2,1,1,1,1,1,1,1,1,1]
=> [10,1]
=> [[1,3,4,5,6,7,8,9,10,11],[2]]
=> ? = 1
[1,1,1,1,1,1,1,1,1,1,1]
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? = 0
[12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 66
[11,1]
=> [2,1,1,1,1,1,1,1,1,1,1]
=> [[1,12],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 55
[10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [[1,10],[2,12],[3],[4],[5],[6],[7],[8],[9],[11]]
=> ? = 46
[10,1,1]
=> [3,1,1,1,1,1,1,1,1,1]
=> [[1,11,12],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> ? = 45
[9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,8],[2,10],[3,12],[4],[5],[6],[7],[9],[11]]
=> ? = 39
[9,2,1]
=> [3,2,1,1,1,1,1,1,1]
=> [[1,9,12],[2,11],[3],[4],[5],[6],[7],[8],[10]]
=> ? = 37
[9,1,1,1]
=> [4,1,1,1,1,1,1,1,1]
=> [[1,10,11,12],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 36
[8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,6],[2,8],[3,10],[4,12],[5],[7],[9],[11]]
=> ? = 34
[8,3,1]
=> [3,2,2,1,1,1,1,1]
=> [[1,7,12],[2,9],[3,11],[4],[5],[6],[8],[10]]
=> ? = 31
[8,2,2]
=> [3,3,1,1,1,1,1,1]
=> [[1,8,9],[2,11,12],[3],[4],[5],[6],[7],[10]]
=> ? = 30
[8,2,1,1]
=> [4,2,1,1,1,1,1,1]
=> [[1,8,11,12],[2,10],[3],[4],[5],[6],[7],[9]]
=> ? = 29
Description
The (standard) major index of a standard tableau. A descent of a standard tableau T is an index i such that i+1 appears in a row strictly below the row of i. The (standard) major index is the the sum of the descents.
Mp00044: Integer partitions conjugateInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
St000336: Standard tableaux ⟶ ℤResult quality: 64% values known / values provided: 64%distinct values known / distinct values provided: 74%
Values
[2]
=> [1,1]
=> [[1],[2]]
=> 1
[1,1]
=> [2]
=> [[1,2]]
=> 0
[3]
=> [1,1,1]
=> [[1],[2],[3]]
=> 3
[2,1]
=> [2,1]
=> [[1,3],[2]]
=> 1
[1,1,1]
=> [3]
=> [[1,2,3]]
=> 0
[4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 6
[3,1]
=> [2,1,1]
=> [[1,4],[2],[3]]
=> 3
[2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 2
[2,1,1]
=> [3,1]
=> [[1,3,4],[2]]
=> 1
[1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 0
[5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 10
[4,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 6
[3,2]
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 4
[3,1,1]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 3
[2,2,1]
=> [3,2]
=> [[1,2,5],[3,4]]
=> 2
[2,1,1,1]
=> [4,1]
=> [[1,3,4,5],[2]]
=> 1
[1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> 0
[6]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 15
[5,1]
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[4,2]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 7
[4,1,1]
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 6
[3,3]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 6
[3,2,1]
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 4
[3,1,1,1]
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 3
[2,2,2]
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> 3
[2,2,1,1]
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 2
[2,1,1,1,1]
=> [5,1]
=> [[1,3,4,5,6],[2]]
=> 1
[1,1,1,1,1,1]
=> [6]
=> [[1,2,3,4,5,6]]
=> 0
[7]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> 21
[6,1]
=> [2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> 15
[5,2]
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> 11
[5,1,1]
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> 10
[4,3]
=> [2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> 9
[4,2,1]
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> 7
[4,1,1,1]
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> 6
[3,3,1]
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> 6
[3,2,2]
=> [3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> 5
[3,2,1,1]
=> [4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> 4
[3,1,1,1,1]
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> 3
[2,2,2,1]
=> [4,3]
=> [[1,2,3,7],[4,5,6]]
=> 3
[2,2,1,1,1]
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> 2
[2,1,1,1,1,1]
=> [6,1]
=> [[1,3,4,5,6,7],[2]]
=> 1
[1,1,1,1,1,1,1]
=> [7]
=> [[1,2,3,4,5,6,7]]
=> 0
[8]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> 28
[7,1]
=> [2,1,1,1,1,1,1]
=> [[1,8],[2],[3],[4],[5],[6],[7]]
=> 21
[6,2]
=> [2,2,1,1,1,1]
=> [[1,6],[2,8],[3],[4],[5],[7]]
=> 16
[6,1,1]
=> [3,1,1,1,1,1]
=> [[1,7,8],[2],[3],[4],[5],[6]]
=> 15
[5,3]
=> [2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5],[7]]
=> 13
[5,2,1]
=> [3,2,1,1,1]
=> [[1,5,8],[2,7],[3],[4],[6]]
=> 11
[5,1,1,1]
=> [4,1,1,1,1]
=> [[1,6,7,8],[2],[3],[4],[5]]
=> 10
[11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 55
[10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,11],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> ? = 45
[9,2]
=> [2,2,1,1,1,1,1,1,1]
=> [[1,9],[2,11],[3],[4],[5],[6],[7],[8],[10]]
=> ? = 37
[9,1,1]
=> [3,1,1,1,1,1,1,1,1]
=> [[1,10,11],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 36
[8,3]
=> [2,2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3,11],[4],[5],[6],[8],[10]]
=> ? = 31
[8,2,1]
=> [3,2,1,1,1,1,1,1]
=> [[1,8,11],[2,10],[3],[4],[5],[6],[7],[9]]
=> ? = 29
[8,1,1,1]
=> [4,1,1,1,1,1,1,1]
=> [[1,9,10,11],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 28
[7,4]
=> [2,2,2,2,1,1,1]
=> [[1,5],[2,7],[3,9],[4,11],[6],[8],[10]]
=> ? = 27
[7,3,1]
=> [3,2,2,1,1,1,1]
=> [[1,6,11],[2,8],[3,10],[4],[5],[7],[9]]
=> ? = 24
[7,2,2]
=> [3,3,1,1,1,1,1]
=> [[1,7,8],[2,10,11],[3],[4],[5],[6],[9]]
=> ? = 23
[7,2,1,1]
=> [4,2,1,1,1,1,1]
=> [[1,7,10,11],[2,9],[3],[4],[5],[6],[8]]
=> ? = 22
[7,1,1,1,1]
=> [5,1,1,1,1,1,1]
=> [[1,8,9,10,11],[2],[3],[4],[5],[6],[7]]
=> ? = 21
[6,5]
=> [2,2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? = 25
[6,4,1]
=> [3,2,2,2,1,1]
=> [[1,4,11],[2,6],[3,8],[5,10],[7],[9]]
=> ? = 21
[6,3,2]
=> [3,3,2,1,1,1]
=> [[1,5,8],[2,7,11],[3,10],[4],[6],[9]]
=> ? = 19
[6,3,1,1]
=> [4,2,2,1,1,1]
=> [[1,5,10,11],[2,7],[3,9],[4],[6],[8]]
=> ? = 18
[6,2,2,1]
=> [4,3,1,1,1,1]
=> [[1,6,7,11],[2,9,10],[3],[4],[5],[8]]
=> ? = 17
[6,2,1,1,1]
=> [5,2,1,1,1,1]
=> [[1,6,9,10,11],[2,8],[3],[4],[5],[7]]
=> ? = 16
[6,1,1,1,1,1]
=> [6,1,1,1,1,1]
=> [[1,7,8,9,10,11],[2],[3],[4],[5],[6]]
=> ? = 15
[5,5,1]
=> [3,2,2,2,2]
=> [[1,2,11],[3,4],[5,6],[7,8],[9,10]]
=> ? = 20
[5,2,1,1,1,1]
=> [6,2,1,1,1]
=> [[1,5,8,9,10,11],[2,7],[3],[4],[6]]
=> ? = 11
[5,1,1,1,1,1,1]
=> [7,1,1,1,1]
=> [[1,6,7,8,9,10,11],[2],[3],[4],[5]]
=> ? = 10
[4,3,1,1,1,1]
=> [6,2,2,1]
=> [[1,3,8,9,10,11],[2,5],[4,7],[6]]
=> ? = 9
[4,2,2,1,1,1]
=> [6,3,1,1]
=> [[1,4,5,9,10,11],[2,7,8],[3],[6]]
=> ? = 8
[4,2,1,1,1,1,1]
=> [7,2,1,1]
=> [[1,4,7,8,9,10,11],[2,6],[3],[5]]
=> ? = 7
[4,1,1,1,1,1,1,1]
=> [8,1,1,1]
=> [[1,5,6,7,8,9,10,11],[2],[3],[4]]
=> ? = 6
[3,3,2,1,1,1]
=> [6,3,2]
=> [[1,2,5,9,10,11],[3,4,8],[6,7]]
=> ? = 7
[3,3,1,1,1,1,1]
=> [7,2,2]
=> [[1,2,7,8,9,10,11],[3,4],[5,6]]
=> ? = 6
[3,2,2,2,2]
=> [5,5,1]
=> [[1,3,4,5,6],[2,8,9,10,11],[7]]
=> ? = 7
[3,2,2,2,1,1]
=> [6,4,1]
=> [[1,3,4,5,10,11],[2,7,8,9],[6]]
=> ? = 6
[3,2,2,1,1,1,1]
=> [7,3,1]
=> [[1,3,4,8,9,10,11],[2,6,7],[5]]
=> ? = 5
[3,2,1,1,1,1,1,1]
=> [8,2,1]
=> [[1,3,6,7,8,9,10,11],[2,5],[4]]
=> ? = 4
[3,1,1,1,1,1,1,1,1]
=> [9,1,1]
=> [[1,4,5,6,7,8,9,10,11],[2],[3]]
=> ? = 3
[2,2,2,2,2,1]
=> [6,5]
=> [[1,2,3,4,5,11],[6,7,8,9,10]]
=> ? = 5
[2,2,2,2,1,1,1]
=> [7,4]
=> [[1,2,3,4,9,10,11],[5,6,7,8]]
=> ? = 4
[2,2,2,1,1,1,1,1]
=> [8,3]
=> [[1,2,3,7,8,9,10,11],[4,5,6]]
=> ? = 3
[2,2,1,1,1,1,1,1,1]
=> [9,2]
=> [[1,2,5,6,7,8,9,10,11],[3,4]]
=> ? = 2
[2,1,1,1,1,1,1,1,1,1]
=> [10,1]
=> [[1,3,4,5,6,7,8,9,10,11],[2]]
=> ? = 1
[1,1,1,1,1,1,1,1,1,1,1]
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? = 0
[12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 66
[11,1]
=> [2,1,1,1,1,1,1,1,1,1,1]
=> [[1,12],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 55
[10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [[1,10],[2,12],[3],[4],[5],[6],[7],[8],[9],[11]]
=> ? = 46
[10,1,1]
=> [3,1,1,1,1,1,1,1,1,1]
=> [[1,11,12],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> ? = 45
[9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,8],[2,10],[3,12],[4],[5],[6],[7],[9],[11]]
=> ? = 39
[9,2,1]
=> [3,2,1,1,1,1,1,1,1]
=> [[1,9,12],[2,11],[3],[4],[5],[6],[7],[8],[10]]
=> ? = 37
[9,1,1,1]
=> [4,1,1,1,1,1,1,1,1]
=> [[1,10,11,12],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 36
[8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,6],[2,8],[3,10],[4,12],[5],[7],[9],[11]]
=> ? = 34
[8,3,1]
=> [3,2,2,1,1,1,1,1]
=> [[1,7,12],[2,9],[3,11],[4],[5],[6],[8],[10]]
=> ? = 31
[8,2,2]
=> [3,3,1,1,1,1,1,1]
=> [[1,8,9],[2,11,12],[3],[4],[5],[6],[7],[10]]
=> ? = 30
[8,2,1,1]
=> [4,2,1,1,1,1,1,1]
=> [[1,8,11,12],[2,10],[3],[4],[5],[6],[7],[9]]
=> ? = 29
Description
The leg major index of a standard tableau. The leg length of a cell is the number of cells strictly below in the same column. This statistic is the sum of all leg lengths. Therefore, this is actually a statistic on the underlying integer partition. It happens to coincide with the (leg) major index of a tabloid restricted to standard Young tableaux, defined as follows: the descent set of a tabloid is the set of cells, not in the top row, whose entry is strictly larger than the entry directly above it. The leg major index is the sum of the leg lengths of the descents plus the number of descents.
Matching statistic: St000059
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00084: Standard tableaux conjugateStandard tableaux
St000059: Standard tableaux ⟶ ℤResult quality: 52% values known / values provided: 52%distinct values known / distinct values provided: 72%
Values
[2]
=> [[1,2]]
=> [[1],[2]]
=> 1
[1,1]
=> [[1],[2]]
=> [[1,2]]
=> 0
[3]
=> [[1,2,3]]
=> [[1],[2],[3]]
=> 3
[2,1]
=> [[1,2],[3]]
=> [[1,3],[2]]
=> 1
[1,1,1]
=> [[1],[2],[3]]
=> [[1,2,3]]
=> 0
[4]
=> [[1,2,3,4]]
=> [[1],[2],[3],[4]]
=> 6
[3,1]
=> [[1,2,3],[4]]
=> [[1,4],[2],[3]]
=> 3
[2,2]
=> [[1,2],[3,4]]
=> [[1,3],[2,4]]
=> 2
[2,1,1]
=> [[1,2],[3],[4]]
=> [[1,3,4],[2]]
=> 1
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [[1,2,3,4]]
=> 0
[5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 10
[4,1]
=> [[1,2,3,4],[5]]
=> [[1,5],[2],[3],[4]]
=> 6
[3,2]
=> [[1,2,3],[4,5]]
=> [[1,4],[2,5],[3]]
=> 4
[3,1,1]
=> [[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> 3
[2,2,1]
=> [[1,2],[3,4],[5]]
=> [[1,3,5],[2,4]]
=> 2
[2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[1,3,4,5],[2]]
=> 1
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [[1,2,3,4,5]]
=> 0
[6]
=> [[1,2,3,4,5,6]]
=> [[1],[2],[3],[4],[5],[6]]
=> 15
[5,1]
=> [[1,2,3,4,5],[6]]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[4,2]
=> [[1,2,3,4],[5,6]]
=> [[1,5],[2,6],[3],[4]]
=> 7
[4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [[1,5,6],[2],[3],[4]]
=> 6
[3,3]
=> [[1,2,3],[4,5,6]]
=> [[1,4],[2,5],[3,6]]
=> 6
[3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [[1,4,6],[2,5],[3]]
=> 4
[3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [[1,4,5,6],[2],[3]]
=> 3
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [[1,3,5],[2,4,6]]
=> 3
[2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [[1,3,5,6],[2,4]]
=> 2
[2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [[1,3,4,5,6],[2]]
=> 1
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [[1,2,3,4,5,6]]
=> 0
[7]
=> [[1,2,3,4,5,6,7]]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> 21
[6,1]
=> [[1,2,3,4,5,6],[7]]
=> [[1,7],[2],[3],[4],[5],[6]]
=> 15
[5,2]
=> [[1,2,3,4,5],[6,7]]
=> [[1,6],[2,7],[3],[4],[5]]
=> 11
[5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [[1,6,7],[2],[3],[4],[5]]
=> 10
[4,3]
=> [[1,2,3,4],[5,6,7]]
=> [[1,5],[2,6],[3,7],[4]]
=> 9
[4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [[1,5,7],[2,6],[3],[4]]
=> 7
[4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [[1,5,6,7],[2],[3],[4]]
=> 6
[3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [[1,4,7],[2,5],[3,6]]
=> 6
[3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [[1,4,6],[2,5,7],[3]]
=> 5
[3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [[1,4,6,7],[2,5],[3]]
=> 4
[3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [[1,4,5,6,7],[2],[3]]
=> 3
[2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [[1,3,5,7],[2,4,6]]
=> 3
[2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [[1,3,5,6,7],[2,4]]
=> 2
[2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [[1,3,4,5,6,7],[2]]
=> 1
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [[1,2,3,4,5,6,7]]
=> 0
[8]
=> [[1,2,3,4,5,6,7,8]]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> 28
[7,1]
=> [[1,2,3,4,5,6,7],[8]]
=> [[1,8],[2],[3],[4],[5],[6],[7]]
=> 21
[6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> [[1,7],[2,8],[3],[4],[5],[6]]
=> 16
[6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> [[1,7,8],[2],[3],[4],[5],[6]]
=> 15
[5,3]
=> [[1,2,3,4,5],[6,7,8]]
=> [[1,6],[2,7],[3,8],[4],[5]]
=> 13
[5,2,1]
=> [[1,2,3,4,5],[6,7],[8]]
=> [[1,6,8],[2,7],[3],[4],[5]]
=> 11
[5,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8]]
=> [[1,6,7,8],[2],[3],[4],[5]]
=> 10
[11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 55
[10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> [[1,11],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> ? = 45
[9,2]
=> [[1,2,3,4,5,6,7,8,9],[10,11]]
=> [[1,10],[2,11],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 37
[9,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11]]
=> [[1,10,11],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 36
[8,3]
=> [[1,2,3,4,5,6,7,8],[9,10,11]]
=> [[1,9],[2,10],[3,11],[4],[5],[6],[7],[8]]
=> ? = 31
[8,2,1]
=> [[1,2,3,4,5,6,7,8],[9,10],[11]]
=> [[1,9,11],[2,10],[3],[4],[5],[6],[7],[8]]
=> ? = 29
[8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> [[1,9,10,11],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 28
[7,4]
=> [[1,2,3,4,5,6,7],[8,9,10,11]]
=> ?
=> ? = 27
[7,3,1]
=> [[1,2,3,4,5,6,7],[8,9,10],[11]]
=> [[1,8,11],[2,9],[3,10],[4],[5],[6],[7]]
=> ? = 24
[7,2,2]
=> [[1,2,3,4,5,6,7],[8,9],[10,11]]
=> [[1,8,10],[2,9,11],[3],[4],[5],[6],[7]]
=> ? = 23
[7,2,1,1]
=> [[1,2,3,4,5,6,7],[8,9],[10],[11]]
=> [[1,8,10,11],[2,9],[3],[4],[5],[6],[7]]
=> ? = 22
[7,1,1,1,1]
=> [[1,2,3,4,5,6,7],[8],[9],[10],[11]]
=> ?
=> ? = 21
[6,5]
=> [[1,2,3,4,5,6],[7,8,9,10,11]]
=> [[1,7],[2,8],[3,9],[4,10],[5,11],[6]]
=> ? = 25
[6,4,1]
=> [[1,2,3,4,5,6],[7,8,9,10],[11]]
=> ?
=> ? = 21
[6,3,2]
=> [[1,2,3,4,5,6],[7,8,9],[10,11]]
=> [[1,7,10],[2,8,11],[3,9],[4],[5],[6]]
=> ? = 19
[6,3,1,1]
=> [[1,2,3,4,5,6],[7,8,9],[10],[11]]
=> [[1,7,10,11],[2,8],[3,9],[4],[5],[6]]
=> ? = 18
[6,2,2,1]
=> [[1,2,3,4,5,6],[7,8],[9,10],[11]]
=> [[1,7,9,11],[2,8,10],[3],[4],[5],[6]]
=> ? = 17
[6,2,1,1,1]
=> [[1,2,3,4,5,6],[7,8],[9],[10],[11]]
=> [[1,7,9,10,11],[2,8],[3],[4],[5],[6]]
=> ? = 16
[6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 15
[5,5,1]
=> [[1,2,3,4,5],[6,7,8,9,10],[11]]
=> [[1,6,11],[2,7],[3,8],[4,9],[5,10]]
=> ? = 20
[5,4,2]
=> [[1,2,3,4,5],[6,7,8,9],[10,11]]
=> [[1,6,10],[2,7,11],[3,8],[4,9],[5]]
=> ? = 17
[5,4,1,1]
=> [[1,2,3,4,5],[6,7,8,9],[10],[11]]
=> [[1,6,10,11],[2,7],[3,8],[4,9],[5]]
=> ? = 16
[5,3,3]
=> [[1,2,3,4,5],[6,7,8],[9,10,11]]
=> [[1,6,9],[2,7,10],[3,8,11],[4],[5]]
=> ? = 16
[5,3,2,1]
=> [[1,2,3,4,5],[6,7,8],[9,10],[11]]
=> [[1,6,9,11],[2,7,10],[3,8],[4],[5]]
=> ? = 14
[5,3,1,1,1]
=> [[1,2,3,4,5],[6,7,8],[9],[10],[11]]
=> [[1,6,9,10,11],[2,7],[3,8],[4],[5]]
=> ? = 13
[5,2,2,2]
=> [[1,2,3,4,5],[6,7],[8,9],[10,11]]
=> [[1,6,8,10],[2,7,9,11],[3],[4],[5]]
=> ? = 13
[5,2,2,1,1]
=> [[1,2,3,4,5],[6,7],[8,9],[10],[11]]
=> [[1,6,8,10,11],[2,7,9],[3],[4],[5]]
=> ? = 12
[5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> [[1,6,8,9,10,11],[2,7],[3],[4],[5]]
=> ? = 11
[5,1,1,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 10
[4,4,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11]]
=> [[1,5,9],[2,6,10],[3,7,11],[4,8]]
=> ? = 15
[4,4,2,1]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11]]
=> [[1,5,9,11],[2,6,10],[3,7],[4,8]]
=> ? = 13
[4,4,1,1,1]
=> [[1,2,3,4],[5,6,7,8],[9],[10],[11]]
=> [[1,5,9,10,11],[2,6],[3,7],[4,8]]
=> ? = 12
[4,3,3,1]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11]]
=> [[1,5,8,11],[2,6,9],[3,7,10],[4]]
=> ? = 12
[4,3,2,2]
=> [[1,2,3,4],[5,6,7],[8,9],[10,11]]
=> [[1,5,8,10],[2,6,9,11],[3,7],[4]]
=> ? = 11
[4,3,2,1,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10],[11]]
=> [[1,5,8,10,11],[2,6,9],[3,7],[4]]
=> ? = 10
[4,3,1,1,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9],[10],[11]]
=> ?
=> ? = 9
[4,2,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9,10],[11]]
=> [[1,5,7,9,11],[2,6,8,10],[3],[4]]
=> ? = 9
[4,2,2,1,1,1]
=> [[1,2,3,4],[5,6],[7,8],[9],[10],[11]]
=> ?
=> ? = 8
[4,2,1,1,1,1,1]
=> [[1,2,3,4],[5,6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 7
[4,1,1,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 6
[3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11]]
=> [[1,4,7,10],[2,5,8,11],[3,6,9]]
=> ? = 10
[3,3,3,1,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10],[11]]
=> [[1,4,7,10,11],[2,5,8],[3,6,9]]
=> ? = 9
[3,3,2,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11]]
=> [[1,4,7,9,11],[2,5,8,10],[3,6]]
=> ? = 8
[3,3,2,1,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9],[10],[11]]
=> ?
=> ? = 7
[3,3,1,1,1,1,1]
=> [[1,2,3],[4,5,6],[7],[8],[9],[10],[11]]
=> [[1,4,7,8,9,10,11],[2,5],[3,6]]
=> ? = 6
[3,2,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11]]
=> [[1,4,6,8,10],[2,5,7,9,11],[3]]
=> ? = 7
[3,2,2,2,1,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10],[11]]
=> ?
=> ? = 6
[3,2,2,1,1,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9],[10],[11]]
=> ?
=> ? = 5
[3,2,1,1,1,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 4
[3,1,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 3
Description
The inversion number of a standard tableau as defined by Haglund and Stevens. Their inversion number is the total number of inversion pairs for the tableau. An inversion pair is defined as a pair of cells (a,b), (x,y) such that the content of (x,y) is greater than the content of (a,b) and (x,y) is north of the inversion path of (a,b), where the inversion path is defined in detail in [1].
Matching statistic: St000009
Mp00044: Integer partitions conjugateInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00084: Standard tableaux conjugateStandard tableaux
St000009: Standard tableaux ⟶ ℤResult quality: 52% values known / values provided: 52%distinct values known / distinct values provided: 74%
Values
[2]
=> [1,1]
=> [[1],[2]]
=> [[1,2]]
=> 1
[1,1]
=> [2]
=> [[1,2]]
=> [[1],[2]]
=> 0
[3]
=> [1,1,1]
=> [[1],[2],[3]]
=> [[1,2,3]]
=> 3
[2,1]
=> [2,1]
=> [[1,2],[3]]
=> [[1,3],[2]]
=> 1
[1,1,1]
=> [3]
=> [[1,2,3]]
=> [[1],[2],[3]]
=> 0
[4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [[1,2,3,4]]
=> 6
[3,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [[1,3,4],[2]]
=> 3
[2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> [[1,3],[2,4]]
=> 2
[2,1,1]
=> [3,1]
=> [[1,2,3],[4]]
=> [[1,4],[2],[3]]
=> 1
[1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> [[1],[2],[3],[4]]
=> 0
[5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [[1,2,3,4,5]]
=> 10
[4,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[1,3,4,5],[2]]
=> 6
[3,2]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [[1,3,5],[2,4]]
=> 4
[3,1,1]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> 3
[2,2,1]
=> [3,2]
=> [[1,2,3],[4,5]]
=> [[1,4],[2,5],[3]]
=> 2
[2,1,1,1]
=> [4,1]
=> [[1,2,3,4],[5]]
=> [[1,5],[2],[3],[4]]
=> 1
[1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 0
[6]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [[1,2,3,4,5,6]]
=> 15
[5,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [[1,3,4,5,6],[2]]
=> 10
[4,2]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [[1,3,5,6],[2,4]]
=> 7
[4,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [[1,4,5,6],[2],[3]]
=> 6
[3,3]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [[1,3,5],[2,4,6]]
=> 6
[3,2,1]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [[1,4,6],[2,5],[3]]
=> 4
[3,1,1,1]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [[1,5,6],[2],[3],[4]]
=> 3
[2,2,2]
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [[1,4],[2,5],[3,6]]
=> 3
[2,2,1,1]
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [[1,5],[2,6],[3],[4]]
=> 2
[2,1,1,1,1]
=> [5,1]
=> [[1,2,3,4,5],[6]]
=> [[1,6],[2],[3],[4],[5]]
=> 1
[1,1,1,1,1,1]
=> [6]
=> [[1,2,3,4,5,6]]
=> [[1],[2],[3],[4],[5],[6]]
=> 0
[7]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [[1,2,3,4,5,6,7]]
=> 21
[6,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [[1,3,4,5,6,7],[2]]
=> 15
[5,2]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [[1,3,5,6,7],[2,4]]
=> 11
[5,1,1]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [[1,4,5,6,7],[2],[3]]
=> 10
[4,3]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [[1,3,5,7],[2,4,6]]
=> 9
[4,2,1]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [[1,4,6,7],[2,5],[3]]
=> 7
[4,1,1,1]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [[1,5,6,7],[2],[3],[4]]
=> 6
[3,3,1]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [[1,4,6],[2,5,7],[3]]
=> 6
[3,2,2]
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [[1,4,7],[2,5],[3,6]]
=> 5
[3,2,1,1]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [[1,5,7],[2,6],[3],[4]]
=> 4
[3,1,1,1,1]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [[1,6,7],[2],[3],[4],[5]]
=> 3
[2,2,2,1]
=> [4,3]
=> [[1,2,3,4],[5,6,7]]
=> [[1,5],[2,6],[3,7],[4]]
=> 3
[2,2,1,1,1]
=> [5,2]
=> [[1,2,3,4,5],[6,7]]
=> [[1,6],[2,7],[3],[4],[5]]
=> 2
[2,1,1,1,1,1]
=> [6,1]
=> [[1,2,3,4,5,6],[7]]
=> [[1,7],[2],[3],[4],[5],[6]]
=> 1
[1,1,1,1,1,1,1]
=> [7]
=> [[1,2,3,4,5,6,7]]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> 0
[8]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [[1,2,3,4,5,6,7,8]]
=> 28
[7,1]
=> [2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [[1,3,4,5,6,7,8],[2]]
=> 21
[6,2]
=> [2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [[1,3,5,6,7,8],[2,4]]
=> 16
[6,1,1]
=> [3,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8]]
=> [[1,4,5,6,7,8],[2],[3]]
=> 15
[5,3]
=> [2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [[1,3,5,7,8],[2,4,6]]
=> 13
[5,2,1]
=> [3,2,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8]]
=> [[1,4,6,7,8],[2,5],[3]]
=> 11
[5,1,1,1]
=> [4,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8]]
=> [[1,5,6,7,8],[2],[3],[4]]
=> 10
[11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? = 55
[10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> [[1,3,4,5,6,7,8,9,10,11],[2]]
=> ? = 45
[9,2]
=> [2,2,1,1,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 37
[9,1,1]
=> [3,1,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 36
[8,3]
=> [2,2,2,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11]]
=> [[1,3,5,7,8,9,10,11],[2,4,6]]
=> ? = 31
[8,2,1]
=> [3,2,1,1,1,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 29
[8,1,1,1]
=> [4,1,1,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 28
[7,4]
=> [2,2,2,2,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11]]
=> ?
=> ? = 27
[7,3,1]
=> [3,2,2,1,1,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9],[10],[11]]
=> ?
=> ? = 24
[7,2,2]
=> [3,3,1,1,1,1,1]
=> [[1,2,3],[4,5,6],[7],[8],[9],[10],[11]]
=> [[1,4,7,8,9,10,11],[2,5],[3,6]]
=> ? = 23
[7,2,1,1]
=> [4,2,1,1,1,1,1]
=> [[1,2,3,4],[5,6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 22
[7,1,1,1,1]
=> [5,1,1,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 21
[6,5]
=> [2,2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11]]
=> [[1,3,5,7,9,11],[2,4,6,8,10]]
=> ? = 25
[6,4,1]
=> [3,2,2,2,1,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10],[11]]
=> ?
=> ? = 21
[6,3,2]
=> [3,3,2,1,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9],[10],[11]]
=> ?
=> ? = 19
[6,3,1,1]
=> [4,2,2,1,1,1]
=> [[1,2,3,4],[5,6],[7,8],[9],[10],[11]]
=> ?
=> ? = 18
[6,2,2,1]
=> [4,3,1,1,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9],[10],[11]]
=> ?
=> ? = 17
[6,2,1,1,1]
=> [5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> [[1,6,8,9,10,11],[2,7],[3],[4],[5]]
=> ? = 16
[6,1,1,1,1,1]
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 15
[5,5,1]
=> [3,2,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11]]
=> [[1,4,6,8,10],[2,5,7,9,11],[3]]
=> ? = 20
[5,4,2]
=> [3,3,2,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11]]
=> [[1,4,7,9,11],[2,5,8,10],[3,6]]
=> ? = 17
[5,4,1,1]
=> [4,2,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9,10],[11]]
=> [[1,5,7,9,11],[2,6,8,10],[3],[4]]
=> ? = 16
[5,3,3]
=> [3,3,3,1,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10],[11]]
=> [[1,4,7,10,11],[2,5,8],[3,6,9]]
=> ? = 16
[5,3,2,1]
=> [4,3,2,1,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10],[11]]
=> [[1,5,8,10,11],[2,6,9],[3,7],[4]]
=> ? = 14
[5,3,1,1,1]
=> [5,2,2,1,1]
=> [[1,2,3,4,5],[6,7],[8,9],[10],[11]]
=> [[1,6,8,10,11],[2,7,9],[3],[4],[5]]
=> ? = 13
[5,2,2,2]
=> [4,4,1,1,1]
=> [[1,2,3,4],[5,6,7,8],[9],[10],[11]]
=> [[1,5,9,10,11],[2,6],[3,7],[4,8]]
=> ? = 13
[5,2,2,1,1]
=> [5,3,1,1,1]
=> [[1,2,3,4,5],[6,7,8],[9],[10],[11]]
=> [[1,6,9,10,11],[2,7],[3,8],[4],[5]]
=> ? = 12
[5,2,1,1,1,1]
=> [6,2,1,1,1]
=> [[1,2,3,4,5,6],[7,8],[9],[10],[11]]
=> [[1,7,9,10,11],[2,8],[3],[4],[5],[6]]
=> ? = 11
[5,1,1,1,1,1,1]
=> [7,1,1,1,1]
=> [[1,2,3,4,5,6,7],[8],[9],[10],[11]]
=> ?
=> ? = 10
[4,4,3]
=> [3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11]]
=> [[1,4,7,10],[2,5,8,11],[3,6,9]]
=> ? = 15
[4,4,2,1]
=> [4,3,2,2]
=> [[1,2,3,4],[5,6,7],[8,9],[10,11]]
=> [[1,5,8,10],[2,6,9,11],[3,7],[4]]
=> ? = 13
[4,4,1,1,1]
=> [5,2,2,2]
=> [[1,2,3,4,5],[6,7],[8,9],[10,11]]
=> [[1,6,8,10],[2,7,9,11],[3],[4],[5]]
=> ? = 12
[4,3,3,1]
=> [4,3,3,1]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11]]
=> [[1,5,8,11],[2,6,9],[3,7,10],[4]]
=> ? = 12
[4,3,2,2]
=> [4,4,2,1]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11]]
=> [[1,5,9,11],[2,6,10],[3,7],[4,8]]
=> ? = 11
[4,3,2,1,1]
=> [5,3,2,1]
=> [[1,2,3,4,5],[6,7,8],[9,10],[11]]
=> [[1,6,9,11],[2,7,10],[3,8],[4],[5]]
=> ? = 10
[4,3,1,1,1,1]
=> [6,2,2,1]
=> [[1,2,3,4,5,6],[7,8],[9,10],[11]]
=> [[1,7,9,11],[2,8,10],[3],[4],[5],[6]]
=> ? = 9
[4,2,2,2,1]
=> [5,4,1,1]
=> [[1,2,3,4,5],[6,7,8,9],[10],[11]]
=> [[1,6,10,11],[2,7],[3,8],[4,9],[5]]
=> ? = 9
[4,2,2,1,1,1]
=> [6,3,1,1]
=> [[1,2,3,4,5,6],[7,8,9],[10],[11]]
=> [[1,7,10,11],[2,8],[3,9],[4],[5],[6]]
=> ? = 8
[4,2,1,1,1,1,1]
=> [7,2,1,1]
=> [[1,2,3,4,5,6,7],[8,9],[10],[11]]
=> [[1,8,10,11],[2,9],[3],[4],[5],[6],[7]]
=> ? = 7
[4,1,1,1,1,1,1,1]
=> [8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> [[1,9,10,11],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 6
[3,3,3,2]
=> [4,4,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11]]
=> [[1,5,9],[2,6,10],[3,7,11],[4,8]]
=> ? = 10
[3,3,3,1,1]
=> [5,3,3]
=> [[1,2,3,4,5],[6,7,8],[9,10,11]]
=> [[1,6,9],[2,7,10],[3,8,11],[4],[5]]
=> ? = 9
[3,3,2,2,1]
=> [5,4,2]
=> [[1,2,3,4,5],[6,7,8,9],[10,11]]
=> [[1,6,10],[2,7,11],[3,8],[4,9],[5]]
=> ? = 8
[3,3,2,1,1,1]
=> [6,3,2]
=> [[1,2,3,4,5,6],[7,8,9],[10,11]]
=> [[1,7,10],[2,8,11],[3,9],[4],[5],[6]]
=> ? = 7
[3,3,1,1,1,1,1]
=> [7,2,2]
=> [[1,2,3,4,5,6,7],[8,9],[10,11]]
=> [[1,8,10],[2,9,11],[3],[4],[5],[6],[7]]
=> ? = 6
[3,2,2,2,2]
=> [5,5,1]
=> [[1,2,3,4,5],[6,7,8,9,10],[11]]
=> [[1,6,11],[2,7],[3,8],[4,9],[5,10]]
=> ? = 7
[3,2,2,2,1,1]
=> [6,4,1]
=> [[1,2,3,4,5,6],[7,8,9,10],[11]]
=> ?
=> ? = 6
[3,2,2,1,1,1,1]
=> [7,3,1]
=> [[1,2,3,4,5,6,7],[8,9,10],[11]]
=> [[1,8,11],[2,9],[3,10],[4],[5],[6],[7]]
=> ? = 5
[3,2,1,1,1,1,1,1]
=> [8,2,1]
=> [[1,2,3,4,5,6,7,8],[9,10],[11]]
=> [[1,9,11],[2,10],[3],[4],[5],[6],[7],[8]]
=> ? = 4
[3,1,1,1,1,1,1,1,1]
=> [9,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11]]
=> [[1,10,11],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 3
Description
The charge of a standard tableau.
Matching statistic: St000391
Mp00044: Integer partitions conjugateInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
Mp00134: Standard tableaux descent wordBinary words
St000391: Binary words ⟶ ℤResult quality: 51% values known / values provided: 51%distinct values known / distinct values provided: 69%
Values
[2]
=> [1,1]
=> [[1],[2]]
=> 1 => 1
[1,1]
=> [2]
=> [[1,2]]
=> 0 => 0
[3]
=> [1,1,1]
=> [[1],[2],[3]]
=> 11 => 3
[2,1]
=> [2,1]
=> [[1,3],[2]]
=> 10 => 1
[1,1,1]
=> [3]
=> [[1,2,3]]
=> 00 => 0
[4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 111 => 6
[3,1]
=> [2,1,1]
=> [[1,4],[2],[3]]
=> 110 => 3
[2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 010 => 2
[2,1,1]
=> [3,1]
=> [[1,3,4],[2]]
=> 100 => 1
[1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 000 => 0
[5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1111 => 10
[4,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 1110 => 6
[3,2]
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 1010 => 4
[3,1,1]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 1100 => 3
[2,2,1]
=> [3,2]
=> [[1,2,5],[3,4]]
=> 0100 => 2
[2,1,1,1]
=> [4,1]
=> [[1,3,4,5],[2]]
=> 1000 => 1
[1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> 0000 => 0
[6]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 11111 => 15
[5,1]
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 11110 => 10
[4,2]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 11010 => 7
[4,1,1]
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 11100 => 6
[3,3]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 01010 => 6
[3,2,1]
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 10100 => 4
[3,1,1,1]
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 11000 => 3
[2,2,2]
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> 00100 => 3
[2,2,1,1]
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 01000 => 2
[2,1,1,1,1]
=> [5,1]
=> [[1,3,4,5,6],[2]]
=> 10000 => 1
[1,1,1,1,1,1]
=> [6]
=> [[1,2,3,4,5,6]]
=> 00000 => 0
[7]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> 111111 => 21
[6,1]
=> [2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> 111110 => 15
[5,2]
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> 111010 => 11
[5,1,1]
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> 111100 => 10
[4,3]
=> [2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> 101010 => 9
[4,2,1]
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> 110100 => 7
[4,1,1,1]
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> 111000 => 6
[3,3,1]
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> 010100 => 6
[3,2,2]
=> [3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> 100100 => 5
[3,2,1,1]
=> [4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> 101000 => 4
[3,1,1,1,1]
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> 110000 => 3
[2,2,2,1]
=> [4,3]
=> [[1,2,3,7],[4,5,6]]
=> 001000 => 3
[2,2,1,1,1]
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> 010000 => 2
[2,1,1,1,1,1]
=> [6,1]
=> [[1,3,4,5,6,7],[2]]
=> 100000 => 1
[1,1,1,1,1,1,1]
=> [7]
=> [[1,2,3,4,5,6,7]]
=> 000000 => 0
[8]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> 1111111 => 28
[7,1]
=> [2,1,1,1,1,1,1]
=> [[1,8],[2],[3],[4],[5],[6],[7]]
=> 1111110 => 21
[6,2]
=> [2,2,1,1,1,1]
=> [[1,6],[2,8],[3],[4],[5],[7]]
=> 1111010 => 16
[6,1,1]
=> [3,1,1,1,1,1]
=> [[1,7,8],[2],[3],[4],[5],[6]]
=> 1111100 => 15
[5,3]
=> [2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5],[7]]
=> 1101010 => 13
[5,2,1]
=> [3,2,1,1,1]
=> [[1,5,8],[2,7],[3],[4],[6]]
=> 1110100 => 11
[5,1,1,1]
=> [4,1,1,1,1]
=> [[1,6,7,8],[2],[3],[4],[5]]
=> 1111000 => 10
[11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? => ? = 55
[10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,11],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> ? => ? = 45
[9,2]
=> [2,2,1,1,1,1,1,1,1]
=> [[1,9],[2,11],[3],[4],[5],[6],[7],[8],[10]]
=> ? => ? = 37
[9,1,1]
=> [3,1,1,1,1,1,1,1,1]
=> [[1,10,11],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? => ? = 36
[8,3]
=> [2,2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3,11],[4],[5],[6],[8],[10]]
=> ? => ? = 31
[8,2,1]
=> [3,2,1,1,1,1,1,1]
=> [[1,8,11],[2,10],[3],[4],[5],[6],[7],[9]]
=> ? => ? = 29
[8,1,1,1]
=> [4,1,1,1,1,1,1,1]
=> [[1,9,10,11],[2],[3],[4],[5],[6],[7],[8]]
=> ? => ? = 28
[7,4]
=> [2,2,2,2,1,1,1]
=> [[1,5],[2,7],[3,9],[4,11],[6],[8],[10]]
=> ? => ? = 27
[7,3,1]
=> [3,2,2,1,1,1,1]
=> [[1,6,11],[2,8],[3,10],[4],[5],[7],[9]]
=> ? => ? = 24
[7,2,2]
=> [3,3,1,1,1,1,1]
=> [[1,7,8],[2,10,11],[3],[4],[5],[6],[9]]
=> ? => ? = 23
[7,2,1,1]
=> [4,2,1,1,1,1,1]
=> [[1,7,10,11],[2,9],[3],[4],[5],[6],[8]]
=> ? => ? = 22
[7,1,1,1,1]
=> [5,1,1,1,1,1,1]
=> [[1,8,9,10,11],[2],[3],[4],[5],[6],[7]]
=> ? => ? = 21
[6,5]
=> [2,2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? => ? = 25
[6,4,1]
=> [3,2,2,2,1,1]
=> [[1,4,11],[2,6],[3,8],[5,10],[7],[9]]
=> ? => ? = 21
[6,3,2]
=> [3,3,2,1,1,1]
=> [[1,5,8],[2,7,11],[3,10],[4],[6],[9]]
=> ? => ? = 19
[6,3,1,1]
=> [4,2,2,1,1,1]
=> [[1,5,10,11],[2,7],[3,9],[4],[6],[8]]
=> ? => ? = 18
[6,2,2,1]
=> [4,3,1,1,1,1]
=> [[1,6,7,11],[2,9,10],[3],[4],[5],[8]]
=> ? => ? = 17
[6,2,1,1,1]
=> [5,2,1,1,1,1]
=> [[1,6,9,10,11],[2,8],[3],[4],[5],[7]]
=> ? => ? = 16
[6,1,1,1,1,1]
=> [6,1,1,1,1,1]
=> [[1,7,8,9,10,11],[2],[3],[4],[5],[6]]
=> ? => ? = 15
[5,5,1]
=> [3,2,2,2,2]
=> [[1,2,11],[3,4],[5,6],[7,8],[9,10]]
=> ? => ? = 20
[5,4,2]
=> [3,3,2,2,1]
=> [[1,3,8],[2,5,11],[4,7],[6,10],[9]]
=> 1010100100 => ? = 17
[5,4,1,1]
=> [4,2,2,2,1]
=> [[1,3,10,11],[2,5],[4,7],[6,9],[8]]
=> 1010101000 => ? = 16
[5,3,3]
=> [3,3,3,1,1]
=> [[1,4,5],[2,7,8],[3,10,11],[6],[9]]
=> 1100100100 => ? = 16
[5,3,2,1]
=> [4,3,2,1,1]
=> [[1,4,7,11],[2,6,10],[3,9],[5],[8]]
=> 1101001000 => ? = 14
[5,3,1,1,1]
=> [5,2,2,1,1]
=> [[1,4,9,10,11],[2,6],[3,8],[5],[7]]
=> 1101010000 => ? = 13
[5,2,2,2]
=> [4,4,1,1,1]
=> [[1,5,6,7],[2,9,10,11],[3],[4],[8]]
=> 1110001000 => ? = 13
[5,2,2,1,1]
=> [5,3,1,1,1]
=> [[1,5,6,10,11],[2,8,9],[3],[4],[7]]
=> 1110010000 => ? = 12
[5,2,1,1,1,1]
=> [6,2,1,1,1]
=> [[1,5,8,9,10,11],[2,7],[3],[4],[6]]
=> ? => ? = 11
[5,1,1,1,1,1,1]
=> [7,1,1,1,1]
=> [[1,6,7,8,9,10,11],[2],[3],[4],[5]]
=> ? => ? = 10
[4,4,3]
=> [3,3,3,2]
=> [[1,2,5],[3,4,8],[6,7,11],[9,10]]
=> 0100100100 => ? = 15
[4,4,2,1]
=> [4,3,2,2]
=> [[1,2,7,11],[3,4,10],[5,6],[8,9]]
=> 0101001000 => ? = 13
[4,4,1,1,1]
=> [5,2,2,2]
=> [[1,2,9,10,11],[3,4],[5,6],[7,8]]
=> 0101010000 => ? = 12
[4,3,3,1]
=> [4,3,3,1]
=> [[1,3,4,11],[2,6,7],[5,9,10],[8]]
=> 1001001000 => ? = 12
[4,3,2,2]
=> [4,4,2,1]
=> [[1,3,6,7],[2,5,10,11],[4,9],[8]]
=> 1010001000 => ? = 11
[4,3,2,1,1]
=> [5,3,2,1]
=> [[1,3,6,10,11],[2,5,9],[4,8],[7]]
=> 1010010000 => ? = 10
[4,3,1,1,1,1]
=> [6,2,2,1]
=> [[1,3,8,9,10,11],[2,5],[4,7],[6]]
=> ? => ? = 9
[4,2,2,2,1]
=> [5,4,1,1]
=> [[1,4,5,6,11],[2,8,9,10],[3],[7]]
=> 1100010000 => ? = 9
[4,2,2,1,1,1]
=> [6,3,1,1]
=> [[1,4,5,9,10,11],[2,7,8],[3],[6]]
=> ? => ? = 8
[4,2,1,1,1,1,1]
=> [7,2,1,1]
=> [[1,4,7,8,9,10,11],[2,6],[3],[5]]
=> ? => ? = 7
[4,1,1,1,1,1,1,1]
=> [8,1,1,1]
=> [[1,5,6,7,8,9,10,11],[2],[3],[4]]
=> ? => ? = 6
[3,3,2,2,1]
=> [5,4,2]
=> [[1,2,5,6,11],[3,4,9,10],[7,8]]
=> 0100010000 => ? = 8
[3,3,2,1,1,1]
=> [6,3,2]
=> [[1,2,5,9,10,11],[3,4,8],[6,7]]
=> ? => ? = 7
[3,3,1,1,1,1,1]
=> [7,2,2]
=> [[1,2,7,8,9,10,11],[3,4],[5,6]]
=> ? => ? = 6
[3,2,2,2,2]
=> [5,5,1]
=> [[1,3,4,5,6],[2,8,9,10,11],[7]]
=> ? => ? = 7
[3,2,2,2,1,1]
=> [6,4,1]
=> [[1,3,4,5,10,11],[2,7,8,9],[6]]
=> ? => ? = 6
[3,2,2,1,1,1,1]
=> [7,3,1]
=> [[1,3,4,8,9,10,11],[2,6,7],[5]]
=> ? => ? = 5
[3,2,1,1,1,1,1,1]
=> [8,2,1]
=> [[1,3,6,7,8,9,10,11],[2,5],[4]]
=> ? => ? = 4
[3,1,1,1,1,1,1,1,1]
=> [9,1,1]
=> [[1,4,5,6,7,8,9,10,11],[2],[3]]
=> ? => ? = 3
[2,2,2,2,2,1]
=> [6,5]
=> [[1,2,3,4,5,11],[6,7,8,9,10]]
=> ? => ? = 5
[2,2,2,2,1,1,1]
=> [7,4]
=> [[1,2,3,4,9,10,11],[5,6,7,8]]
=> ? => ? = 4
Description
The sum of the positions of the ones in a binary word.
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
St000246: Permutations ⟶ ℤResult quality: 51% values known / values provided: 51%distinct values known / distinct values provided: 72%
Values
[2]
=> [[1,2]]
=> [1,2] => 1
[1,1]
=> [[1],[2]]
=> [2,1] => 0
[3]
=> [[1,2,3]]
=> [1,2,3] => 3
[2,1]
=> [[1,2],[3]]
=> [3,1,2] => 1
[1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 0
[4]
=> [[1,2,3,4]]
=> [1,2,3,4] => 6
[3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => 3
[2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 2
[2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 1
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 0
[5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => 10
[4,1]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => 6
[3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => 4
[3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 3
[2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => 2
[2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 0
[6]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => 15
[5,1]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => 10
[4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => 7
[4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 6
[3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => 6
[3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 4
[3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 3
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 3
[2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 2
[2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 1
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 0
[7]
=> [[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => 21
[6,1]
=> [[1,2,3,4,5,6],[7]]
=> [7,1,2,3,4,5,6] => 15
[5,2]
=> [[1,2,3,4,5],[6,7]]
=> [6,7,1,2,3,4,5] => 11
[5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => 10
[4,3]
=> [[1,2,3,4],[5,6,7]]
=> [5,6,7,1,2,3,4] => 9
[4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => 7
[4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => 6
[3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => 6
[3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => 5
[3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => 4
[3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => 3
[2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => 3
[2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => 2
[2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => 1
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => 0
[8]
=> [[1,2,3,4,5,6,7,8]]
=> [1,2,3,4,5,6,7,8] => 28
[7,1]
=> [[1,2,3,4,5,6,7],[8]]
=> [8,1,2,3,4,5,6,7] => 21
[6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> [7,8,1,2,3,4,5,6] => 16
[6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> [8,7,1,2,3,4,5,6] => 15
[5,3]
=> [[1,2,3,4,5],[6,7,8]]
=> [6,7,8,1,2,3,4,5] => 13
[5,2,1]
=> [[1,2,3,4,5],[6,7],[8]]
=> [8,6,7,1,2,3,4,5] => 11
[5,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8]]
=> [8,7,6,1,2,3,4,5] => 10
[11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? => ? = 55
[10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? => ? = 45
[9,2]
=> [[1,2,3,4,5,6,7,8,9],[10,11]]
=> ? => ? = 37
[9,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11]]
=> ? => ? = 36
[8,3]
=> [[1,2,3,4,5,6,7,8],[9,10,11]]
=> ? => ? = 31
[8,2,1]
=> [[1,2,3,4,5,6,7,8],[9,10],[11]]
=> ? => ? = 29
[8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> ? => ? = 28
[7,4]
=> [[1,2,3,4,5,6,7],[8,9,10,11]]
=> ? => ? = 27
[7,3,1]
=> [[1,2,3,4,5,6,7],[8,9,10],[11]]
=> ? => ? = 24
[7,2,2]
=> [[1,2,3,4,5,6,7],[8,9],[10,11]]
=> ? => ? = 23
[7,2,1,1]
=> [[1,2,3,4,5,6,7],[8,9],[10],[11]]
=> ? => ? = 22
[7,1,1,1,1]
=> [[1,2,3,4,5,6,7],[8],[9],[10],[11]]
=> ? => ? = 21
[6,5]
=> [[1,2,3,4,5,6],[7,8,9,10,11]]
=> ? => ? = 25
[6,4,1]
=> [[1,2,3,4,5,6],[7,8,9,10],[11]]
=> ? => ? = 21
[6,3,2]
=> [[1,2,3,4,5,6],[7,8,9],[10,11]]
=> ? => ? = 19
[6,3,1,1]
=> [[1,2,3,4,5,6],[7,8,9],[10],[11]]
=> ? => ? = 18
[6,2,2,1]
=> [[1,2,3,4,5,6],[7,8],[9,10],[11]]
=> ? => ? = 17
[6,2,1,1,1]
=> [[1,2,3,4,5,6],[7,8],[9],[10],[11]]
=> ? => ? = 16
[6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? => ? = 15
[5,5,1]
=> [[1,2,3,4,5],[6,7,8,9,10],[11]]
=> ? => ? = 20
[5,4,2]
=> [[1,2,3,4,5],[6,7,8,9],[10,11]]
=> [10,11,6,7,8,9,1,2,3,4,5] => ? = 17
[5,4,1,1]
=> [[1,2,3,4,5],[6,7,8,9],[10],[11]]
=> [11,10,6,7,8,9,1,2,3,4,5] => ? = 16
[5,3,3]
=> [[1,2,3,4,5],[6,7,8],[9,10,11]]
=> [9,10,11,6,7,8,1,2,3,4,5] => ? = 16
[5,3,2,1]
=> [[1,2,3,4,5],[6,7,8],[9,10],[11]]
=> [11,9,10,6,7,8,1,2,3,4,5] => ? = 14
[5,3,1,1,1]
=> [[1,2,3,4,5],[6,7,8],[9],[10],[11]]
=> [11,10,9,6,7,8,1,2,3,4,5] => ? = 13
[5,2,2,2]
=> [[1,2,3,4,5],[6,7],[8,9],[10,11]]
=> [10,11,8,9,6,7,1,2,3,4,5] => ? = 13
[5,2,2,1,1]
=> [[1,2,3,4,5],[6,7],[8,9],[10],[11]]
=> [11,10,8,9,6,7,1,2,3,4,5] => ? = 12
[5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> ? => ? = 11
[5,1,1,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9],[10],[11]]
=> ? => ? = 10
[4,4,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11]]
=> [9,10,11,5,6,7,8,1,2,3,4] => ? = 15
[4,4,2,1]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11]]
=> [11,9,10,5,6,7,8,1,2,3,4] => ? = 13
[4,4,1,1,1]
=> [[1,2,3,4],[5,6,7,8],[9],[10],[11]]
=> [11,10,9,5,6,7,8,1,2,3,4] => ? = 12
[4,3,3,1]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11]]
=> [11,8,9,10,5,6,7,1,2,3,4] => ? = 12
[4,3,2,2]
=> [[1,2,3,4],[5,6,7],[8,9],[10,11]]
=> [10,11,8,9,5,6,7,1,2,3,4] => ? = 11
[4,3,2,1,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10],[11]]
=> [11,10,8,9,5,6,7,1,2,3,4] => ? = 10
[4,3,1,1,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9],[10],[11]]
=> ? => ? = 9
[4,2,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9,10],[11]]
=> [11,9,10,7,8,5,6,1,2,3,4] => ? = 9
[4,2,2,1,1,1]
=> [[1,2,3,4],[5,6],[7,8],[9],[10],[11]]
=> ? => ? = 8
[4,2,1,1,1,1,1]
=> [[1,2,3,4],[5,6],[7],[8],[9],[10],[11]]
=> ? => ? = 7
[4,1,1,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9],[10],[11]]
=> ? => ? = 6
[3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11]]
=> [10,11,7,8,9,4,5,6,1,2,3] => ? = 10
[3,3,3,1,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10],[11]]
=> [11,10,7,8,9,4,5,6,1,2,3] => ? = 9
[3,3,2,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11]]
=> [11,9,10,7,8,4,5,6,1,2,3] => ? = 8
[3,3,2,1,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9],[10],[11]]
=> ? => ? = 7
[3,3,1,1,1,1,1]
=> [[1,2,3],[4,5,6],[7],[8],[9],[10],[11]]
=> ? => ? = 6
[3,2,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11]]
=> ? => ? = 7
[3,2,2,2,1,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10],[11]]
=> ? => ? = 6
[3,2,2,1,1,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9],[10],[11]]
=> ? => ? = 5
[3,2,1,1,1,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8],[9],[10],[11]]
=> ? => ? = 4
[3,1,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? => ? = 3
Description
The number of non-inversions of a permutation. For a permutation of \{1,\ldots,n\}, this is given by \operatorname{noninv}(\pi) = \binom{n}{2}-\operatorname{inv}(\pi).
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00031: Dyck paths to 312-avoiding permutationPermutations
St000428: Permutations ⟶ ℤResult quality: 46% values known / values provided: 46%distinct values known / distinct values provided: 49%
Values
[2]
=> [1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 0
[3]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 3
[2,1]
=> [1,0,1,0,1,0]
=> [1,2,3] => 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 0
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => 6
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 3
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 0
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,4,3,2,1,6] => 10
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,2,1,5] => 6
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 4
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 3
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 2
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,5,4,3,2] => 0
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,5,4,3,2,1,7] => ? = 15
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,5,3,2,1,6] => 10
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => 7
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 6
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => 6
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 4
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 3
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 3
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,4,3,2] => 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,6,5,4,3,2] => ? = 0
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [7,6,5,4,3,2,1,8] => ? = 21
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,4,3,2,1,7] => ? = 15
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [4,3,5,2,1,6] => 11
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,5,4,2,1,6] => 10
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 9
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 7
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 6
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 6
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 5
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 4
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5,4,6,3,2] => 3
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 3
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,5,3,2] => 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,5,4,3,2] => ? = 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,8,7,6,5,4,3,2] => ? = 0
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [8,7,6,5,4,3,2,1,9] => ? = 28
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [6,7,5,4,3,2,1,8] => ? = 21
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,4,6,3,2,1,7] => ? = 16
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,5,3,2,1,7] => ? = 15
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [4,3,2,5,1,6] => 13
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [3,4,5,2,1,6] => 11
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,5,4,3,1,6] => 10
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,3,2,1,6,5] => 12
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 9
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 8
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 7
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,5,4,3,6,2] => 6
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 7
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 6
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 5
[3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,4,5,6,3,2] => 4
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,6,5,7,4,3,2] => ? = 3
[2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,6,5,4,3] => 4
[2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 2
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,7,8,6,5,4,3,2] => ? = 1
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,9,8,7,6,5,4,3,2] => ? = 0
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [9,8,7,6,5,4,3,2,1,10] => ? = 36
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [7,8,6,5,4,3,2,1,9] => ? = 28
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [6,5,7,4,3,2,1,8] => ? = 22
[7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [5,7,6,4,3,2,1,8] => ? = 21
[6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [5,4,3,6,2,1,7] => ? = 18
[6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [4,5,6,3,2,1,7] => ? = 16
[6,1,1,1]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [3,6,5,4,2,1,7] => ? = 15
[4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,6,5,4,7,3,2] => ? = 6
[3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,5,6,7,4,3,2] => ? = 4
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,7,6,8,5,4,3,2] => ? = 3
[2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,4,7,6,5,3,2] => ? = 3
[2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,6,8,7,5,4,3,2] => ? = 2
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,8,9,7,6,5,4,3,2] => ? = 1
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,10,9,8,7,6,5,4,3,2] => ? = 0
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [10,9,8,7,6,5,4,3,2,1,11] => ? = 45
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [8,9,7,6,5,4,3,2,1,10] => ? = 36
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [7,6,8,5,4,3,2,1,9] => ? = 29
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [6,8,7,5,4,3,2,1,9] => ? = 28
[7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [6,5,4,7,3,2,1,8] => ? = 24
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [5,6,7,4,3,2,1,8] => ? = 22
[7,1,1,1]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [4,7,6,5,3,2,1,8] => ? = 21
[6,4]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [5,4,3,2,6,1,7] => ? = 21
[6,3,1]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [4,5,3,6,2,1,7] => ? = 18
[6,2,2]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [4,3,6,5,2,1,7] => ? = 17
[6,2,1,1]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [3,5,6,4,2,1,7] => ? = 16
[6,1,1,1,1]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [2,6,5,4,3,1,7] => ? = 15
[5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [5,4,3,2,1,7,6] => ? = 20
[5,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,6,5,4,3,7,2] => ? = 10
[4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,5,6,4,7,3,2] => ? = 7
[4,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,7,6,5,8,4,3,2] => ? = 6
[3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,5,4,7,6,3,2] => ? = 6
[3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,4,6,7,5,3,2] => ? = 5
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,6,7,8,5,4,3,2] => ? = 4
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,8,7,9,6,5,4,3,2] => ? = 3
[2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,6,5,4,3] => ? = 5
[2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,5,8,7,6,4,3,2] => ? = 3
Description
The number of occurrences of the pattern 123 or of the pattern 213 in a permutation.
The following 21 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000423The number of occurrences of the pattern 123 or of the pattern 132 in a permutation. St000437The number of occurrences of the pattern 312 or of the pattern 321 in a permutation. St000436The number of occurrences of the pattern 231 or of the pattern 321 in a permutation. St000008The major index of the composition. St000018The number of inversions of a permutation. St001697The shifted natural comajor index of a standard Young tableau. St000161The sum of the sizes of the right subtrees of a binary tree. St000558The number of occurrences of the pattern {{1,2}} in a set partition. St000492The rob statistic of a set partition. St000493The los statistic of a set partition. St000499The rcb statistic of a set partition. St000498The lcs statistic of a set partition. St001347The number of pairs of vertices of a graph having the same neighbourhood. St001558The number of transpositions that are smaller or equal to a permutation in Bruhat order. St000446The disorder of a permutation. St000798The makl of a permutation. St000004The major index of a permutation. St000305The inverse major index of a permutation. St000341The non-inversion sum of a permutation. St001874Lusztig's a-function for the symmetric group. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.