searching the database
Your data matches 31 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000566
St000566: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[2]
=> 1
[1,1]
=> 0
[3]
=> 3
[2,1]
=> 1
[1,1,1]
=> 0
[4]
=> 6
[3,1]
=> 3
[2,2]
=> 2
[2,1,1]
=> 1
[1,1,1,1]
=> 0
[5]
=> 10
[4,1]
=> 6
[3,2]
=> 4
[3,1,1]
=> 3
[2,2,1]
=> 2
[2,1,1,1]
=> 1
[1,1,1,1,1]
=> 0
[6]
=> 15
[5,1]
=> 10
[4,2]
=> 7
[4,1,1]
=> 6
[3,3]
=> 6
[3,2,1]
=> 4
[3,1,1,1]
=> 3
[2,2,2]
=> 3
[2,2,1,1]
=> 2
[2,1,1,1,1]
=> 1
[1,1,1,1,1,1]
=> 0
[7]
=> 21
[6,1]
=> 15
[5,2]
=> 11
[5,1,1]
=> 10
[4,3]
=> 9
[4,2,1]
=> 7
[4,1,1,1]
=> 6
[3,3,1]
=> 6
[3,2,2]
=> 5
[3,2,1,1]
=> 4
[3,1,1,1,1]
=> 3
[2,2,2,1]
=> 3
[2,2,1,1,1]
=> 2
[2,1,1,1,1,1]
=> 1
[1,1,1,1,1,1,1]
=> 0
[8]
=> 28
[7,1]
=> 21
[6,2]
=> 16
[6,1,1]
=> 15
[5,3]
=> 13
[5,2,1]
=> 11
[5,1,1,1]
=> 10
Description
The number of ways to select a row of a Ferrers shape and two cells in this row. Equivalently, if λ=(λ0≥λ1≥⋯≥λm) is an integer partition, then the statistic is
12m∑i=0λi(λi−1).
Matching statistic: St000185
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000185: Integer partitions ⟶ ℤResult quality: 69% ●values known / values provided: 69%●distinct values known / distinct values provided: 77%
St000185: Integer partitions ⟶ ℤResult quality: 69% ●values known / values provided: 69%●distinct values known / distinct values provided: 77%
Values
[2]
=> [1,1]
=> 1
[1,1]
=> [2]
=> 0
[3]
=> [1,1,1]
=> 3
[2,1]
=> [2,1]
=> 1
[1,1,1]
=> [3]
=> 0
[4]
=> [1,1,1,1]
=> 6
[3,1]
=> [2,1,1]
=> 3
[2,2]
=> [2,2]
=> 2
[2,1,1]
=> [3,1]
=> 1
[1,1,1,1]
=> [4]
=> 0
[5]
=> [1,1,1,1,1]
=> 10
[4,1]
=> [2,1,1,1]
=> 6
[3,2]
=> [2,2,1]
=> 4
[3,1,1]
=> [3,1,1]
=> 3
[2,2,1]
=> [3,2]
=> 2
[2,1,1,1]
=> [4,1]
=> 1
[1,1,1,1,1]
=> [5]
=> 0
[6]
=> [1,1,1,1,1,1]
=> 15
[5,1]
=> [2,1,1,1,1]
=> 10
[4,2]
=> [2,2,1,1]
=> 7
[4,1,1]
=> [3,1,1,1]
=> 6
[3,3]
=> [2,2,2]
=> 6
[3,2,1]
=> [3,2,1]
=> 4
[3,1,1,1]
=> [4,1,1]
=> 3
[2,2,2]
=> [3,3]
=> 3
[2,2,1,1]
=> [4,2]
=> 2
[2,1,1,1,1]
=> [5,1]
=> 1
[1,1,1,1,1,1]
=> [6]
=> 0
[7]
=> [1,1,1,1,1,1,1]
=> 21
[6,1]
=> [2,1,1,1,1,1]
=> 15
[5,2]
=> [2,2,1,1,1]
=> 11
[5,1,1]
=> [3,1,1,1,1]
=> 10
[4,3]
=> [2,2,2,1]
=> 9
[4,2,1]
=> [3,2,1,1]
=> 7
[4,1,1,1]
=> [4,1,1,1]
=> 6
[3,3,1]
=> [3,2,2]
=> 6
[3,2,2]
=> [3,3,1]
=> 5
[3,2,1,1]
=> [4,2,1]
=> 4
[3,1,1,1,1]
=> [5,1,1]
=> 3
[2,2,2,1]
=> [4,3]
=> 3
[2,2,1,1,1]
=> [5,2]
=> 2
[2,1,1,1,1,1]
=> [6,1]
=> 1
[1,1,1,1,1,1,1]
=> [7]
=> 0
[8]
=> [1,1,1,1,1,1,1,1]
=> 28
[7,1]
=> [2,1,1,1,1,1,1]
=> 21
[6,2]
=> [2,2,1,1,1,1]
=> 16
[6,1,1]
=> [3,1,1,1,1,1]
=> 15
[5,3]
=> [2,2,2,1,1]
=> 13
[5,2,1]
=> [3,2,1,1,1]
=> 11
[5,1,1,1]
=> [4,1,1,1,1]
=> 10
[11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 55
[10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> ? = 45
[9,2]
=> [2,2,1,1,1,1,1,1,1]
=> ? = 37
[9,1,1]
=> [3,1,1,1,1,1,1,1,1]
=> ? = 36
[8,3]
=> [2,2,2,1,1,1,1,1]
=> ? = 31
[8,2,1]
=> [3,2,1,1,1,1,1,1]
=> ? = 29
[8,1,1,1]
=> [4,1,1,1,1,1,1,1]
=> ? = 28
[7,4]
=> [2,2,2,2,1,1,1]
=> ? = 27
[7,3,1]
=> [3,2,2,1,1,1,1]
=> ? = 24
[7,2,2]
=> [3,3,1,1,1,1,1]
=> ? = 23
[7,2,1,1]
=> [4,2,1,1,1,1,1]
=> ? = 22
[7,1,1,1,1]
=> [5,1,1,1,1,1,1]
=> ? = 21
[6,4,1]
=> [3,2,2,2,1,1]
=> ? = 21
[6,3,2]
=> [3,3,2,1,1,1]
=> ? = 19
[6,3,1,1]
=> [4,2,2,1,1,1]
=> ? = 18
[6,2,2,1]
=> [4,3,1,1,1,1]
=> ? = 17
[6,2,1,1,1]
=> [5,2,1,1,1,1]
=> ? = 16
[6,1,1,1,1,1]
=> [6,1,1,1,1,1]
=> ? = 15
[5,2,1,1,1,1]
=> [6,2,1,1,1]
=> ? = 11
[5,1,1,1,1,1,1]
=> [7,1,1,1,1]
=> ? = 10
[4,3,1,1,1,1]
=> [6,2,2,1]
=> ? = 9
[4,2,2,1,1,1]
=> [6,3,1,1]
=> ? = 8
[4,2,1,1,1,1,1]
=> [7,2,1,1]
=> ? = 7
[4,1,1,1,1,1,1,1]
=> [8,1,1,1]
=> ? = 6
[3,3,2,1,1,1]
=> [6,3,2]
=> ? = 7
[3,3,1,1,1,1,1]
=> [7,2,2]
=> ? = 6
[3,2,2,1,1,1,1]
=> [7,3,1]
=> ? = 5
[3,2,1,1,1,1,1,1]
=> [8,2,1]
=> ? = 4
[3,1,1,1,1,1,1,1,1]
=> [9,1,1]
=> ? = 3
[2,2,1,1,1,1,1,1,1]
=> [9,2]
=> ? = 2
[2,1,1,1,1,1,1,1,1,1]
=> [10,1]
=> ? = 1
[1,1,1,1,1,1,1,1,1,1,1]
=> [11]
=> ? = 0
[12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 66
[11,1]
=> [2,1,1,1,1,1,1,1,1,1,1]
=> ? = 55
[10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> ? = 46
[10,1,1]
=> [3,1,1,1,1,1,1,1,1,1]
=> ? = 45
[9,3]
=> [2,2,2,1,1,1,1,1,1]
=> ? = 39
[9,2,1]
=> [3,2,1,1,1,1,1,1,1]
=> ? = 37
[9,1,1,1]
=> [4,1,1,1,1,1,1,1,1]
=> ? = 36
[8,4]
=> [2,2,2,2,1,1,1,1]
=> ? = 34
[8,3,1]
=> [3,2,2,1,1,1,1,1]
=> ? = 31
[8,2,2]
=> [3,3,1,1,1,1,1,1]
=> ? = 30
[8,2,1,1]
=> [4,2,1,1,1,1,1,1]
=> ? = 29
[8,1,1,1,1]
=> [5,1,1,1,1,1,1,1]
=> ? = 28
[7,5]
=> [2,2,2,2,2,1,1]
=> ? = 31
[7,4,1]
=> [3,2,2,2,1,1,1]
=> ? = 27
[7,3,2]
=> [3,3,2,1,1,1,1]
=> ? = 25
[7,3,1,1]
=> [4,2,2,1,1,1,1]
=> ? = 24
[7,2,2,1]
=> [4,3,1,1,1,1,1]
=> ? = 23
[7,2,1,1,1]
=> [5,2,1,1,1,1,1]
=> ? = 22
Description
The weighted size of a partition.
Let λ=(λ0≥λ1≥⋯≥λm) be an integer partition. Then the weighted size of λ is
m∑i=0i⋅λi.
This is also the sum of the leg lengths of the cells in λ, or
\sum_i \binom{\lambda^{\prime}_i}{2}
where \lambda^{\prime} is the conjugate partition of \lambda.
This is the minimal number of inversions a permutation with the given shape can have, see [1, cor.2.2].
This is also the smallest possible sum of the entries of a semistandard tableau (allowing 0 as a part) of shape \lambda=(\lambda_0,\lambda_1,\ldots,\lambda_m), obtained uniquely by placing i-1 in all the cells of the ith row of \lambda, see [2, eq.7.103].
Matching statistic: St000169
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St000169: Standard tableaux ⟶ ℤResult quality: 64% ●values known / values provided: 64%●distinct values known / distinct values provided: 74%
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St000169: Standard tableaux ⟶ ℤResult quality: 64% ●values known / values provided: 64%●distinct values known / distinct values provided: 74%
Values
[2]
=> [1,1]
=> [[1],[2]]
=> 1
[1,1]
=> [2]
=> [[1,2]]
=> 0
[3]
=> [1,1,1]
=> [[1],[2],[3]]
=> 3
[2,1]
=> [2,1]
=> [[1,2],[3]]
=> 1
[1,1,1]
=> [3]
=> [[1,2,3]]
=> 0
[4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 6
[3,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 3
[2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 2
[2,1,1]
=> [3,1]
=> [[1,2,3],[4]]
=> 1
[1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 0
[5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 10
[4,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 6
[3,2]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 4
[3,1,1]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[2,2,1]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 2
[2,1,1,1]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 1
[1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> 0
[6]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 15
[5,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 10
[4,2]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> 7
[4,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> 6
[3,3]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 6
[3,2,1]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 4
[3,1,1,1]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> 3
[2,2,2]
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> 3
[2,2,1,1]
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> 2
[2,1,1,1,1]
=> [5,1]
=> [[1,2,3,4,5],[6]]
=> 1
[1,1,1,1,1,1]
=> [6]
=> [[1,2,3,4,5,6]]
=> 0
[7]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> 21
[6,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> 15
[5,2]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> 11
[5,1,1]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> 10
[4,3]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> 9
[4,2,1]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> 7
[4,1,1,1]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> 6
[3,3,1]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> 6
[3,2,2]
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> 5
[3,2,1,1]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> 4
[3,1,1,1,1]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> 3
[2,2,2,1]
=> [4,3]
=> [[1,2,3,4],[5,6,7]]
=> 3
[2,2,1,1,1]
=> [5,2]
=> [[1,2,3,4,5],[6,7]]
=> 2
[2,1,1,1,1,1]
=> [6,1]
=> [[1,2,3,4,5,6],[7]]
=> 1
[1,1,1,1,1,1,1]
=> [7]
=> [[1,2,3,4,5,6,7]]
=> 0
[8]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> 28
[7,1]
=> [2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> 21
[6,2]
=> [2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> 16
[6,1,1]
=> [3,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8]]
=> 15
[5,3]
=> [2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> 13
[5,2,1]
=> [3,2,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8]]
=> 11
[5,1,1,1]
=> [4,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8]]
=> 10
[11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 55
[10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 45
[9,2]
=> [2,2,1,1,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 37
[9,1,1]
=> [3,1,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 36
[8,3]
=> [2,2,2,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11]]
=> ? = 31
[8,2,1]
=> [3,2,1,1,1,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8],[9],[10],[11]]
=> ? = 29
[8,1,1,1]
=> [4,1,1,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 28
[7,4]
=> [2,2,2,2,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11]]
=> ? = 27
[7,3,1]
=> [3,2,2,1,1,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9],[10],[11]]
=> ? = 24
[7,2,2]
=> [3,3,1,1,1,1,1]
=> [[1,2,3],[4,5,6],[7],[8],[9],[10],[11]]
=> ? = 23
[7,2,1,1]
=> [4,2,1,1,1,1,1]
=> [[1,2,3,4],[5,6],[7],[8],[9],[10],[11]]
=> ? = 22
[7,1,1,1,1]
=> [5,1,1,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9],[10],[11]]
=> ? = 21
[6,5]
=> [2,2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11]]
=> ? = 25
[6,4,1]
=> [3,2,2,2,1,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10],[11]]
=> ? = 21
[6,3,2]
=> [3,3,2,1,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9],[10],[11]]
=> ? = 19
[6,3,1,1]
=> [4,2,2,1,1,1]
=> [[1,2,3,4],[5,6],[7,8],[9],[10],[11]]
=> ? = 18
[6,2,2,1]
=> [4,3,1,1,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9],[10],[11]]
=> ? = 17
[6,2,1,1,1]
=> [5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> ? = 16
[6,1,1,1,1,1]
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? = 15
[5,5,1]
=> [3,2,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11]]
=> ? = 20
[5,2,1,1,1,1]
=> [6,2,1,1,1]
=> [[1,2,3,4,5,6],[7,8],[9],[10],[11]]
=> ? = 11
[5,1,1,1,1,1,1]
=> [7,1,1,1,1]
=> [[1,2,3,4,5,6,7],[8],[9],[10],[11]]
=> ? = 10
[4,3,1,1,1,1]
=> [6,2,2,1]
=> [[1,2,3,4,5,6],[7,8],[9,10],[11]]
=> ? = 9
[4,2,2,1,1,1]
=> [6,3,1,1]
=> [[1,2,3,4,5,6],[7,8,9],[10],[11]]
=> ? = 8
[4,2,1,1,1,1,1]
=> [7,2,1,1]
=> [[1,2,3,4,5,6,7],[8,9],[10],[11]]
=> ? = 7
[4,1,1,1,1,1,1,1]
=> [8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> ? = 6
[3,3,2,1,1,1]
=> [6,3,2]
=> [[1,2,3,4,5,6],[7,8,9],[10,11]]
=> ? = 7
[3,3,1,1,1,1,1]
=> [7,2,2]
=> [[1,2,3,4,5,6,7],[8,9],[10,11]]
=> ? = 6
[3,2,2,2,2]
=> [5,5,1]
=> [[1,2,3,4,5],[6,7,8,9,10],[11]]
=> ? = 7
[3,2,2,2,1,1]
=> [6,4,1]
=> [[1,2,3,4,5,6],[7,8,9,10],[11]]
=> ? = 6
[3,2,2,1,1,1,1]
=> [7,3,1]
=> [[1,2,3,4,5,6,7],[8,9,10],[11]]
=> ? = 5
[3,2,1,1,1,1,1,1]
=> [8,2,1]
=> [[1,2,3,4,5,6,7,8],[9,10],[11]]
=> ? = 4
[3,1,1,1,1,1,1,1,1]
=> [9,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11]]
=> ? = 3
[2,2,2,2,2,1]
=> [6,5]
=> [[1,2,3,4,5,6],[7,8,9,10,11]]
=> ? = 5
[2,2,2,2,1,1,1]
=> [7,4]
=> [[1,2,3,4,5,6,7],[8,9,10,11]]
=> ? = 4
[2,2,2,1,1,1,1,1]
=> [8,3]
=> [[1,2,3,4,5,6,7,8],[9,10,11]]
=> ? = 3
[2,2,1,1,1,1,1,1,1]
=> [9,2]
=> [[1,2,3,4,5,6,7,8,9],[10,11]]
=> ? = 2
[2,1,1,1,1,1,1,1,1,1]
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 1
[1,1,1,1,1,1,1,1,1,1,1]
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? = 0
[12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 66
[11,1]
=> [2,1,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 55
[10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 46
[10,1,1]
=> [3,1,1,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 45
[9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[9,2,1]
=> [3,2,1,1,1,1,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 37
[9,1,1,1]
=> [4,1,1,1,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 36
[8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[8,3,1]
=> [3,2,2,1,1,1,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9],[10],[11],[12]]
=> ? = 31
[8,2,2]
=> [3,3,1,1,1,1,1,1]
=> [[1,2,3],[4,5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 30
[8,2,1,1]
=> [4,2,1,1,1,1,1,1]
=> [[1,2,3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 29
Description
The cocharge of a standard tableau.
The '''cocharge''' of a standard tableau T, denoted \mathrm{cc}(T), is defined to be the cocharge of the reading word of the tableau. The cocharge of a permutation w_1 w_2\cdots w_n can be computed by the following algorithm:
1) Starting from w_n, scan the entries right-to-left until finding the entry 1 with a superscript 0.
2) Continue scanning until the 2 is found, and label this with a superscript 1. Then scan until the 3 is found, labeling with a 2, and so on, incrementing the label each time, until the beginning of the word is reached. Then go back to the end and scan again from right to left, and *do not* increment the superscript label for the first number found in the next scan. Then continue scanning and labeling, each time incrementing the superscript only if we have not cycled around the word since the last labeling.
3) The cocharge is defined as the sum of the superscript labels on the letters.
Matching statistic: St000330
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
St000330: Standard tableaux ⟶ ℤResult quality: 64% ●values known / values provided: 64%●distinct values known / distinct values provided: 74%
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
St000330: Standard tableaux ⟶ ℤResult quality: 64% ●values known / values provided: 64%●distinct values known / distinct values provided: 74%
Values
[2]
=> [1,1]
=> [[1],[2]]
=> 1
[1,1]
=> [2]
=> [[1,2]]
=> 0
[3]
=> [1,1,1]
=> [[1],[2],[3]]
=> 3
[2,1]
=> [2,1]
=> [[1,3],[2]]
=> 1
[1,1,1]
=> [3]
=> [[1,2,3]]
=> 0
[4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 6
[3,1]
=> [2,1,1]
=> [[1,4],[2],[3]]
=> 3
[2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 2
[2,1,1]
=> [3,1]
=> [[1,3,4],[2]]
=> 1
[1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 0
[5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 10
[4,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 6
[3,2]
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 4
[3,1,1]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 3
[2,2,1]
=> [3,2]
=> [[1,2,5],[3,4]]
=> 2
[2,1,1,1]
=> [4,1]
=> [[1,3,4,5],[2]]
=> 1
[1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> 0
[6]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 15
[5,1]
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[4,2]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 7
[4,1,1]
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 6
[3,3]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 6
[3,2,1]
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 4
[3,1,1,1]
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 3
[2,2,2]
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> 3
[2,2,1,1]
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 2
[2,1,1,1,1]
=> [5,1]
=> [[1,3,4,5,6],[2]]
=> 1
[1,1,1,1,1,1]
=> [6]
=> [[1,2,3,4,5,6]]
=> 0
[7]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> 21
[6,1]
=> [2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> 15
[5,2]
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> 11
[5,1,1]
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> 10
[4,3]
=> [2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> 9
[4,2,1]
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> 7
[4,1,1,1]
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> 6
[3,3,1]
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> 6
[3,2,2]
=> [3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> 5
[3,2,1,1]
=> [4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> 4
[3,1,1,1,1]
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> 3
[2,2,2,1]
=> [4,3]
=> [[1,2,3,7],[4,5,6]]
=> 3
[2,2,1,1,1]
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> 2
[2,1,1,1,1,1]
=> [6,1]
=> [[1,3,4,5,6,7],[2]]
=> 1
[1,1,1,1,1,1,1]
=> [7]
=> [[1,2,3,4,5,6,7]]
=> 0
[8]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> 28
[7,1]
=> [2,1,1,1,1,1,1]
=> [[1,8],[2],[3],[4],[5],[6],[7]]
=> 21
[6,2]
=> [2,2,1,1,1,1]
=> [[1,6],[2,8],[3],[4],[5],[7]]
=> 16
[6,1,1]
=> [3,1,1,1,1,1]
=> [[1,7,8],[2],[3],[4],[5],[6]]
=> 15
[5,3]
=> [2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5],[7]]
=> 13
[5,2,1]
=> [3,2,1,1,1]
=> [[1,5,8],[2,7],[3],[4],[6]]
=> 11
[5,1,1,1]
=> [4,1,1,1,1]
=> [[1,6,7,8],[2],[3],[4],[5]]
=> 10
[11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 55
[10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,11],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> ? = 45
[9,2]
=> [2,2,1,1,1,1,1,1,1]
=> [[1,9],[2,11],[3],[4],[5],[6],[7],[8],[10]]
=> ? = 37
[9,1,1]
=> [3,1,1,1,1,1,1,1,1]
=> [[1,10,11],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 36
[8,3]
=> [2,2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3,11],[4],[5],[6],[8],[10]]
=> ? = 31
[8,2,1]
=> [3,2,1,1,1,1,1,1]
=> [[1,8,11],[2,10],[3],[4],[5],[6],[7],[9]]
=> ? = 29
[8,1,1,1]
=> [4,1,1,1,1,1,1,1]
=> [[1,9,10,11],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 28
[7,4]
=> [2,2,2,2,1,1,1]
=> [[1,5],[2,7],[3,9],[4,11],[6],[8],[10]]
=> ? = 27
[7,3,1]
=> [3,2,2,1,1,1,1]
=> [[1,6,11],[2,8],[3,10],[4],[5],[7],[9]]
=> ? = 24
[7,2,2]
=> [3,3,1,1,1,1,1]
=> [[1,7,8],[2,10,11],[3],[4],[5],[6],[9]]
=> ? = 23
[7,2,1,1]
=> [4,2,1,1,1,1,1]
=> [[1,7,10,11],[2,9],[3],[4],[5],[6],[8]]
=> ? = 22
[7,1,1,1,1]
=> [5,1,1,1,1,1,1]
=> [[1,8,9,10,11],[2],[3],[4],[5],[6],[7]]
=> ? = 21
[6,5]
=> [2,2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? = 25
[6,4,1]
=> [3,2,2,2,1,1]
=> [[1,4,11],[2,6],[3,8],[5,10],[7],[9]]
=> ? = 21
[6,3,2]
=> [3,3,2,1,1,1]
=> [[1,5,8],[2,7,11],[3,10],[4],[6],[9]]
=> ? = 19
[6,3,1,1]
=> [4,2,2,1,1,1]
=> [[1,5,10,11],[2,7],[3,9],[4],[6],[8]]
=> ? = 18
[6,2,2,1]
=> [4,3,1,1,1,1]
=> [[1,6,7,11],[2,9,10],[3],[4],[5],[8]]
=> ? = 17
[6,2,1,1,1]
=> [5,2,1,1,1,1]
=> [[1,6,9,10,11],[2,8],[3],[4],[5],[7]]
=> ? = 16
[6,1,1,1,1,1]
=> [6,1,1,1,1,1]
=> [[1,7,8,9,10,11],[2],[3],[4],[5],[6]]
=> ? = 15
[5,5,1]
=> [3,2,2,2,2]
=> [[1,2,11],[3,4],[5,6],[7,8],[9,10]]
=> ? = 20
[5,2,1,1,1,1]
=> [6,2,1,1,1]
=> [[1,5,8,9,10,11],[2,7],[3],[4],[6]]
=> ? = 11
[5,1,1,1,1,1,1]
=> [7,1,1,1,1]
=> [[1,6,7,8,9,10,11],[2],[3],[4],[5]]
=> ? = 10
[4,3,1,1,1,1]
=> [6,2,2,1]
=> [[1,3,8,9,10,11],[2,5],[4,7],[6]]
=> ? = 9
[4,2,2,1,1,1]
=> [6,3,1,1]
=> [[1,4,5,9,10,11],[2,7,8],[3],[6]]
=> ? = 8
[4,2,1,1,1,1,1]
=> [7,2,1,1]
=> [[1,4,7,8,9,10,11],[2,6],[3],[5]]
=> ? = 7
[4,1,1,1,1,1,1,1]
=> [8,1,1,1]
=> [[1,5,6,7,8,9,10,11],[2],[3],[4]]
=> ? = 6
[3,3,2,1,1,1]
=> [6,3,2]
=> [[1,2,5,9,10,11],[3,4,8],[6,7]]
=> ? = 7
[3,3,1,1,1,1,1]
=> [7,2,2]
=> [[1,2,7,8,9,10,11],[3,4],[5,6]]
=> ? = 6
[3,2,2,2,2]
=> [5,5,1]
=> [[1,3,4,5,6],[2,8,9,10,11],[7]]
=> ? = 7
[3,2,2,2,1,1]
=> [6,4,1]
=> [[1,3,4,5,10,11],[2,7,8,9],[6]]
=> ? = 6
[3,2,2,1,1,1,1]
=> [7,3,1]
=> [[1,3,4,8,9,10,11],[2,6,7],[5]]
=> ? = 5
[3,2,1,1,1,1,1,1]
=> [8,2,1]
=> [[1,3,6,7,8,9,10,11],[2,5],[4]]
=> ? = 4
[3,1,1,1,1,1,1,1,1]
=> [9,1,1]
=> [[1,4,5,6,7,8,9,10,11],[2],[3]]
=> ? = 3
[2,2,2,2,2,1]
=> [6,5]
=> [[1,2,3,4,5,11],[6,7,8,9,10]]
=> ? = 5
[2,2,2,2,1,1,1]
=> [7,4]
=> [[1,2,3,4,9,10,11],[5,6,7,8]]
=> ? = 4
[2,2,2,1,1,1,1,1]
=> [8,3]
=> [[1,2,3,7,8,9,10,11],[4,5,6]]
=> ? = 3
[2,2,1,1,1,1,1,1,1]
=> [9,2]
=> [[1,2,5,6,7,8,9,10,11],[3,4]]
=> ? = 2
[2,1,1,1,1,1,1,1,1,1]
=> [10,1]
=> [[1,3,4,5,6,7,8,9,10,11],[2]]
=> ? = 1
[1,1,1,1,1,1,1,1,1,1,1]
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? = 0
[12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 66
[11,1]
=> [2,1,1,1,1,1,1,1,1,1,1]
=> [[1,12],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 55
[10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [[1,10],[2,12],[3],[4],[5],[6],[7],[8],[9],[11]]
=> ? = 46
[10,1,1]
=> [3,1,1,1,1,1,1,1,1,1]
=> [[1,11,12],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> ? = 45
[9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,8],[2,10],[3,12],[4],[5],[6],[7],[9],[11]]
=> ? = 39
[9,2,1]
=> [3,2,1,1,1,1,1,1,1]
=> [[1,9,12],[2,11],[3],[4],[5],[6],[7],[8],[10]]
=> ? = 37
[9,1,1,1]
=> [4,1,1,1,1,1,1,1,1]
=> [[1,10,11,12],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 36
[8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,6],[2,8],[3,10],[4,12],[5],[7],[9],[11]]
=> ? = 34
[8,3,1]
=> [3,2,2,1,1,1,1,1]
=> [[1,7,12],[2,9],[3,11],[4],[5],[6],[8],[10]]
=> ? = 31
[8,2,2]
=> [3,3,1,1,1,1,1,1]
=> [[1,8,9],[2,11,12],[3],[4],[5],[6],[7],[10]]
=> ? = 30
[8,2,1,1]
=> [4,2,1,1,1,1,1,1]
=> [[1,8,11,12],[2,10],[3],[4],[5],[6],[7],[9]]
=> ? = 29
Description
The (standard) major index of a standard tableau.
A descent of a standard tableau T is an index i such that i+1 appears in a row strictly below the row of i. The (standard) major index is the the sum of the descents.
Matching statistic: St000336
(load all 16 compositions to match this statistic)
(load all 16 compositions to match this statistic)
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
St000336: Standard tableaux ⟶ ℤResult quality: 64% ●values known / values provided: 64%●distinct values known / distinct values provided: 74%
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
St000336: Standard tableaux ⟶ ℤResult quality: 64% ●values known / values provided: 64%●distinct values known / distinct values provided: 74%
Values
[2]
=> [1,1]
=> [[1],[2]]
=> 1
[1,1]
=> [2]
=> [[1,2]]
=> 0
[3]
=> [1,1,1]
=> [[1],[2],[3]]
=> 3
[2,1]
=> [2,1]
=> [[1,3],[2]]
=> 1
[1,1,1]
=> [3]
=> [[1,2,3]]
=> 0
[4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 6
[3,1]
=> [2,1,1]
=> [[1,4],[2],[3]]
=> 3
[2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 2
[2,1,1]
=> [3,1]
=> [[1,3,4],[2]]
=> 1
[1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 0
[5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 10
[4,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 6
[3,2]
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 4
[3,1,1]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 3
[2,2,1]
=> [3,2]
=> [[1,2,5],[3,4]]
=> 2
[2,1,1,1]
=> [4,1]
=> [[1,3,4,5],[2]]
=> 1
[1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> 0
[6]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 15
[5,1]
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[4,2]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 7
[4,1,1]
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 6
[3,3]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 6
[3,2,1]
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 4
[3,1,1,1]
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 3
[2,2,2]
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> 3
[2,2,1,1]
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 2
[2,1,1,1,1]
=> [5,1]
=> [[1,3,4,5,6],[2]]
=> 1
[1,1,1,1,1,1]
=> [6]
=> [[1,2,3,4,5,6]]
=> 0
[7]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> 21
[6,1]
=> [2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> 15
[5,2]
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> 11
[5,1,1]
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> 10
[4,3]
=> [2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> 9
[4,2,1]
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> 7
[4,1,1,1]
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> 6
[3,3,1]
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> 6
[3,2,2]
=> [3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> 5
[3,2,1,1]
=> [4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> 4
[3,1,1,1,1]
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> 3
[2,2,2,1]
=> [4,3]
=> [[1,2,3,7],[4,5,6]]
=> 3
[2,2,1,1,1]
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> 2
[2,1,1,1,1,1]
=> [6,1]
=> [[1,3,4,5,6,7],[2]]
=> 1
[1,1,1,1,1,1,1]
=> [7]
=> [[1,2,3,4,5,6,7]]
=> 0
[8]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> 28
[7,1]
=> [2,1,1,1,1,1,1]
=> [[1,8],[2],[3],[4],[5],[6],[7]]
=> 21
[6,2]
=> [2,2,1,1,1,1]
=> [[1,6],[2,8],[3],[4],[5],[7]]
=> 16
[6,1,1]
=> [3,1,1,1,1,1]
=> [[1,7,8],[2],[3],[4],[5],[6]]
=> 15
[5,3]
=> [2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5],[7]]
=> 13
[5,2,1]
=> [3,2,1,1,1]
=> [[1,5,8],[2,7],[3],[4],[6]]
=> 11
[5,1,1,1]
=> [4,1,1,1,1]
=> [[1,6,7,8],[2],[3],[4],[5]]
=> 10
[11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 55
[10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,11],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> ? = 45
[9,2]
=> [2,2,1,1,1,1,1,1,1]
=> [[1,9],[2,11],[3],[4],[5],[6],[7],[8],[10]]
=> ? = 37
[9,1,1]
=> [3,1,1,1,1,1,1,1,1]
=> [[1,10,11],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 36
[8,3]
=> [2,2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3,11],[4],[5],[6],[8],[10]]
=> ? = 31
[8,2,1]
=> [3,2,1,1,1,1,1,1]
=> [[1,8,11],[2,10],[3],[4],[5],[6],[7],[9]]
=> ? = 29
[8,1,1,1]
=> [4,1,1,1,1,1,1,1]
=> [[1,9,10,11],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 28
[7,4]
=> [2,2,2,2,1,1,1]
=> [[1,5],[2,7],[3,9],[4,11],[6],[8],[10]]
=> ? = 27
[7,3,1]
=> [3,2,2,1,1,1,1]
=> [[1,6,11],[2,8],[3,10],[4],[5],[7],[9]]
=> ? = 24
[7,2,2]
=> [3,3,1,1,1,1,1]
=> [[1,7,8],[2,10,11],[3],[4],[5],[6],[9]]
=> ? = 23
[7,2,1,1]
=> [4,2,1,1,1,1,1]
=> [[1,7,10,11],[2,9],[3],[4],[5],[6],[8]]
=> ? = 22
[7,1,1,1,1]
=> [5,1,1,1,1,1,1]
=> [[1,8,9,10,11],[2],[3],[4],[5],[6],[7]]
=> ? = 21
[6,5]
=> [2,2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? = 25
[6,4,1]
=> [3,2,2,2,1,1]
=> [[1,4,11],[2,6],[3,8],[5,10],[7],[9]]
=> ? = 21
[6,3,2]
=> [3,3,2,1,1,1]
=> [[1,5,8],[2,7,11],[3,10],[4],[6],[9]]
=> ? = 19
[6,3,1,1]
=> [4,2,2,1,1,1]
=> [[1,5,10,11],[2,7],[3,9],[4],[6],[8]]
=> ? = 18
[6,2,2,1]
=> [4,3,1,1,1,1]
=> [[1,6,7,11],[2,9,10],[3],[4],[5],[8]]
=> ? = 17
[6,2,1,1,1]
=> [5,2,1,1,1,1]
=> [[1,6,9,10,11],[2,8],[3],[4],[5],[7]]
=> ? = 16
[6,1,1,1,1,1]
=> [6,1,1,1,1,1]
=> [[1,7,8,9,10,11],[2],[3],[4],[5],[6]]
=> ? = 15
[5,5,1]
=> [3,2,2,2,2]
=> [[1,2,11],[3,4],[5,6],[7,8],[9,10]]
=> ? = 20
[5,2,1,1,1,1]
=> [6,2,1,1,1]
=> [[1,5,8,9,10,11],[2,7],[3],[4],[6]]
=> ? = 11
[5,1,1,1,1,1,1]
=> [7,1,1,1,1]
=> [[1,6,7,8,9,10,11],[2],[3],[4],[5]]
=> ? = 10
[4,3,1,1,1,1]
=> [6,2,2,1]
=> [[1,3,8,9,10,11],[2,5],[4,7],[6]]
=> ? = 9
[4,2,2,1,1,1]
=> [6,3,1,1]
=> [[1,4,5,9,10,11],[2,7,8],[3],[6]]
=> ? = 8
[4,2,1,1,1,1,1]
=> [7,2,1,1]
=> [[1,4,7,8,9,10,11],[2,6],[3],[5]]
=> ? = 7
[4,1,1,1,1,1,1,1]
=> [8,1,1,1]
=> [[1,5,6,7,8,9,10,11],[2],[3],[4]]
=> ? = 6
[3,3,2,1,1,1]
=> [6,3,2]
=> [[1,2,5,9,10,11],[3,4,8],[6,7]]
=> ? = 7
[3,3,1,1,1,1,1]
=> [7,2,2]
=> [[1,2,7,8,9,10,11],[3,4],[5,6]]
=> ? = 6
[3,2,2,2,2]
=> [5,5,1]
=> [[1,3,4,5,6],[2,8,9,10,11],[7]]
=> ? = 7
[3,2,2,2,1,1]
=> [6,4,1]
=> [[1,3,4,5,10,11],[2,7,8,9],[6]]
=> ? = 6
[3,2,2,1,1,1,1]
=> [7,3,1]
=> [[1,3,4,8,9,10,11],[2,6,7],[5]]
=> ? = 5
[3,2,1,1,1,1,1,1]
=> [8,2,1]
=> [[1,3,6,7,8,9,10,11],[2,5],[4]]
=> ? = 4
[3,1,1,1,1,1,1,1,1]
=> [9,1,1]
=> [[1,4,5,6,7,8,9,10,11],[2],[3]]
=> ? = 3
[2,2,2,2,2,1]
=> [6,5]
=> [[1,2,3,4,5,11],[6,7,8,9,10]]
=> ? = 5
[2,2,2,2,1,1,1]
=> [7,4]
=> [[1,2,3,4,9,10,11],[5,6,7,8]]
=> ? = 4
[2,2,2,1,1,1,1,1]
=> [8,3]
=> [[1,2,3,7,8,9,10,11],[4,5,6]]
=> ? = 3
[2,2,1,1,1,1,1,1,1]
=> [9,2]
=> [[1,2,5,6,7,8,9,10,11],[3,4]]
=> ? = 2
[2,1,1,1,1,1,1,1,1,1]
=> [10,1]
=> [[1,3,4,5,6,7,8,9,10,11],[2]]
=> ? = 1
[1,1,1,1,1,1,1,1,1,1,1]
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? = 0
[12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 66
[11,1]
=> [2,1,1,1,1,1,1,1,1,1,1]
=> [[1,12],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 55
[10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [[1,10],[2,12],[3],[4],[5],[6],[7],[8],[9],[11]]
=> ? = 46
[10,1,1]
=> [3,1,1,1,1,1,1,1,1,1]
=> [[1,11,12],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> ? = 45
[9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,8],[2,10],[3,12],[4],[5],[6],[7],[9],[11]]
=> ? = 39
[9,2,1]
=> [3,2,1,1,1,1,1,1,1]
=> [[1,9,12],[2,11],[3],[4],[5],[6],[7],[8],[10]]
=> ? = 37
[9,1,1,1]
=> [4,1,1,1,1,1,1,1,1]
=> [[1,10,11,12],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 36
[8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,6],[2,8],[3,10],[4,12],[5],[7],[9],[11]]
=> ? = 34
[8,3,1]
=> [3,2,2,1,1,1,1,1]
=> [[1,7,12],[2,9],[3,11],[4],[5],[6],[8],[10]]
=> ? = 31
[8,2,2]
=> [3,3,1,1,1,1,1,1]
=> [[1,8,9],[2,11,12],[3],[4],[5],[6],[7],[10]]
=> ? = 30
[8,2,1,1]
=> [4,2,1,1,1,1,1,1]
=> [[1,8,11,12],[2,10],[3],[4],[5],[6],[7],[9]]
=> ? = 29
Description
The leg major index of a standard tableau.
The leg length of a cell is the number of cells strictly below in the same column. This statistic is the sum of all leg lengths. Therefore, this is actually a statistic on the underlying integer partition.
It happens to coincide with the (leg) major index of a tabloid restricted to standard Young tableaux, defined as follows: the descent set of a tabloid is the set of cells, not in the top row, whose entry is strictly larger than the entry directly above it. The leg major index is the sum of the leg lengths of the descents plus the number of descents.
Matching statistic: St000059
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00084: Standard tableaux —conjugate⟶ Standard tableaux
St000059: Standard tableaux ⟶ ℤResult quality: 52% ●values known / values provided: 52%●distinct values known / distinct values provided: 72%
Mp00084: Standard tableaux —conjugate⟶ Standard tableaux
St000059: Standard tableaux ⟶ ℤResult quality: 52% ●values known / values provided: 52%●distinct values known / distinct values provided: 72%
Values
[2]
=> [[1,2]]
=> [[1],[2]]
=> 1
[1,1]
=> [[1],[2]]
=> [[1,2]]
=> 0
[3]
=> [[1,2,3]]
=> [[1],[2],[3]]
=> 3
[2,1]
=> [[1,2],[3]]
=> [[1,3],[2]]
=> 1
[1,1,1]
=> [[1],[2],[3]]
=> [[1,2,3]]
=> 0
[4]
=> [[1,2,3,4]]
=> [[1],[2],[3],[4]]
=> 6
[3,1]
=> [[1,2,3],[4]]
=> [[1,4],[2],[3]]
=> 3
[2,2]
=> [[1,2],[3,4]]
=> [[1,3],[2,4]]
=> 2
[2,1,1]
=> [[1,2],[3],[4]]
=> [[1,3,4],[2]]
=> 1
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [[1,2,3,4]]
=> 0
[5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 10
[4,1]
=> [[1,2,3,4],[5]]
=> [[1,5],[2],[3],[4]]
=> 6
[3,2]
=> [[1,2,3],[4,5]]
=> [[1,4],[2,5],[3]]
=> 4
[3,1,1]
=> [[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> 3
[2,2,1]
=> [[1,2],[3,4],[5]]
=> [[1,3,5],[2,4]]
=> 2
[2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[1,3,4,5],[2]]
=> 1
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [[1,2,3,4,5]]
=> 0
[6]
=> [[1,2,3,4,5,6]]
=> [[1],[2],[3],[4],[5],[6]]
=> 15
[5,1]
=> [[1,2,3,4,5],[6]]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[4,2]
=> [[1,2,3,4],[5,6]]
=> [[1,5],[2,6],[3],[4]]
=> 7
[4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [[1,5,6],[2],[3],[4]]
=> 6
[3,3]
=> [[1,2,3],[4,5,6]]
=> [[1,4],[2,5],[3,6]]
=> 6
[3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [[1,4,6],[2,5],[3]]
=> 4
[3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [[1,4,5,6],[2],[3]]
=> 3
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [[1,3,5],[2,4,6]]
=> 3
[2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [[1,3,5,6],[2,4]]
=> 2
[2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [[1,3,4,5,6],[2]]
=> 1
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [[1,2,3,4,5,6]]
=> 0
[7]
=> [[1,2,3,4,5,6,7]]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> 21
[6,1]
=> [[1,2,3,4,5,6],[7]]
=> [[1,7],[2],[3],[4],[5],[6]]
=> 15
[5,2]
=> [[1,2,3,4,5],[6,7]]
=> [[1,6],[2,7],[3],[4],[5]]
=> 11
[5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [[1,6,7],[2],[3],[4],[5]]
=> 10
[4,3]
=> [[1,2,3,4],[5,6,7]]
=> [[1,5],[2,6],[3,7],[4]]
=> 9
[4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [[1,5,7],[2,6],[3],[4]]
=> 7
[4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [[1,5,6,7],[2],[3],[4]]
=> 6
[3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [[1,4,7],[2,5],[3,6]]
=> 6
[3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [[1,4,6],[2,5,7],[3]]
=> 5
[3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [[1,4,6,7],[2,5],[3]]
=> 4
[3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [[1,4,5,6,7],[2],[3]]
=> 3
[2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [[1,3,5,7],[2,4,6]]
=> 3
[2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [[1,3,5,6,7],[2,4]]
=> 2
[2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [[1,3,4,5,6,7],[2]]
=> 1
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [[1,2,3,4,5,6,7]]
=> 0
[8]
=> [[1,2,3,4,5,6,7,8]]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> 28
[7,1]
=> [[1,2,3,4,5,6,7],[8]]
=> [[1,8],[2],[3],[4],[5],[6],[7]]
=> 21
[6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> [[1,7],[2,8],[3],[4],[5],[6]]
=> 16
[6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> [[1,7,8],[2],[3],[4],[5],[6]]
=> 15
[5,3]
=> [[1,2,3,4,5],[6,7,8]]
=> [[1,6],[2,7],[3,8],[4],[5]]
=> 13
[5,2,1]
=> [[1,2,3,4,5],[6,7],[8]]
=> [[1,6,8],[2,7],[3],[4],[5]]
=> 11
[5,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8]]
=> [[1,6,7,8],[2],[3],[4],[5]]
=> 10
[11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 55
[10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> [[1,11],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> ? = 45
[9,2]
=> [[1,2,3,4,5,6,7,8,9],[10,11]]
=> [[1,10],[2,11],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 37
[9,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11]]
=> [[1,10,11],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 36
[8,3]
=> [[1,2,3,4,5,6,7,8],[9,10,11]]
=> [[1,9],[2,10],[3,11],[4],[5],[6],[7],[8]]
=> ? = 31
[8,2,1]
=> [[1,2,3,4,5,6,7,8],[9,10],[11]]
=> [[1,9,11],[2,10],[3],[4],[5],[6],[7],[8]]
=> ? = 29
[8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> [[1,9,10,11],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 28
[7,4]
=> [[1,2,3,4,5,6,7],[8,9,10,11]]
=> ?
=> ? = 27
[7,3,1]
=> [[1,2,3,4,5,6,7],[8,9,10],[11]]
=> [[1,8,11],[2,9],[3,10],[4],[5],[6],[7]]
=> ? = 24
[7,2,2]
=> [[1,2,3,4,5,6,7],[8,9],[10,11]]
=> [[1,8,10],[2,9,11],[3],[4],[5],[6],[7]]
=> ? = 23
[7,2,1,1]
=> [[1,2,3,4,5,6,7],[8,9],[10],[11]]
=> [[1,8,10,11],[2,9],[3],[4],[5],[6],[7]]
=> ? = 22
[7,1,1,1,1]
=> [[1,2,3,4,5,6,7],[8],[9],[10],[11]]
=> ?
=> ? = 21
[6,5]
=> [[1,2,3,4,5,6],[7,8,9,10,11]]
=> [[1,7],[2,8],[3,9],[4,10],[5,11],[6]]
=> ? = 25
[6,4,1]
=> [[1,2,3,4,5,6],[7,8,9,10],[11]]
=> ?
=> ? = 21
[6,3,2]
=> [[1,2,3,4,5,6],[7,8,9],[10,11]]
=> [[1,7,10],[2,8,11],[3,9],[4],[5],[6]]
=> ? = 19
[6,3,1,1]
=> [[1,2,3,4,5,6],[7,8,9],[10],[11]]
=> [[1,7,10,11],[2,8],[3,9],[4],[5],[6]]
=> ? = 18
[6,2,2,1]
=> [[1,2,3,4,5,6],[7,8],[9,10],[11]]
=> [[1,7,9,11],[2,8,10],[3],[4],[5],[6]]
=> ? = 17
[6,2,1,1,1]
=> [[1,2,3,4,5,6],[7,8],[9],[10],[11]]
=> [[1,7,9,10,11],[2,8],[3],[4],[5],[6]]
=> ? = 16
[6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 15
[5,5,1]
=> [[1,2,3,4,5],[6,7,8,9,10],[11]]
=> [[1,6,11],[2,7],[3,8],[4,9],[5,10]]
=> ? = 20
[5,4,2]
=> [[1,2,3,4,5],[6,7,8,9],[10,11]]
=> [[1,6,10],[2,7,11],[3,8],[4,9],[5]]
=> ? = 17
[5,4,1,1]
=> [[1,2,3,4,5],[6,7,8,9],[10],[11]]
=> [[1,6,10,11],[2,7],[3,8],[4,9],[5]]
=> ? = 16
[5,3,3]
=> [[1,2,3,4,5],[6,7,8],[9,10,11]]
=> [[1,6,9],[2,7,10],[3,8,11],[4],[5]]
=> ? = 16
[5,3,2,1]
=> [[1,2,3,4,5],[6,7,8],[9,10],[11]]
=> [[1,6,9,11],[2,7,10],[3,8],[4],[5]]
=> ? = 14
[5,3,1,1,1]
=> [[1,2,3,4,5],[6,7,8],[9],[10],[11]]
=> [[1,6,9,10,11],[2,7],[3,8],[4],[5]]
=> ? = 13
[5,2,2,2]
=> [[1,2,3,4,5],[6,7],[8,9],[10,11]]
=> [[1,6,8,10],[2,7,9,11],[3],[4],[5]]
=> ? = 13
[5,2,2,1,1]
=> [[1,2,3,4,5],[6,7],[8,9],[10],[11]]
=> [[1,6,8,10,11],[2,7,9],[3],[4],[5]]
=> ? = 12
[5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> [[1,6,8,9,10,11],[2,7],[3],[4],[5]]
=> ? = 11
[5,1,1,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 10
[4,4,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11]]
=> [[1,5,9],[2,6,10],[3,7,11],[4,8]]
=> ? = 15
[4,4,2,1]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11]]
=> [[1,5,9,11],[2,6,10],[3,7],[4,8]]
=> ? = 13
[4,4,1,1,1]
=> [[1,2,3,4],[5,6,7,8],[9],[10],[11]]
=> [[1,5,9,10,11],[2,6],[3,7],[4,8]]
=> ? = 12
[4,3,3,1]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11]]
=> [[1,5,8,11],[2,6,9],[3,7,10],[4]]
=> ? = 12
[4,3,2,2]
=> [[1,2,3,4],[5,6,7],[8,9],[10,11]]
=> [[1,5,8,10],[2,6,9,11],[3,7],[4]]
=> ? = 11
[4,3,2,1,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10],[11]]
=> [[1,5,8,10,11],[2,6,9],[3,7],[4]]
=> ? = 10
[4,3,1,1,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9],[10],[11]]
=> ?
=> ? = 9
[4,2,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9,10],[11]]
=> [[1,5,7,9,11],[2,6,8,10],[3],[4]]
=> ? = 9
[4,2,2,1,1,1]
=> [[1,2,3,4],[5,6],[7,8],[9],[10],[11]]
=> ?
=> ? = 8
[4,2,1,1,1,1,1]
=> [[1,2,3,4],[5,6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 7
[4,1,1,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 6
[3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11]]
=> [[1,4,7,10],[2,5,8,11],[3,6,9]]
=> ? = 10
[3,3,3,1,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10],[11]]
=> [[1,4,7,10,11],[2,5,8],[3,6,9]]
=> ? = 9
[3,3,2,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11]]
=> [[1,4,7,9,11],[2,5,8,10],[3,6]]
=> ? = 8
[3,3,2,1,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9],[10],[11]]
=> ?
=> ? = 7
[3,3,1,1,1,1,1]
=> [[1,2,3],[4,5,6],[7],[8],[9],[10],[11]]
=> [[1,4,7,8,9,10,11],[2,5],[3,6]]
=> ? = 6
[3,2,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11]]
=> [[1,4,6,8,10],[2,5,7,9,11],[3]]
=> ? = 7
[3,2,2,2,1,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10],[11]]
=> ?
=> ? = 6
[3,2,2,1,1,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9],[10],[11]]
=> ?
=> ? = 5
[3,2,1,1,1,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 4
[3,1,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 3
Description
The inversion number of a standard tableau as defined by Haglund and Stevens.
Their inversion number is the total number of inversion pairs for the tableau. An inversion pair is defined as a pair of cells (a,b), (x,y) such that the content of (x,y) is greater than the content of (a,b) and (x,y) is north of the inversion path of (a,b), where the inversion path is defined in detail in [1].
Matching statistic: St000009
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00084: Standard tableaux —conjugate⟶ Standard tableaux
St000009: Standard tableaux ⟶ ℤResult quality: 52% ●values known / values provided: 52%●distinct values known / distinct values provided: 74%
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00084: Standard tableaux —conjugate⟶ Standard tableaux
St000009: Standard tableaux ⟶ ℤResult quality: 52% ●values known / values provided: 52%●distinct values known / distinct values provided: 74%
Values
[2]
=> [1,1]
=> [[1],[2]]
=> [[1,2]]
=> 1
[1,1]
=> [2]
=> [[1,2]]
=> [[1],[2]]
=> 0
[3]
=> [1,1,1]
=> [[1],[2],[3]]
=> [[1,2,3]]
=> 3
[2,1]
=> [2,1]
=> [[1,2],[3]]
=> [[1,3],[2]]
=> 1
[1,1,1]
=> [3]
=> [[1,2,3]]
=> [[1],[2],[3]]
=> 0
[4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [[1,2,3,4]]
=> 6
[3,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [[1,3,4],[2]]
=> 3
[2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> [[1,3],[2,4]]
=> 2
[2,1,1]
=> [3,1]
=> [[1,2,3],[4]]
=> [[1,4],[2],[3]]
=> 1
[1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> [[1],[2],[3],[4]]
=> 0
[5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [[1,2,3,4,5]]
=> 10
[4,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[1,3,4,5],[2]]
=> 6
[3,2]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [[1,3,5],[2,4]]
=> 4
[3,1,1]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> 3
[2,2,1]
=> [3,2]
=> [[1,2,3],[4,5]]
=> [[1,4],[2,5],[3]]
=> 2
[2,1,1,1]
=> [4,1]
=> [[1,2,3,4],[5]]
=> [[1,5],[2],[3],[4]]
=> 1
[1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 0
[6]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [[1,2,3,4,5,6]]
=> 15
[5,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [[1,3,4,5,6],[2]]
=> 10
[4,2]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [[1,3,5,6],[2,4]]
=> 7
[4,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [[1,4,5,6],[2],[3]]
=> 6
[3,3]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [[1,3,5],[2,4,6]]
=> 6
[3,2,1]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [[1,4,6],[2,5],[3]]
=> 4
[3,1,1,1]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [[1,5,6],[2],[3],[4]]
=> 3
[2,2,2]
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [[1,4],[2,5],[3,6]]
=> 3
[2,2,1,1]
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [[1,5],[2,6],[3],[4]]
=> 2
[2,1,1,1,1]
=> [5,1]
=> [[1,2,3,4,5],[6]]
=> [[1,6],[2],[3],[4],[5]]
=> 1
[1,1,1,1,1,1]
=> [6]
=> [[1,2,3,4,5,6]]
=> [[1],[2],[3],[4],[5],[6]]
=> 0
[7]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [[1,2,3,4,5,6,7]]
=> 21
[6,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [[1,3,4,5,6,7],[2]]
=> 15
[5,2]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [[1,3,5,6,7],[2,4]]
=> 11
[5,1,1]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [[1,4,5,6,7],[2],[3]]
=> 10
[4,3]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [[1,3,5,7],[2,4,6]]
=> 9
[4,2,1]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [[1,4,6,7],[2,5],[3]]
=> 7
[4,1,1,1]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [[1,5,6,7],[2],[3],[4]]
=> 6
[3,3,1]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [[1,4,6],[2,5,7],[3]]
=> 6
[3,2,2]
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [[1,4,7],[2,5],[3,6]]
=> 5
[3,2,1,1]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [[1,5,7],[2,6],[3],[4]]
=> 4
[3,1,1,1,1]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [[1,6,7],[2],[3],[4],[5]]
=> 3
[2,2,2,1]
=> [4,3]
=> [[1,2,3,4],[5,6,7]]
=> [[1,5],[2,6],[3,7],[4]]
=> 3
[2,2,1,1,1]
=> [5,2]
=> [[1,2,3,4,5],[6,7]]
=> [[1,6],[2,7],[3],[4],[5]]
=> 2
[2,1,1,1,1,1]
=> [6,1]
=> [[1,2,3,4,5,6],[7]]
=> [[1,7],[2],[3],[4],[5],[6]]
=> 1
[1,1,1,1,1,1,1]
=> [7]
=> [[1,2,3,4,5,6,7]]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> 0
[8]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [[1,2,3,4,5,6,7,8]]
=> 28
[7,1]
=> [2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [[1,3,4,5,6,7,8],[2]]
=> 21
[6,2]
=> [2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [[1,3,5,6,7,8],[2,4]]
=> 16
[6,1,1]
=> [3,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8]]
=> [[1,4,5,6,7,8],[2],[3]]
=> 15
[5,3]
=> [2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [[1,3,5,7,8],[2,4,6]]
=> 13
[5,2,1]
=> [3,2,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8]]
=> [[1,4,6,7,8],[2,5],[3]]
=> 11
[5,1,1,1]
=> [4,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8]]
=> [[1,5,6,7,8],[2],[3],[4]]
=> 10
[11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? = 55
[10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> [[1,3,4,5,6,7,8,9,10,11],[2]]
=> ? = 45
[9,2]
=> [2,2,1,1,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 37
[9,1,1]
=> [3,1,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 36
[8,3]
=> [2,2,2,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11]]
=> [[1,3,5,7,8,9,10,11],[2,4,6]]
=> ? = 31
[8,2,1]
=> [3,2,1,1,1,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 29
[8,1,1,1]
=> [4,1,1,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 28
[7,4]
=> [2,2,2,2,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11]]
=> ?
=> ? = 27
[7,3,1]
=> [3,2,2,1,1,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9],[10],[11]]
=> ?
=> ? = 24
[7,2,2]
=> [3,3,1,1,1,1,1]
=> [[1,2,3],[4,5,6],[7],[8],[9],[10],[11]]
=> [[1,4,7,8,9,10,11],[2,5],[3,6]]
=> ? = 23
[7,2,1,1]
=> [4,2,1,1,1,1,1]
=> [[1,2,3,4],[5,6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 22
[7,1,1,1,1]
=> [5,1,1,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 21
[6,5]
=> [2,2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11]]
=> [[1,3,5,7,9,11],[2,4,6,8,10]]
=> ? = 25
[6,4,1]
=> [3,2,2,2,1,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10],[11]]
=> ?
=> ? = 21
[6,3,2]
=> [3,3,2,1,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9],[10],[11]]
=> ?
=> ? = 19
[6,3,1,1]
=> [4,2,2,1,1,1]
=> [[1,2,3,4],[5,6],[7,8],[9],[10],[11]]
=> ?
=> ? = 18
[6,2,2,1]
=> [4,3,1,1,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9],[10],[11]]
=> ?
=> ? = 17
[6,2,1,1,1]
=> [5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> [[1,6,8,9,10,11],[2,7],[3],[4],[5]]
=> ? = 16
[6,1,1,1,1,1]
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 15
[5,5,1]
=> [3,2,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11]]
=> [[1,4,6,8,10],[2,5,7,9,11],[3]]
=> ? = 20
[5,4,2]
=> [3,3,2,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11]]
=> [[1,4,7,9,11],[2,5,8,10],[3,6]]
=> ? = 17
[5,4,1,1]
=> [4,2,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9,10],[11]]
=> [[1,5,7,9,11],[2,6,8,10],[3],[4]]
=> ? = 16
[5,3,3]
=> [3,3,3,1,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10],[11]]
=> [[1,4,7,10,11],[2,5,8],[3,6,9]]
=> ? = 16
[5,3,2,1]
=> [4,3,2,1,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10],[11]]
=> [[1,5,8,10,11],[2,6,9],[3,7],[4]]
=> ? = 14
[5,3,1,1,1]
=> [5,2,2,1,1]
=> [[1,2,3,4,5],[6,7],[8,9],[10],[11]]
=> [[1,6,8,10,11],[2,7,9],[3],[4],[5]]
=> ? = 13
[5,2,2,2]
=> [4,4,1,1,1]
=> [[1,2,3,4],[5,6,7,8],[9],[10],[11]]
=> [[1,5,9,10,11],[2,6],[3,7],[4,8]]
=> ? = 13
[5,2,2,1,1]
=> [5,3,1,1,1]
=> [[1,2,3,4,5],[6,7,8],[9],[10],[11]]
=> [[1,6,9,10,11],[2,7],[3,8],[4],[5]]
=> ? = 12
[5,2,1,1,1,1]
=> [6,2,1,1,1]
=> [[1,2,3,4,5,6],[7,8],[9],[10],[11]]
=> [[1,7,9,10,11],[2,8],[3],[4],[5],[6]]
=> ? = 11
[5,1,1,1,1,1,1]
=> [7,1,1,1,1]
=> [[1,2,3,4,5,6,7],[8],[9],[10],[11]]
=> ?
=> ? = 10
[4,4,3]
=> [3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11]]
=> [[1,4,7,10],[2,5,8,11],[3,6,9]]
=> ? = 15
[4,4,2,1]
=> [4,3,2,2]
=> [[1,2,3,4],[5,6,7],[8,9],[10,11]]
=> [[1,5,8,10],[2,6,9,11],[3,7],[4]]
=> ? = 13
[4,4,1,1,1]
=> [5,2,2,2]
=> [[1,2,3,4,5],[6,7],[8,9],[10,11]]
=> [[1,6,8,10],[2,7,9,11],[3],[4],[5]]
=> ? = 12
[4,3,3,1]
=> [4,3,3,1]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11]]
=> [[1,5,8,11],[2,6,9],[3,7,10],[4]]
=> ? = 12
[4,3,2,2]
=> [4,4,2,1]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11]]
=> [[1,5,9,11],[2,6,10],[3,7],[4,8]]
=> ? = 11
[4,3,2,1,1]
=> [5,3,2,1]
=> [[1,2,3,4,5],[6,7,8],[9,10],[11]]
=> [[1,6,9,11],[2,7,10],[3,8],[4],[5]]
=> ? = 10
[4,3,1,1,1,1]
=> [6,2,2,1]
=> [[1,2,3,4,5,6],[7,8],[9,10],[11]]
=> [[1,7,9,11],[2,8,10],[3],[4],[5],[6]]
=> ? = 9
[4,2,2,2,1]
=> [5,4,1,1]
=> [[1,2,3,4,5],[6,7,8,9],[10],[11]]
=> [[1,6,10,11],[2,7],[3,8],[4,9],[5]]
=> ? = 9
[4,2,2,1,1,1]
=> [6,3,1,1]
=> [[1,2,3,4,5,6],[7,8,9],[10],[11]]
=> [[1,7,10,11],[2,8],[3,9],[4],[5],[6]]
=> ? = 8
[4,2,1,1,1,1,1]
=> [7,2,1,1]
=> [[1,2,3,4,5,6,7],[8,9],[10],[11]]
=> [[1,8,10,11],[2,9],[3],[4],[5],[6],[7]]
=> ? = 7
[4,1,1,1,1,1,1,1]
=> [8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> [[1,9,10,11],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 6
[3,3,3,2]
=> [4,4,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11]]
=> [[1,5,9],[2,6,10],[3,7,11],[4,8]]
=> ? = 10
[3,3,3,1,1]
=> [5,3,3]
=> [[1,2,3,4,5],[6,7,8],[9,10,11]]
=> [[1,6,9],[2,7,10],[3,8,11],[4],[5]]
=> ? = 9
[3,3,2,2,1]
=> [5,4,2]
=> [[1,2,3,4,5],[6,7,8,9],[10,11]]
=> [[1,6,10],[2,7,11],[3,8],[4,9],[5]]
=> ? = 8
[3,3,2,1,1,1]
=> [6,3,2]
=> [[1,2,3,4,5,6],[7,8,9],[10,11]]
=> [[1,7,10],[2,8,11],[3,9],[4],[5],[6]]
=> ? = 7
[3,3,1,1,1,1,1]
=> [7,2,2]
=> [[1,2,3,4,5,6,7],[8,9],[10,11]]
=> [[1,8,10],[2,9,11],[3],[4],[5],[6],[7]]
=> ? = 6
[3,2,2,2,2]
=> [5,5,1]
=> [[1,2,3,4,5],[6,7,8,9,10],[11]]
=> [[1,6,11],[2,7],[3,8],[4,9],[5,10]]
=> ? = 7
[3,2,2,2,1,1]
=> [6,4,1]
=> [[1,2,3,4,5,6],[7,8,9,10],[11]]
=> ?
=> ? = 6
[3,2,2,1,1,1,1]
=> [7,3,1]
=> [[1,2,3,4,5,6,7],[8,9,10],[11]]
=> [[1,8,11],[2,9],[3,10],[4],[5],[6],[7]]
=> ? = 5
[3,2,1,1,1,1,1,1]
=> [8,2,1]
=> [[1,2,3,4,5,6,7,8],[9,10],[11]]
=> [[1,9,11],[2,10],[3],[4],[5],[6],[7],[8]]
=> ? = 4
[3,1,1,1,1,1,1,1,1]
=> [9,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11]]
=> [[1,10,11],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 3
Description
The charge of a standard tableau.
Matching statistic: St000391
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00134: Standard tableaux —descent word⟶ Binary words
St000391: Binary words ⟶ ℤResult quality: 51% ●values known / values provided: 51%●distinct values known / distinct values provided: 69%
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00134: Standard tableaux —descent word⟶ Binary words
St000391: Binary words ⟶ ℤResult quality: 51% ●values known / values provided: 51%●distinct values known / distinct values provided: 69%
Values
[2]
=> [1,1]
=> [[1],[2]]
=> 1 => 1
[1,1]
=> [2]
=> [[1,2]]
=> 0 => 0
[3]
=> [1,1,1]
=> [[1],[2],[3]]
=> 11 => 3
[2,1]
=> [2,1]
=> [[1,3],[2]]
=> 10 => 1
[1,1,1]
=> [3]
=> [[1,2,3]]
=> 00 => 0
[4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 111 => 6
[3,1]
=> [2,1,1]
=> [[1,4],[2],[3]]
=> 110 => 3
[2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 010 => 2
[2,1,1]
=> [3,1]
=> [[1,3,4],[2]]
=> 100 => 1
[1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 000 => 0
[5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1111 => 10
[4,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 1110 => 6
[3,2]
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 1010 => 4
[3,1,1]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 1100 => 3
[2,2,1]
=> [3,2]
=> [[1,2,5],[3,4]]
=> 0100 => 2
[2,1,1,1]
=> [4,1]
=> [[1,3,4,5],[2]]
=> 1000 => 1
[1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> 0000 => 0
[6]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 11111 => 15
[5,1]
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 11110 => 10
[4,2]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 11010 => 7
[4,1,1]
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 11100 => 6
[3,3]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 01010 => 6
[3,2,1]
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 10100 => 4
[3,1,1,1]
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 11000 => 3
[2,2,2]
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> 00100 => 3
[2,2,1,1]
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 01000 => 2
[2,1,1,1,1]
=> [5,1]
=> [[1,3,4,5,6],[2]]
=> 10000 => 1
[1,1,1,1,1,1]
=> [6]
=> [[1,2,3,4,5,6]]
=> 00000 => 0
[7]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> 111111 => 21
[6,1]
=> [2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> 111110 => 15
[5,2]
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> 111010 => 11
[5,1,1]
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> 111100 => 10
[4,3]
=> [2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> 101010 => 9
[4,2,1]
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> 110100 => 7
[4,1,1,1]
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> 111000 => 6
[3,3,1]
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> 010100 => 6
[3,2,2]
=> [3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> 100100 => 5
[3,2,1,1]
=> [4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> 101000 => 4
[3,1,1,1,1]
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> 110000 => 3
[2,2,2,1]
=> [4,3]
=> [[1,2,3,7],[4,5,6]]
=> 001000 => 3
[2,2,1,1,1]
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> 010000 => 2
[2,1,1,1,1,1]
=> [6,1]
=> [[1,3,4,5,6,7],[2]]
=> 100000 => 1
[1,1,1,1,1,1,1]
=> [7]
=> [[1,2,3,4,5,6,7]]
=> 000000 => 0
[8]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> 1111111 => 28
[7,1]
=> [2,1,1,1,1,1,1]
=> [[1,8],[2],[3],[4],[5],[6],[7]]
=> 1111110 => 21
[6,2]
=> [2,2,1,1,1,1]
=> [[1,6],[2,8],[3],[4],[5],[7]]
=> 1111010 => 16
[6,1,1]
=> [3,1,1,1,1,1]
=> [[1,7,8],[2],[3],[4],[5],[6]]
=> 1111100 => 15
[5,3]
=> [2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5],[7]]
=> 1101010 => 13
[5,2,1]
=> [3,2,1,1,1]
=> [[1,5,8],[2,7],[3],[4],[6]]
=> 1110100 => 11
[5,1,1,1]
=> [4,1,1,1,1]
=> [[1,6,7,8],[2],[3],[4],[5]]
=> 1111000 => 10
[11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? => ? = 55
[10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,11],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> ? => ? = 45
[9,2]
=> [2,2,1,1,1,1,1,1,1]
=> [[1,9],[2,11],[3],[4],[5],[6],[7],[8],[10]]
=> ? => ? = 37
[9,1,1]
=> [3,1,1,1,1,1,1,1,1]
=> [[1,10,11],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? => ? = 36
[8,3]
=> [2,2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3,11],[4],[5],[6],[8],[10]]
=> ? => ? = 31
[8,2,1]
=> [3,2,1,1,1,1,1,1]
=> [[1,8,11],[2,10],[3],[4],[5],[6],[7],[9]]
=> ? => ? = 29
[8,1,1,1]
=> [4,1,1,1,1,1,1,1]
=> [[1,9,10,11],[2],[3],[4],[5],[6],[7],[8]]
=> ? => ? = 28
[7,4]
=> [2,2,2,2,1,1,1]
=> [[1,5],[2,7],[3,9],[4,11],[6],[8],[10]]
=> ? => ? = 27
[7,3,1]
=> [3,2,2,1,1,1,1]
=> [[1,6,11],[2,8],[3,10],[4],[5],[7],[9]]
=> ? => ? = 24
[7,2,2]
=> [3,3,1,1,1,1,1]
=> [[1,7,8],[2,10,11],[3],[4],[5],[6],[9]]
=> ? => ? = 23
[7,2,1,1]
=> [4,2,1,1,1,1,1]
=> [[1,7,10,11],[2,9],[3],[4],[5],[6],[8]]
=> ? => ? = 22
[7,1,1,1,1]
=> [5,1,1,1,1,1,1]
=> [[1,8,9,10,11],[2],[3],[4],[5],[6],[7]]
=> ? => ? = 21
[6,5]
=> [2,2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? => ? = 25
[6,4,1]
=> [3,2,2,2,1,1]
=> [[1,4,11],[2,6],[3,8],[5,10],[7],[9]]
=> ? => ? = 21
[6,3,2]
=> [3,3,2,1,1,1]
=> [[1,5,8],[2,7,11],[3,10],[4],[6],[9]]
=> ? => ? = 19
[6,3,1,1]
=> [4,2,2,1,1,1]
=> [[1,5,10,11],[2,7],[3,9],[4],[6],[8]]
=> ? => ? = 18
[6,2,2,1]
=> [4,3,1,1,1,1]
=> [[1,6,7,11],[2,9,10],[3],[4],[5],[8]]
=> ? => ? = 17
[6,2,1,1,1]
=> [5,2,1,1,1,1]
=> [[1,6,9,10,11],[2,8],[3],[4],[5],[7]]
=> ? => ? = 16
[6,1,1,1,1,1]
=> [6,1,1,1,1,1]
=> [[1,7,8,9,10,11],[2],[3],[4],[5],[6]]
=> ? => ? = 15
[5,5,1]
=> [3,2,2,2,2]
=> [[1,2,11],[3,4],[5,6],[7,8],[9,10]]
=> ? => ? = 20
[5,4,2]
=> [3,3,2,2,1]
=> [[1,3,8],[2,5,11],[4,7],[6,10],[9]]
=> 1010100100 => ? = 17
[5,4,1,1]
=> [4,2,2,2,1]
=> [[1,3,10,11],[2,5],[4,7],[6,9],[8]]
=> 1010101000 => ? = 16
[5,3,3]
=> [3,3,3,1,1]
=> [[1,4,5],[2,7,8],[3,10,11],[6],[9]]
=> 1100100100 => ? = 16
[5,3,2,1]
=> [4,3,2,1,1]
=> [[1,4,7,11],[2,6,10],[3,9],[5],[8]]
=> 1101001000 => ? = 14
[5,3,1,1,1]
=> [5,2,2,1,1]
=> [[1,4,9,10,11],[2,6],[3,8],[5],[7]]
=> 1101010000 => ? = 13
[5,2,2,2]
=> [4,4,1,1,1]
=> [[1,5,6,7],[2,9,10,11],[3],[4],[8]]
=> 1110001000 => ? = 13
[5,2,2,1,1]
=> [5,3,1,1,1]
=> [[1,5,6,10,11],[2,8,9],[3],[4],[7]]
=> 1110010000 => ? = 12
[5,2,1,1,1,1]
=> [6,2,1,1,1]
=> [[1,5,8,9,10,11],[2,7],[3],[4],[6]]
=> ? => ? = 11
[5,1,1,1,1,1,1]
=> [7,1,1,1,1]
=> [[1,6,7,8,9,10,11],[2],[3],[4],[5]]
=> ? => ? = 10
[4,4,3]
=> [3,3,3,2]
=> [[1,2,5],[3,4,8],[6,7,11],[9,10]]
=> 0100100100 => ? = 15
[4,4,2,1]
=> [4,3,2,2]
=> [[1,2,7,11],[3,4,10],[5,6],[8,9]]
=> 0101001000 => ? = 13
[4,4,1,1,1]
=> [5,2,2,2]
=> [[1,2,9,10,11],[3,4],[5,6],[7,8]]
=> 0101010000 => ? = 12
[4,3,3,1]
=> [4,3,3,1]
=> [[1,3,4,11],[2,6,7],[5,9,10],[8]]
=> 1001001000 => ? = 12
[4,3,2,2]
=> [4,4,2,1]
=> [[1,3,6,7],[2,5,10,11],[4,9],[8]]
=> 1010001000 => ? = 11
[4,3,2,1,1]
=> [5,3,2,1]
=> [[1,3,6,10,11],[2,5,9],[4,8],[7]]
=> 1010010000 => ? = 10
[4,3,1,1,1,1]
=> [6,2,2,1]
=> [[1,3,8,9,10,11],[2,5],[4,7],[6]]
=> ? => ? = 9
[4,2,2,2,1]
=> [5,4,1,1]
=> [[1,4,5,6,11],[2,8,9,10],[3],[7]]
=> 1100010000 => ? = 9
[4,2,2,1,1,1]
=> [6,3,1,1]
=> [[1,4,5,9,10,11],[2,7,8],[3],[6]]
=> ? => ? = 8
[4,2,1,1,1,1,1]
=> [7,2,1,1]
=> [[1,4,7,8,9,10,11],[2,6],[3],[5]]
=> ? => ? = 7
[4,1,1,1,1,1,1,1]
=> [8,1,1,1]
=> [[1,5,6,7,8,9,10,11],[2],[3],[4]]
=> ? => ? = 6
[3,3,2,2,1]
=> [5,4,2]
=> [[1,2,5,6,11],[3,4,9,10],[7,8]]
=> 0100010000 => ? = 8
[3,3,2,1,1,1]
=> [6,3,2]
=> [[1,2,5,9,10,11],[3,4,8],[6,7]]
=> ? => ? = 7
[3,3,1,1,1,1,1]
=> [7,2,2]
=> [[1,2,7,8,9,10,11],[3,4],[5,6]]
=> ? => ? = 6
[3,2,2,2,2]
=> [5,5,1]
=> [[1,3,4,5,6],[2,8,9,10,11],[7]]
=> ? => ? = 7
[3,2,2,2,1,1]
=> [6,4,1]
=> [[1,3,4,5,10,11],[2,7,8,9],[6]]
=> ? => ? = 6
[3,2,2,1,1,1,1]
=> [7,3,1]
=> [[1,3,4,8,9,10,11],[2,6,7],[5]]
=> ? => ? = 5
[3,2,1,1,1,1,1,1]
=> [8,2,1]
=> [[1,3,6,7,8,9,10,11],[2,5],[4]]
=> ? => ? = 4
[3,1,1,1,1,1,1,1,1]
=> [9,1,1]
=> [[1,4,5,6,7,8,9,10,11],[2],[3]]
=> ? => ? = 3
[2,2,2,2,2,1]
=> [6,5]
=> [[1,2,3,4,5,11],[6,7,8,9,10]]
=> ? => ? = 5
[2,2,2,2,1,1,1]
=> [7,4]
=> [[1,2,3,4,9,10,11],[5,6,7,8]]
=> ? => ? = 4
Description
The sum of the positions of the ones in a binary word.
Matching statistic: St000246
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000246: Permutations ⟶ ℤResult quality: 51% ●values known / values provided: 51%●distinct values known / distinct values provided: 72%
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000246: Permutations ⟶ ℤResult quality: 51% ●values known / values provided: 51%●distinct values known / distinct values provided: 72%
Values
[2]
=> [[1,2]]
=> [1,2] => 1
[1,1]
=> [[1],[2]]
=> [2,1] => 0
[3]
=> [[1,2,3]]
=> [1,2,3] => 3
[2,1]
=> [[1,2],[3]]
=> [3,1,2] => 1
[1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 0
[4]
=> [[1,2,3,4]]
=> [1,2,3,4] => 6
[3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => 3
[2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 2
[2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 1
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 0
[5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => 10
[4,1]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => 6
[3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => 4
[3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 3
[2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => 2
[2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 0
[6]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => 15
[5,1]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => 10
[4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => 7
[4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 6
[3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => 6
[3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 4
[3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 3
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 3
[2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 2
[2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 1
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 0
[7]
=> [[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => 21
[6,1]
=> [[1,2,3,4,5,6],[7]]
=> [7,1,2,3,4,5,6] => 15
[5,2]
=> [[1,2,3,4,5],[6,7]]
=> [6,7,1,2,3,4,5] => 11
[5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => 10
[4,3]
=> [[1,2,3,4],[5,6,7]]
=> [5,6,7,1,2,3,4] => 9
[4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => 7
[4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => 6
[3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => 6
[3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => 5
[3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => 4
[3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => 3
[2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => 3
[2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => 2
[2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => 1
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => 0
[8]
=> [[1,2,3,4,5,6,7,8]]
=> [1,2,3,4,5,6,7,8] => 28
[7,1]
=> [[1,2,3,4,5,6,7],[8]]
=> [8,1,2,3,4,5,6,7] => 21
[6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> [7,8,1,2,3,4,5,6] => 16
[6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> [8,7,1,2,3,4,5,6] => 15
[5,3]
=> [[1,2,3,4,5],[6,7,8]]
=> [6,7,8,1,2,3,4,5] => 13
[5,2,1]
=> [[1,2,3,4,5],[6,7],[8]]
=> [8,6,7,1,2,3,4,5] => 11
[5,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8]]
=> [8,7,6,1,2,3,4,5] => 10
[11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? => ? = 55
[10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? => ? = 45
[9,2]
=> [[1,2,3,4,5,6,7,8,9],[10,11]]
=> ? => ? = 37
[9,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11]]
=> ? => ? = 36
[8,3]
=> [[1,2,3,4,5,6,7,8],[9,10,11]]
=> ? => ? = 31
[8,2,1]
=> [[1,2,3,4,5,6,7,8],[9,10],[11]]
=> ? => ? = 29
[8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> ? => ? = 28
[7,4]
=> [[1,2,3,4,5,6,7],[8,9,10,11]]
=> ? => ? = 27
[7,3,1]
=> [[1,2,3,4,5,6,7],[8,9,10],[11]]
=> ? => ? = 24
[7,2,2]
=> [[1,2,3,4,5,6,7],[8,9],[10,11]]
=> ? => ? = 23
[7,2,1,1]
=> [[1,2,3,4,5,6,7],[8,9],[10],[11]]
=> ? => ? = 22
[7,1,1,1,1]
=> [[1,2,3,4,5,6,7],[8],[9],[10],[11]]
=> ? => ? = 21
[6,5]
=> [[1,2,3,4,5,6],[7,8,9,10,11]]
=> ? => ? = 25
[6,4,1]
=> [[1,2,3,4,5,6],[7,8,9,10],[11]]
=> ? => ? = 21
[6,3,2]
=> [[1,2,3,4,5,6],[7,8,9],[10,11]]
=> ? => ? = 19
[6,3,1,1]
=> [[1,2,3,4,5,6],[7,8,9],[10],[11]]
=> ? => ? = 18
[6,2,2,1]
=> [[1,2,3,4,5,6],[7,8],[9,10],[11]]
=> ? => ? = 17
[6,2,1,1,1]
=> [[1,2,3,4,5,6],[7,8],[9],[10],[11]]
=> ? => ? = 16
[6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? => ? = 15
[5,5,1]
=> [[1,2,3,4,5],[6,7,8,9,10],[11]]
=> ? => ? = 20
[5,4,2]
=> [[1,2,3,4,5],[6,7,8,9],[10,11]]
=> [10,11,6,7,8,9,1,2,3,4,5] => ? = 17
[5,4,1,1]
=> [[1,2,3,4,5],[6,7,8,9],[10],[11]]
=> [11,10,6,7,8,9,1,2,3,4,5] => ? = 16
[5,3,3]
=> [[1,2,3,4,5],[6,7,8],[9,10,11]]
=> [9,10,11,6,7,8,1,2,3,4,5] => ? = 16
[5,3,2,1]
=> [[1,2,3,4,5],[6,7,8],[9,10],[11]]
=> [11,9,10,6,7,8,1,2,3,4,5] => ? = 14
[5,3,1,1,1]
=> [[1,2,3,4,5],[6,7,8],[9],[10],[11]]
=> [11,10,9,6,7,8,1,2,3,4,5] => ? = 13
[5,2,2,2]
=> [[1,2,3,4,5],[6,7],[8,9],[10,11]]
=> [10,11,8,9,6,7,1,2,3,4,5] => ? = 13
[5,2,2,1,1]
=> [[1,2,3,4,5],[6,7],[8,9],[10],[11]]
=> [11,10,8,9,6,7,1,2,3,4,5] => ? = 12
[5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> ? => ? = 11
[5,1,1,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9],[10],[11]]
=> ? => ? = 10
[4,4,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11]]
=> [9,10,11,5,6,7,8,1,2,3,4] => ? = 15
[4,4,2,1]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11]]
=> [11,9,10,5,6,7,8,1,2,3,4] => ? = 13
[4,4,1,1,1]
=> [[1,2,3,4],[5,6,7,8],[9],[10],[11]]
=> [11,10,9,5,6,7,8,1,2,3,4] => ? = 12
[4,3,3,1]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11]]
=> [11,8,9,10,5,6,7,1,2,3,4] => ? = 12
[4,3,2,2]
=> [[1,2,3,4],[5,6,7],[8,9],[10,11]]
=> [10,11,8,9,5,6,7,1,2,3,4] => ? = 11
[4,3,2,1,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10],[11]]
=> [11,10,8,9,5,6,7,1,2,3,4] => ? = 10
[4,3,1,1,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9],[10],[11]]
=> ? => ? = 9
[4,2,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9,10],[11]]
=> [11,9,10,7,8,5,6,1,2,3,4] => ? = 9
[4,2,2,1,1,1]
=> [[1,2,3,4],[5,6],[7,8],[9],[10],[11]]
=> ? => ? = 8
[4,2,1,1,1,1,1]
=> [[1,2,3,4],[5,6],[7],[8],[9],[10],[11]]
=> ? => ? = 7
[4,1,1,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9],[10],[11]]
=> ? => ? = 6
[3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11]]
=> [10,11,7,8,9,4,5,6,1,2,3] => ? = 10
[3,3,3,1,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10],[11]]
=> [11,10,7,8,9,4,5,6,1,2,3] => ? = 9
[3,3,2,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11]]
=> [11,9,10,7,8,4,5,6,1,2,3] => ? = 8
[3,3,2,1,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9],[10],[11]]
=> ? => ? = 7
[3,3,1,1,1,1,1]
=> [[1,2,3],[4,5,6],[7],[8],[9],[10],[11]]
=> ? => ? = 6
[3,2,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11]]
=> ? => ? = 7
[3,2,2,2,1,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10],[11]]
=> ? => ? = 6
[3,2,2,1,1,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9],[10],[11]]
=> ? => ? = 5
[3,2,1,1,1,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8],[9],[10],[11]]
=> ? => ? = 4
[3,1,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? => ? = 3
Description
The number of non-inversions of a permutation.
For a permutation of \{1,\ldots,n\}, this is given by \operatorname{noninv}(\pi) = \binom{n}{2}-\operatorname{inv}(\pi).
Matching statistic: St000428
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000428: Permutations ⟶ ℤResult quality: 46% ●values known / values provided: 46%●distinct values known / distinct values provided: 49%
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000428: Permutations ⟶ ℤResult quality: 46% ●values known / values provided: 46%●distinct values known / distinct values provided: 49%
Values
[2]
=> [1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 0
[3]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 3
[2,1]
=> [1,0,1,0,1,0]
=> [1,2,3] => 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 0
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => 6
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 3
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 0
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,4,3,2,1,6] => 10
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,2,1,5] => 6
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 4
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 3
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 2
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,5,4,3,2] => 0
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,5,4,3,2,1,7] => ? = 15
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,5,3,2,1,6] => 10
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => 7
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 6
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => 6
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 4
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 3
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 3
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,4,3,2] => 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,6,5,4,3,2] => ? = 0
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [7,6,5,4,3,2,1,8] => ? = 21
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,4,3,2,1,7] => ? = 15
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [4,3,5,2,1,6] => 11
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,5,4,2,1,6] => 10
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 9
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 7
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 6
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 6
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 5
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 4
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5,4,6,3,2] => 3
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 3
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,5,3,2] => 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,5,4,3,2] => ? = 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,8,7,6,5,4,3,2] => ? = 0
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [8,7,6,5,4,3,2,1,9] => ? = 28
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [6,7,5,4,3,2,1,8] => ? = 21
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,4,6,3,2,1,7] => ? = 16
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,5,3,2,1,7] => ? = 15
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [4,3,2,5,1,6] => 13
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [3,4,5,2,1,6] => 11
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,5,4,3,1,6] => 10
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,3,2,1,6,5] => 12
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 9
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 8
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 7
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,5,4,3,6,2] => 6
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 7
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 6
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 5
[3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,4,5,6,3,2] => 4
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,6,5,7,4,3,2] => ? = 3
[2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,6,5,4,3] => 4
[2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 2
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,7,8,6,5,4,3,2] => ? = 1
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,9,8,7,6,5,4,3,2] => ? = 0
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [9,8,7,6,5,4,3,2,1,10] => ? = 36
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [7,8,6,5,4,3,2,1,9] => ? = 28
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [6,5,7,4,3,2,1,8] => ? = 22
[7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [5,7,6,4,3,2,1,8] => ? = 21
[6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [5,4,3,6,2,1,7] => ? = 18
[6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [4,5,6,3,2,1,7] => ? = 16
[6,1,1,1]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [3,6,5,4,2,1,7] => ? = 15
[4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,6,5,4,7,3,2] => ? = 6
[3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,5,6,7,4,3,2] => ? = 4
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,7,6,8,5,4,3,2] => ? = 3
[2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,4,7,6,5,3,2] => ? = 3
[2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,6,8,7,5,4,3,2] => ? = 2
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,8,9,7,6,5,4,3,2] => ? = 1
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,10,9,8,7,6,5,4,3,2] => ? = 0
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [10,9,8,7,6,5,4,3,2,1,11] => ? = 45
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [8,9,7,6,5,4,3,2,1,10] => ? = 36
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [7,6,8,5,4,3,2,1,9] => ? = 29
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [6,8,7,5,4,3,2,1,9] => ? = 28
[7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [6,5,4,7,3,2,1,8] => ? = 24
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [5,6,7,4,3,2,1,8] => ? = 22
[7,1,1,1]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [4,7,6,5,3,2,1,8] => ? = 21
[6,4]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [5,4,3,2,6,1,7] => ? = 21
[6,3,1]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [4,5,3,6,2,1,7] => ? = 18
[6,2,2]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [4,3,6,5,2,1,7] => ? = 17
[6,2,1,1]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [3,5,6,4,2,1,7] => ? = 16
[6,1,1,1,1]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [2,6,5,4,3,1,7] => ? = 15
[5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [5,4,3,2,1,7,6] => ? = 20
[5,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,6,5,4,3,7,2] => ? = 10
[4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,5,6,4,7,3,2] => ? = 7
[4,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,7,6,5,8,4,3,2] => ? = 6
[3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,5,4,7,6,3,2] => ? = 6
[3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,4,6,7,5,3,2] => ? = 5
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,6,7,8,5,4,3,2] => ? = 4
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,8,7,9,6,5,4,3,2] => ? = 3
[2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,6,5,4,3] => ? = 5
[2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,5,8,7,6,4,3,2] => ? = 3
Description
The number of occurrences of the pattern 123 or of the pattern 213 in a permutation.
The following 21 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000423The number of occurrences of the pattern 123 or of the pattern 132 in a permutation. St000437The number of occurrences of the pattern 312 or of the pattern 321 in a permutation. St000436The number of occurrences of the pattern 231 or of the pattern 321 in a permutation. St000008The major index of the composition. St000018The number of inversions of a permutation. St001697The shifted natural comajor index of a standard Young tableau. St000161The sum of the sizes of the right subtrees of a binary tree. St000558The number of occurrences of the pattern {{1,2}} in a set partition. St000492The rob statistic of a set partition. St000493The los statistic of a set partition. St000499The rcb statistic of a set partition. St000498The lcs statistic of a set partition. St001347The number of pairs of vertices of a graph having the same neighbourhood. St001558The number of transpositions that are smaller or equal to a permutation in Bruhat order. St000446The disorder of a permutation. St000798The makl of a permutation. St000004The major index of a permutation. St000305The inverse major index of a permutation. St000341The non-inversion sum of a permutation. St001874Lusztig's a-function for the symmetric group. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!