searching the database
Your data matches 151 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000655
(load all 14 compositions to match this statistic)
(load all 14 compositions to match this statistic)
St000655: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> 1 = 0 + 1
[1,0,1,0]
=> 1 = 0 + 1
[1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
Description
The length of the minimal rise of a Dyck path.
For the length of a maximal rise, see [[St000444]].
Matching statistic: St000657
(load all 34 compositions to match this statistic)
(load all 34 compositions to match this statistic)
Mp00102: Dyck paths —rise composition⟶ Integer compositions
St000657: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000657: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 1 = 0 + 1
[1,0,1,0]
=> [1,1] => 1 = 0 + 1
[1,1,0,0]
=> [2] => 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,1,1] => 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,2] => 1 = 0 + 1
[1,1,0,0,1,0]
=> [2,1] => 1 = 0 + 1
[1,1,0,1,0,0]
=> [2,1] => 1 = 0 + 1
[1,1,1,0,0,0]
=> [3] => 3 = 2 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,2] => 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,2,1] => 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,3] => 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [2,2] => 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [2,1,1] => 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [2,1,1] => 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [2,2] => 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [3,1] => 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [3,1] => 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [3,1] => 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [4] => 4 = 3 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => 2 = 1 + 1
Description
The smallest part of an integer composition.
Matching statistic: St001236
(load all 17 compositions to match this statistic)
(load all 17 compositions to match this statistic)
Mp00102: Dyck paths —rise composition⟶ Integer compositions
St001236: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001236: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 1 = 0 + 1
[1,0,1,0]
=> [1,1] => 2 = 1 + 1
[1,1,0,0]
=> [2] => 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1] => 3 = 2 + 1
[1,0,1,1,0,0]
=> [1,2] => 1 = 0 + 1
[1,1,0,0,1,0]
=> [2,1] => 1 = 0 + 1
[1,1,0,1,0,0]
=> [2,1] => 1 = 0 + 1
[1,1,1,0,0,0]
=> [3] => 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => 4 = 3 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,2] => 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,2,1] => 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,3] => 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [2,2] => 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [2,1,1] => 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [2,1,1] => 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [2,2] => 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [3,1] => 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [3,1] => 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [3,1] => 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [4] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => 5 = 4 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => 1 = 0 + 1
Description
The dominant dimension of the corresponding Comp-Nakayama algebra.
Matching statistic: St000210
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00035: Dyck paths —to alternating sign matrix⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000210: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000210: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [[1]]
=> [1] => 0
[1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => 0
[1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => 1
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => 0
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [3,1,2] => 2
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 0
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => 0
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => 1
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 0
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [3,1,2,4] => 0
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [2,1,4,3] => 1
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 0
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => 3
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 0
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 0
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 0
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [2,1,5,3,4] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 0
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 0
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 0
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => 0
Description
Minimum over maximum difference of elements in cycles.
Given a cycle $C$ in a permutation, we can compute the maximum distance between elements in the cycle, that is $\max \{ a_i-a_j | a_i, a_j \in C \}$.
The statistic is then the minimum of this value over all cycles in the permutation.
For example, all permutations with a fixed-point has statistic value 0,
and all permutations of $[n]$ with only one cycle, has statistic value $n-1$.
Matching statistic: St000685
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000685: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000685: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1,0]
=> 1 = 0 + 1
[1,0,1,0]
=> [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0]
=> [2] => [1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1] => [1,0,1,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,0,0]
=> [1,2] => [1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [2,1] => [1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [2,1] => [1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [3] => [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
Description
The dominant dimension of the LNakayama algebra associated to a Dyck path.
To every Dyck path there is an LNakayama algebra associated as described in [[St000684]].
Matching statistic: St001481
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001481: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001481: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1,0]
=> 1 = 0 + 1
[1,0,1,0]
=> [1,1] => [1,0,1,0]
=> 1 = 0 + 1
[1,1,0,0]
=> [2] => [1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,1,1] => [1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,2] => [1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [2,1] => [1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [2,1] => [1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [3] => [1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2 = 1 + 1
Description
The minimal height of a peak of a Dyck path.
Matching statistic: St000310
Mp00137: Dyck paths —to symmetric ASM⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000310: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000310: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [[1]]
=> [1] => ([],1)
=> 0
[1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => ([],2)
=> 0
[1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => ([(0,1)],2)
=> 1
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => ([],3)
=> 0
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => ([(1,2)],3)
=> 0
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => ([(1,2)],3)
=> 0
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => ([(1,2)],3)
=> 0
[1,1,1,0,0,0]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => ([],4)
=> 0
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => ([(2,3)],4)
=> 0
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => ([(2,3)],4)
=> 0
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => ([(2,3)],4)
=> 0
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 0
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => ([(2,3)],4)
=> 0
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> 1
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => ([(2,3)],4)
=> 0
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => ([(2,3)],4)
=> 0
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 0
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 0
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> 1
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 0
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => ([(3,4)],5)
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => ([(3,4)],5)
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => ([(3,4)],5)
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => ([(3,4)],5)
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => ([(3,4)],5)
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => ([(3,4)],5)
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
Description
The minimal degree of a vertex of a graph.
Matching statistic: St001119
Mp00137: Dyck paths —to symmetric ASM⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001119: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001119: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [[1]]
=> [1] => ([],1)
=> 0
[1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => ([],2)
=> 0
[1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => ([(0,1)],2)
=> 1
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => ([],3)
=> 0
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => ([(1,2)],3)
=> 0
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => ([(1,2)],3)
=> 0
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => ([(1,2)],3)
=> 0
[1,1,1,0,0,0]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => ([],4)
=> 0
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => ([(2,3)],4)
=> 0
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => ([(2,3)],4)
=> 0
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => ([(2,3)],4)
=> 0
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 0
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => ([(2,3)],4)
=> 0
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> 1
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => ([(2,3)],4)
=> 0
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => ([(2,3)],4)
=> 0
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 0
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 0
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> 1
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 0
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => ([(3,4)],5)
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => ([(3,4)],5)
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => ([(3,4)],5)
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => ([(3,4)],5)
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => ([(3,4)],5)
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => ([(3,4)],5)
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
Description
The length of a shortest maximal path in a graph.
Matching statistic: St000700
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00010: Binary trees —to ordered tree: left child = left brother⟶ Ordered trees
St000700: Ordered trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00010: Binary trees —to ordered tree: left child = left brother⟶ Ordered trees
St000700: Ordered trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [.,.]
=> [[]]
=> 1 = 0 + 1
[1,0,1,0]
=> [2,1] => [[.,.],.]
=> [[],[]]
=> 1 = 0 + 1
[1,1,0,0]
=> [1,2] => [.,[.,.]]
=> [[[]]]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [3,2,1] => [[[.,.],.],.]
=> [[],[],[]]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [2,3,1] => [[.,[.,.]],.]
=> [[[]],[]]
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [3,1,2] => [[.,.],[.,.]]
=> [[],[[]]]
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [2,1,3] => [[.,.],[.,.]]
=> [[],[[]]]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [1,2,3] => [.,[.,[.,.]]]
=> [[[[]]]]
=> 3 = 2 + 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [[[[.,.],.],.],.]
=> [[],[],[],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [[[.,[.,.]],.],.]
=> [[[]],[],[]]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [[[.,.],[.,.]],.]
=> [[],[[]],[]]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [[[.,.],[.,.]],.]
=> [[],[[]],[]]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [[.,[.,[.,.]]],.]
=> [[[[]]],[]]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [[[.,.],.],[.,.]]
=> [[],[],[[]]]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [[[]],[[]]]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [[[.,.],.],[.,.]]
=> [[],[],[[]]]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [[[.,.],.],[.,.]]
=> [[],[],[[]]]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [[.,[.,.]],[.,.]]
=> [[[]],[[]]]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> [[],[[[]]]]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> [[],[[[]]]]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [[],[[[]]]]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[[[[]]]]]
=> 4 = 3 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> [[],[],[],[],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [[[[.,[.,.]],.],.],.]
=> [[[]],[],[],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [[[[.,.],[.,.]],.],.]
=> [[],[[]],[],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [[[[.,.],[.,.]],.],.]
=> [[],[[]],[],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [[[.,[.,[.,.]]],.],.]
=> [[[[]]],[],[]]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [[[[.,.],.],[.,.]],.]
=> [[],[],[[]],[]]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [[[.,[.,.]],[.,.]],.]
=> [[[]],[[]],[]]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [[[[.,.],.],[.,.]],.]
=> [[],[],[[]],[]]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [[[[.,.],.],[.,.]],.]
=> [[],[],[[]],[]]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [[[.,[.,.]],[.,.]],.]
=> [[[]],[[]],[]]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [[[.,.],[.,[.,.]]],.]
=> [[],[[[]]],[]]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [[[.,.],[.,[.,.]]],.]
=> [[],[[[]]],[]]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [[[.,.],[.,[.,.]]],.]
=> [[],[[[]]],[]]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [[.,[.,[.,[.,.]]]],.]
=> [[[[[]]]],[]]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [[[[.,.],.],.],[.,.]]
=> [[],[],[],[[]]]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [[[.,[.,.]],.],[.,.]]
=> [[[]],[],[[]]]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [[[.,.],[.,.]],[.,.]]
=> [[],[[]],[[]]]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [[[.,.],[.,.]],[.,.]]
=> [[],[[]],[[]]]
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [[.,[.,[.,.]]],[.,.]]
=> [[[[]]],[[]]]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [[[[.,.],.],.],[.,.]]
=> [[],[],[],[[]]]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [[[.,[.,.]],.],[.,.]]
=> [[[]],[],[[]]]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [[[[.,.],.],.],[.,.]]
=> [[],[],[],[[]]]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [[[[.,.],.],.],[.,.]]
=> [[],[],[],[[]]]
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [[[.,[.,.]],.],[.,.]]
=> [[[]],[],[[]]]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [[[.,.],[.,.]],[.,.]]
=> [[],[[]],[[]]]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [[[.,.],[.,.]],[.,.]]
=> [[],[[]],[[]]]
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [[[.,.],[.,.]],[.,.]]
=> [[],[[]],[[]]]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [[.,[.,[.,.]]],[.,.]]
=> [[[[]]],[[]]]
=> 2 = 1 + 1
Description
The protection number of an ordered tree.
This is the minimal distance from the root to a leaf.
Matching statistic: St000908
Mp00137: Dyck paths —to symmetric ASM⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St000908: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St000908: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [[1]]
=> [1] => ([],1)
=> 1 = 0 + 1
[1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => ([(0,1)],2)
=> 1 = 0 + 1
[1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => ([],2)
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => ([(0,1),(0,2)],3)
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => ([(0,1),(0,2)],3)
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [3,2,1] => ([],3)
=> 3 = 2 + 1
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [4,3,2,1] => ([],4)
=> 4 = 3 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [2,1,5,4,3] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> 1 = 0 + 1
Description
The length of the shortest maximal antichain in a poset.
The following 141 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001316The domatic number of a graph. St000487The length of the shortest cycle of a permutation. St001075The minimal size of a block of a set partition. St000993The multiplicity of the largest part of an integer partition. St001038The minimal height of a column in the parallelogram polyomino associated with the Dyck path. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001175The size of a partition minus the hook length of the base cell. St000929The constant term of the character polynomial of an integer partition. St001141The number of occurrences of hills of size 3 in a Dyck path. St001498The normalised height of a Nakayama algebra with magnitude 1. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000478Another weight of a partition according to Alladi. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000934The 2-degree of an integer partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001570The minimal number of edges to add to make a graph Hamiltonian. St001730The number of times the path corresponding to a binary word crosses the base line. St000567The sum of the products of all pairs of parts. St000941The number of characters of the symmetric group whose value on the partition is even. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001098The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for vertex labelled trees. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St000142The number of even parts of a partition. St000143The largest repeated part of a partition. St000149The number of cells of the partition whose leg is zero and arm is odd. St000150The floored half-sum of the multiplicities of a partition. St000256The number of parts from which one can substract 2 and still get an integer partition. St000257The number of distinct parts of a partition that occur at least twice. St000296The length of the symmetric border of a binary word. St000377The dinv defect of an integer partition. St000473The number of parts of a partition that are strictly bigger than the number of ones. St000629The defect of a binary word. St000687The dimension of $Hom(I,P)$ for the LNakayama algebra of a Dyck path. St000697The number of 3-rim hooks removed from an integer partition to obtain its associated 3-core. St000752The Grundy value for the game 'Couples are forever' on an integer partition. St000790The number of pairs of centered tunnels, one strictly containing the other, of a Dyck path. St000966Number of peaks minus the global dimension of the corresponding LNakayama algebra. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001021Sum of the differences between projective and codominant dimension of the non-projective indecomposable injective modules in the Nakayama algebra corresponding to the Dyck path. St001025Number of simple modules with projective dimension 4 in the Nakayama algebra corresponding to the Dyck path. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001091The number of parts in an integer partition whose next smaller part has the same size. St001092The number of distinct even parts of a partition. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St001137Number of simple modules that are 3-regular in the corresponding Nakayama algebra. St001140Number of indecomposable modules with projective and injective dimension at least two in the corresponding Nakayama algebra. St001172The number of 1-rises at odd height of a Dyck path. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St001186Number of simple modules with grade at least 3 in the corresponding Nakayama algebra. St001193The dimension of $Ext_A^1(A/AeA,A)$ in the corresponding Nakayama algebra $A$ such that $eA$ is a minimal faithful projective-injective module. St001214The aft of an integer partition. St001221The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001251The number of parts of a partition that are not congruent 1 modulo 3. St001252Half the sum of the even parts of a partition. St001292The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001371The length of the longest Yamanouchi prefix of a binary word. St001584The area statistic between a Dyck path and its bounce path. St001588The number of distinct odd parts smaller than the largest even part in an integer partition. St001596The number of two-by-two squares inside a skew partition. St001695The natural comajor index of a standard Young tableau. St001698The comajor index of a standard tableau minus the weighted size of its shape. St001699The major index of a standard tableau minus the weighted size of its shape. St001712The number of natural descents of a standard Young tableau. St000455The second largest eigenvalue of a graph if it is integral. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000225Difference between largest and smallest parts in a partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St000661The number of rises of length 3 of a Dyck path. St000791The number of pairs of left tunnels, one strictly containing the other, of a Dyck path. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000850The number of 1/2-balanced pairs in a poset. St000931The number of occurrences of the pattern UUU in a Dyck path. St001095The number of non-isomorphic posets with precisely one further covering relation. St001651The Frankl number of a lattice. St001960The number of descents of a permutation minus one if its first entry is not one. St001330The hat guessing number of a graph. St001683The number of distinct positions of the pattern letter 3 in occurrences of 132 in a permutation. St000260The radius of a connected graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St000944The 3-degree of an integer partition. St001176The size of a partition minus its first part. St001280The number of parts of an integer partition that are at least two. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001587Half of the largest even part of an integer partition. St001657The number of twos in an integer partition. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001525The number of symmetric hooks on the diagonal of a partition. St001593This is the number of standard Young tableaux of the given shifted shape. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St001964The interval resolution global dimension of a poset. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St001177Twice the mean value of the major index among all standard Young tableaux of a partition. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St001561The value of the elementary symmetric function evaluated at 1. St001939The number of parts that are equal to their multiplicity in the integer partition. St001961The sum of the greatest common divisors of all pairs of parts. St001811The Castelnuovo-Mumford regularity of a permutation. St001846The number of elements which do not have a complement in the lattice. St001820The size of the image of the pop stack sorting operator. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001096The size of the overlap set of a permutation. St000741The Colin de Verdière graph invariant. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000750The number of occurrences of the pattern 4213 in a permutation. St001884The number of borders of a binary word. St001130The number of two successive successions in a permutation. St000902 The minimal number of repetitions of an integer composition. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001060The distinguishing index of a graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!