Identifier
- St001236: Integer compositions ⟶ ℤ
Values
=>
[1]=>1
[1,1]=>2
[2]=>1
[1,1,1]=>3
[1,2]=>1
[2,1]=>1
[3]=>1
[1,1,1,1]=>4
[1,1,2]=>1
[1,2,1]=>2
[1,3]=>1
[2,1,1]=>1
[2,2]=>1
[3,1]=>1
[4]=>1
[1,1,1,1,1]=>5
[1,1,1,2]=>1
[1,1,2,1]=>2
[1,1,3]=>1
[1,2,1,1]=>2
[1,2,2]=>1
[1,3,1]=>1
[1,4]=>1
[2,1,1,1]=>1
[2,1,2]=>1
[2,2,1]=>1
[2,3]=>1
[3,1,1]=>1
[3,2]=>1
[4,1]=>1
[5]=>1
[1,1,1,1,1,1]=>6
[1,1,1,1,2]=>1
[1,1,1,2,1]=>2
[1,1,1,3]=>1
[1,1,2,1,1]=>3
[1,1,2,2]=>1
[1,1,3,1]=>1
[1,1,4]=>1
[1,2,1,1,1]=>2
[1,2,1,2]=>1
[1,2,2,1]=>2
[1,2,3]=>1
[1,3,1,1]=>1
[1,3,2]=>1
[1,4,1]=>1
[1,5]=>1
[2,1,1,1,1]=>1
[2,1,1,2]=>1
[2,1,2,1]=>1
[2,1,3]=>1
[2,2,1,1]=>1
[2,2,2]=>1
[2,3,1]=>1
[2,4]=>1
[3,1,1,1]=>1
[3,1,2]=>1
[3,2,1]=>1
[3,3]=>1
[4,1,1]=>1
[4,2]=>1
[5,1]=>1
[6]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The dominant dimension of the corresponding Comp-Nakayama algebra.
Created
Jul 30, 2018 at 21:01 by Rene Marczinzik
Updated
Jul 30, 2018 at 21:01 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!