Loading [MathJax]/jax/output/HTML-CSS/jax.js

Your data matches 11 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00080: Set partitions to permutationPermutations
Mp00089: Permutations Inverse Kreweras complementPermutations
St000213: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => 1
{{1,2}}
=> [2,1] => [1,2] => 2
{{1},{2}}
=> [1,2] => [2,1] => 1
{{1,2,3}}
=> [2,3,1] => [1,2,3] => 3
{{1,2},{3}}
=> [2,1,3] => [1,3,2] => 2
{{1,3},{2}}
=> [3,2,1] => [2,1,3] => 2
{{1},{2,3}}
=> [1,3,2] => [3,2,1] => 2
{{1},{2},{3}}
=> [1,2,3] => [2,3,1] => 2
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => 4
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,4,3] => 3
{{1,2,4},{3}}
=> [2,4,3,1] => [1,3,2,4] => 3
{{1,2},{3,4}}
=> [2,1,4,3] => [1,4,3,2] => 3
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,3,4,2] => 3
{{1,3,4},{2}}
=> [3,2,4,1] => [2,1,3,4] => 3
{{1,3},{2,4}}
=> [3,4,1,2] => [4,1,2,3] => 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [2,1,4,3] => 2
{{1,4},{2,3}}
=> [4,3,2,1] => [3,2,1,4] => 3
{{1},{2,3,4}}
=> [1,3,4,2] => [4,2,3,1] => 3
{{1},{2,3},{4}}
=> [1,3,2,4] => [3,2,4,1] => 3
{{1,4},{2},{3}}
=> [4,2,3,1] => [2,3,1,4] => 3
{{1},{2,4},{3}}
=> [1,4,3,2] => [4,3,2,1] => 2
{{1},{2},{3,4}}
=> [1,2,4,3] => [2,4,3,1] => 3
{{1},{2},{3},{4}}
=> [1,2,3,4] => [2,3,4,1] => 3
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => 5
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,5,4] => 4
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,4,3,5] => 4
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,5,4,3] => 4
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,4,5,3] => 4
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,3,2,4,5] => 4
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,5,2,3,4] => 2
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,3,2,5,4] => 3
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,4,3,2,5] => 4
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,5,3,4,2] => 4
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,4,3,5,2] => 4
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,3,4,2,5] => 4
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,5,4,3,2] => 3
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,3,5,4,2] => 4
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,3,4,5,2] => 4
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [2,1,3,4,5] => 4
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [5,1,3,2,4] => 2
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [2,1,3,5,4] => 3
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [4,1,2,3,5] => 2
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [5,1,2,4,3] => 2
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [4,1,2,5,3] => 2
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [2,1,4,3,5] => 3
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [5,1,4,2,3] => 2
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [2,1,5,4,3] => 3
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [2,1,4,5,3] => 3
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [3,2,1,4,5] => 4
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [5,2,1,3,4] => 2
Description
The number of weak exceedances (also weak excedences) of a permutation. This is defined as $$\operatorname{wex}(\sigma)=\#\{i:\sigma(i) \geq i\}.$$ The number of weak exceedances is given by the number of exceedances (see [[St000155]]) plus the number of fixed points (see [[St000022]]) of $\sigma$.
Matching statistic: St000245
Mp00080: Set partitions to permutationPermutations
Mp00088: Permutations Kreweras complementPermutations
Mp00087: Permutations inverse first fundamental transformationPermutations
St000245: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => [1] => 0 = 1 - 1
{{1,2}}
=> [2,1] => [1,2] => [1,2] => 1 = 2 - 1
{{1},{2}}
=> [1,2] => [2,1] => [2,1] => 0 = 1 - 1
{{1,2,3}}
=> [2,3,1] => [1,2,3] => [1,2,3] => 2 = 3 - 1
{{1,2},{3}}
=> [2,1,3] => [3,2,1] => [2,3,1] => 1 = 2 - 1
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => [1,3,2] => 1 = 2 - 1
{{1},{2,3}}
=> [1,3,2] => [2,1,3] => [2,1,3] => 1 = 2 - 1
{{1},{2},{3}}
=> [1,2,3] => [2,3,1] => [3,1,2] => 1 = 2 - 1
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => [1,2,3,4] => 3 = 4 - 1
{{1,2,3},{4}}
=> [2,3,1,4] => [4,2,3,1] => [2,3,4,1] => 2 = 3 - 1
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => [1,2,4,3] => 2 = 3 - 1
{{1,2},{3,4}}
=> [2,1,4,3] => [3,2,1,4] => [2,3,1,4] => 2 = 3 - 1
{{1,2},{3},{4}}
=> [2,1,3,4] => [3,2,4,1] => [2,4,1,3] => 2 = 3 - 1
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,2,4] => [1,3,2,4] => 2 = 3 - 1
{{1,3},{2,4}}
=> [3,4,1,2] => [4,1,2,3] => [4,3,2,1] => 0 = 1 - 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [4,3,2,1] => [3,2,4,1] => 1 = 2 - 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,3,2] => [1,3,4,2] => 2 = 3 - 1
{{1},{2,3,4}}
=> [1,3,4,2] => [2,1,3,4] => [2,1,3,4] => 2 = 3 - 1
{{1},{2,3},{4}}
=> [1,3,2,4] => [2,4,3,1] => [3,4,1,2] => 2 = 3 - 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,3,4,2] => [1,4,2,3] => 2 = 3 - 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [2,1,4,3] => [2,1,4,3] => 1 = 2 - 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [2,3,1,4] => [3,1,2,4] => 2 = 3 - 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [2,3,4,1] => [4,1,2,3] => 2 = 3 - 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => 4 = 5 - 1
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [5,2,3,4,1] => [2,3,4,5,1] => 3 = 4 - 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => [1,2,3,5,4] => 3 = 4 - 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [4,2,3,1,5] => [2,3,4,1,5] => 3 = 4 - 1
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [4,2,3,5,1] => [2,3,5,1,4] => 3 = 4 - 1
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,3,5] => [1,2,4,3,5] => 3 = 4 - 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [5,2,1,3,4] => [2,5,4,3,1] => 1 = 2 - 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [5,2,4,3,1] => [2,4,3,5,1] => 2 = 3 - 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,4,3] => [1,2,4,5,3] => 3 = 4 - 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [3,2,1,4,5] => [2,3,1,4,5] => 3 = 4 - 1
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [3,2,5,4,1] => [2,4,5,1,3] => 3 = 4 - 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,4,5,3] => [1,2,5,3,4] => 3 = 4 - 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [3,2,1,5,4] => [2,3,1,5,4] => 2 = 3 - 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [3,2,4,1,5] => [2,4,1,3,5] => 3 = 4 - 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [3,2,4,5,1] => [2,5,1,3,4] => 3 = 4 - 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,2,4,5] => [1,3,2,4,5] => 3 = 4 - 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [5,1,2,4,3] => [4,5,3,2,1] => 1 = 2 - 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [5,3,2,4,1] => [3,2,4,5,1] => 2 = 3 - 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,5,2,3,4] => [1,5,4,3,2] => 1 = 2 - 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [4,1,2,3,5] => [4,3,2,1,5] => 1 = 2 - 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [4,5,2,3,1] => [5,1,4,3,2] => 1 = 2 - 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,2,5,4] => [1,3,2,5,4] => 2 = 3 - 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [4,1,2,5,3] => [5,3,2,1,4] => 1 = 2 - 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [4,3,2,1,5] => [3,2,4,1,5] => 2 = 3 - 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [4,3,2,5,1] => [3,2,5,1,4] => 2 = 3 - 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,3,2,5] => [1,3,4,2,5] => 3 = 4 - 1
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [5,1,3,2,4] => [3,5,4,2,1] => 1 = 2 - 1
Description
The number of ascents of a permutation.
Matching statistic: St000250
St000250: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> ? = 1 + 1
{{1,2}}
=> 3 = 2 + 1
{{1},{2}}
=> 2 = 1 + 1
{{1,2,3}}
=> 4 = 3 + 1
{{1,2},{3}}
=> 3 = 2 + 1
{{1,3},{2}}
=> 3 = 2 + 1
{{1},{2,3}}
=> 3 = 2 + 1
{{1},{2},{3}}
=> 3 = 2 + 1
{{1,2,3,4}}
=> 5 = 4 + 1
{{1,2,3},{4}}
=> 4 = 3 + 1
{{1,2,4},{3}}
=> 4 = 3 + 1
{{1,2},{3,4}}
=> 4 = 3 + 1
{{1,2},{3},{4}}
=> 4 = 3 + 1
{{1,3,4},{2}}
=> 4 = 3 + 1
{{1,3},{2,4}}
=> 2 = 1 + 1
{{1,3},{2},{4}}
=> 3 = 2 + 1
{{1,4},{2,3}}
=> 4 = 3 + 1
{{1},{2,3,4}}
=> 4 = 3 + 1
{{1},{2,3},{4}}
=> 4 = 3 + 1
{{1,4},{2},{3}}
=> 4 = 3 + 1
{{1},{2,4},{3}}
=> 3 = 2 + 1
{{1},{2},{3,4}}
=> 4 = 3 + 1
{{1},{2},{3},{4}}
=> 4 = 3 + 1
{{1,2,3,4,5}}
=> 6 = 5 + 1
{{1,2,3,4},{5}}
=> 5 = 4 + 1
{{1,2,3,5},{4}}
=> 5 = 4 + 1
{{1,2,3},{4,5}}
=> 5 = 4 + 1
{{1,2,3},{4},{5}}
=> 5 = 4 + 1
{{1,2,4,5},{3}}
=> 5 = 4 + 1
{{1,2,4},{3,5}}
=> 3 = 2 + 1
{{1,2,4},{3},{5}}
=> 4 = 3 + 1
{{1,2,5},{3,4}}
=> 5 = 4 + 1
{{1,2},{3,4,5}}
=> 5 = 4 + 1
{{1,2},{3,4},{5}}
=> 5 = 4 + 1
{{1,2,5},{3},{4}}
=> 5 = 4 + 1
{{1,2},{3,5},{4}}
=> 4 = 3 + 1
{{1,2},{3},{4,5}}
=> 5 = 4 + 1
{{1,2},{3},{4},{5}}
=> 5 = 4 + 1
{{1,3,4,5},{2}}
=> 5 = 4 + 1
{{1,3,4},{2,5}}
=> 3 = 2 + 1
{{1,3,4},{2},{5}}
=> 4 = 3 + 1
{{1,3,5},{2,4}}
=> 3 = 2 + 1
{{1,3},{2,4,5}}
=> 3 = 2 + 1
{{1,3},{2,4},{5}}
=> 3 = 2 + 1
{{1,3,5},{2},{4}}
=> 4 = 3 + 1
{{1,3},{2,5},{4}}
=> 3 = 2 + 1
{{1,3},{2},{4,5}}
=> 4 = 3 + 1
{{1,3},{2},{4},{5}}
=> 4 = 3 + 1
{{1,4,5},{2,3}}
=> 5 = 4 + 1
{{1,4},{2,3,5}}
=> 3 = 2 + 1
{{1,4},{2,3},{5}}
=> 4 = 3 + 1
Description
The number of blocks ([[St000105]]) plus the number of antisingletons ([[St000248]]) of a set partition.
Matching statistic: St000702
Mp00080: Set partitions to permutationPermutations
Mp00089: Permutations Inverse Kreweras complementPermutations
Mp00066: Permutations inversePermutations
St000702: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => [1] => ? = 1
{{1,2}}
=> [2,1] => [1,2] => [1,2] => 2
{{1},{2}}
=> [1,2] => [2,1] => [2,1] => 1
{{1,2,3}}
=> [2,3,1] => [1,2,3] => [1,2,3] => 3
{{1,2},{3}}
=> [2,1,3] => [1,3,2] => [1,3,2] => 2
{{1,3},{2}}
=> [3,2,1] => [2,1,3] => [2,1,3] => 2
{{1},{2,3}}
=> [1,3,2] => [3,2,1] => [3,2,1] => 2
{{1},{2},{3}}
=> [1,2,3] => [2,3,1] => [3,1,2] => 2
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => [1,2,3,4] => 4
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,4,3] => [1,2,4,3] => 3
{{1,2,4},{3}}
=> [2,4,3,1] => [1,3,2,4] => [1,3,2,4] => 3
{{1,2},{3,4}}
=> [2,1,4,3] => [1,4,3,2] => [1,4,3,2] => 3
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,3,4,2] => [1,4,2,3] => 3
{{1,3,4},{2}}
=> [3,2,4,1] => [2,1,3,4] => [2,1,3,4] => 3
{{1,3},{2,4}}
=> [3,4,1,2] => [4,1,2,3] => [2,3,4,1] => 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [2,1,4,3] => [2,1,4,3] => 2
{{1,4},{2,3}}
=> [4,3,2,1] => [3,2,1,4] => [3,2,1,4] => 3
{{1},{2,3,4}}
=> [1,3,4,2] => [4,2,3,1] => [4,2,3,1] => 3
{{1},{2,3},{4}}
=> [1,3,2,4] => [3,2,4,1] => [4,2,1,3] => 3
{{1,4},{2},{3}}
=> [4,2,3,1] => [2,3,1,4] => [3,1,2,4] => 3
{{1},{2,4},{3}}
=> [1,4,3,2] => [4,3,2,1] => [4,3,2,1] => 2
{{1},{2},{3,4}}
=> [1,2,4,3] => [2,4,3,1] => [4,1,3,2] => 3
{{1},{2},{3},{4}}
=> [1,2,3,4] => [2,3,4,1] => [4,1,2,3] => 3
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => 5
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,5,4] => [1,2,3,5,4] => 4
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,4,3,5] => [1,2,4,3,5] => 4
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,5,4,3] => [1,2,5,4,3] => 4
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,4,5,3] => [1,2,5,3,4] => 4
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,3,2,4,5] => [1,3,2,4,5] => 4
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,5,2,3,4] => [1,3,4,5,2] => 2
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,3,2,5,4] => [1,3,2,5,4] => 3
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,4,3,2,5] => [1,4,3,2,5] => 4
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,5,3,4,2] => [1,5,3,4,2] => 4
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,4,3,5,2] => [1,5,3,2,4] => 4
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,3,4,2,5] => [1,4,2,3,5] => 4
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,5,4,3,2] => [1,5,4,3,2] => 3
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,3,5,4,2] => [1,5,2,4,3] => 4
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,3,4,5,2] => [1,5,2,3,4] => 4
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [2,1,3,4,5] => [2,1,3,4,5] => 4
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [5,1,3,2,4] => [2,4,3,5,1] => 2
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [2,1,3,5,4] => [2,1,3,5,4] => 3
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [4,1,2,3,5] => [2,3,4,1,5] => 2
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [5,1,2,4,3] => [2,3,5,4,1] => 2
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [4,1,2,5,3] => [2,3,5,1,4] => 2
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [2,1,4,3,5] => [2,1,4,3,5] => 3
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [5,1,4,2,3] => [2,4,5,3,1] => 2
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [2,1,5,4,3] => [2,1,5,4,3] => 3
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [2,1,4,5,3] => [2,1,5,3,4] => 3
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [3,2,1,4,5] => [3,2,1,4,5] => 4
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [5,2,1,3,4] => [3,2,4,5,1] => 2
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [3,2,1,5,4] => [3,2,1,5,4] => 3
Description
The number of weak deficiencies of a permutation. This is defined as $$\operatorname{wdec}(\sigma)=\#\{i:\sigma(i) \leq i\}.$$ The number of weak exceedances is [[St000213]], the number of deficiencies is [[St000703]].
Matching statistic: St000454
Mp00080: Set partitions to permutationPermutations
Mp00068: Permutations Simion-Schmidt mapPermutations
Mp00160: Permutations graph of inversionsGraphs
St000454: Graphs ⟶ ℤResult quality: 42% values known / values provided: 42%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => ([],1)
=> 0 = 1 - 1
{{1,2}}
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1 = 2 - 1
{{1},{2}}
=> [1,2] => [1,2] => ([],2)
=> 0 = 1 - 1
{{1,2,3}}
=> [2,3,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ? = 2 - 1
{{1,2},{3}}
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> 1 = 2 - 1
{{1,3},{2}}
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
{{1},{2,3}}
=> [1,3,2] => [1,3,2] => ([(1,2)],3)
=> 1 = 2 - 1
{{1},{2},{3}}
=> [1,2,3] => [1,3,2] => ([(1,2)],3)
=> 1 = 2 - 1
{{1,2,3,4}}
=> [2,3,4,1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,3,3,3,3} - 1
{{1,2,3},{4}}
=> [2,3,1,4] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,3,3,3,3} - 1
{{1,2,4},{3}}
=> [2,4,3,1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,3,3,3,3} - 1
{{1,2},{3,4}}
=> [2,1,4,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> 1 = 2 - 1
{{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> 1 = 2 - 1
{{1,3,4},{2}}
=> [3,2,4,1] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,3,3,3,3} - 1
{{1,3},{2,4}}
=> [3,4,1,2] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
{{1,4},{2,3}}
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,3,3,3,3} - 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => [4,2,5,3,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
{{1},{2,5},{3,4}}
=> [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
{{1},{2},{3,4,5}}
=> [1,2,4,5,3] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
{{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
{{1},{2,5},{3},{4}}
=> [1,5,3,4,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
{{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
{{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
{{1,2,3,4,5,6}}
=> [2,3,4,5,6,1] => [2,6,5,4,3,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
{{1,2,3,4,5},{6}}
=> [2,3,4,5,1,6] => [2,6,5,4,1,3] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
{{1,2,3,4,6},{5}}
=> [2,3,4,6,5,1] => [2,6,5,4,3,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
{{1,2,3,4},{5,6}}
=> [2,3,4,1,6,5] => [2,6,5,1,4,3] => ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
{{1,2,3,4},{5},{6}}
=> [2,3,4,1,5,6] => [2,6,5,1,4,3] => ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
{{1,2,3,5,6},{4}}
=> [2,3,5,4,6,1] => [2,6,5,4,3,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
{{1,2,3,5},{4,6}}
=> [2,3,5,6,1,4] => [2,6,5,4,1,3] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
{{1,2,3,5},{4},{6}}
=> [2,3,5,4,1,6] => [2,6,5,4,1,3] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
{{1,2,3,6},{4,5}}
=> [2,3,6,5,4,1] => [2,6,5,4,3,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
{{1,2,3},{4,5,6}}
=> [2,3,1,5,6,4] => [2,6,1,5,4,3] => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
{{1,2,3},{4,5},{6}}
=> [2,3,1,5,4,6] => [2,6,1,5,4,3] => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
{{1,2,3,6},{4},{5}}
=> [2,3,6,4,5,1] => [2,6,5,4,3,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
{{1,2,3},{4,6},{5}}
=> [2,3,1,6,5,4] => [2,6,1,5,4,3] => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
{{1,2,3},{4},{5,6}}
=> [2,3,1,4,6,5] => [2,6,1,5,4,3] => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
{{1,2,3},{4},{5},{6}}
=> [2,3,1,4,5,6] => [2,6,1,5,4,3] => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
{{1,2,4,5,6},{3}}
=> [2,4,3,5,6,1] => [2,6,5,4,3,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
{{1,2},{3,4,5,6}}
=> [2,1,4,5,6,3] => [2,1,6,5,4,3] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
{{1,2},{3,4,5},{6}}
=> [2,1,4,5,3,6] => [2,1,6,5,4,3] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
{{1,2},{3,4,6},{5}}
=> [2,1,4,6,5,3] => [2,1,6,5,4,3] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
{{1,2},{3,4},{5,6}}
=> [2,1,4,3,6,5] => [2,1,6,5,4,3] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
{{1,2},{3,4},{5},{6}}
=> [2,1,4,3,5,6] => [2,1,6,5,4,3] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
{{1,2},{3,5,6},{4}}
=> [2,1,5,4,6,3] => [2,1,6,5,4,3] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
{{1,2},{3,5},{4,6}}
=> [2,1,5,6,3,4] => [2,1,6,5,4,3] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
{{1,2},{3,5},{4},{6}}
=> [2,1,5,4,3,6] => [2,1,6,5,4,3] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
{{1,2},{3,6},{4,5}}
=> [2,1,6,5,4,3] => [2,1,6,5,4,3] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
Description
The largest eigenvalue of a graph if it is integral. If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001875
Mp00080: Set partitions to permutationPermutations
Mp00065: Permutations permutation posetPosets
Mp00206: Posets antichains of maximal sizeLattices
St001875: Lattices ⟶ ℤResult quality: 28% values known / values provided: 28%distinct values known / distinct values provided: 67%
Values
{{1}}
=> [1] => ([],1)
=> ([],1)
=> ? = 1
{{1,2}}
=> [2,1] => ([],2)
=> ([],1)
=> ? ∊ {1,2}
{{1},{2}}
=> [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,2}
{{1,2,3}}
=> [2,3,1] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2}
{{1,2},{3}}
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {2,2,2,2}
{{1,3},{2}}
=> [3,2,1] => ([],3)
=> ([],1)
=> ? ∊ {2,2,2,2}
{{1},{2,3}}
=> [1,3,2] => ([(0,1),(0,2)],3)
=> ([],1)
=> ? ∊ {2,2,2,2}
{{1},{2},{3}}
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
{{1,2,3,4}}
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
{{1,2,3},{4}}
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3}
{{1,2,4},{3}}
=> [2,4,3,1] => ([(1,2),(1,3)],4)
=> ([],1)
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3}
{{1,2},{3,4}}
=> [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3}
{{1,2},{3},{4}}
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3}
{{1,3,4},{2}}
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3}
{{1,3},{2,4}}
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
{{1,3},{2},{4}}
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3}
{{1,4},{2,3}}
=> [4,3,2,1] => ([],4)
=> ([],1)
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3}
{{1},{2,3,4}}
=> [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3}
{{1},{2,3},{4}}
=> [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3}
{{1,4},{2},{3}}
=> [4,2,3,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3}
{{1},{2,4},{3}}
=> [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3}
{{1},{2},{3,4}}
=> [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3}
{{1},{2},{3},{4}}
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
{{1,2,3,4,5}}
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 4
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 3
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => ([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => ([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 3
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => ([],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
{{1,2,3,4,5,6}}
=> [2,3,4,5,6,1] => ([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
{{1,2,3,4,5},{6}}
=> [2,3,4,5,1,6] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
{{1,2,3,4},{5,6}}
=> [2,3,4,1,6,5] => ([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
{{1,2,3,4},{5},{6}}
=> [2,3,4,1,5,6] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 3
{{1,2,3,5},{4,6}}
=> [2,3,5,6,1,4] => ([(0,5),(1,4),(3,2),(4,3),(4,5)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 5
{{1,2,3},{4,5,6}}
=> [2,3,1,5,6,4] => ([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
{{1,2,3},{4,5},{6}}
=> [2,3,1,5,4,6] => ([(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 3
{{1,2,3},{4},{5,6}}
=> [2,3,1,4,6,5] => ([(0,5),(1,2),(2,5),(5,3),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 3
{{1,2,4,6},{3,5}}
=> [2,4,5,6,3,1] => ([(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 3
{{1,2,4},{3,5,6}}
=> [2,4,5,1,6,3] => ([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 5
{{1,2,4},{3,5},{6}}
=> [2,4,5,1,3,6] => ([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 4
{{1,2},{3,4,5,6}}
=> [2,1,4,5,6,3] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
{{1,2},{3,4,5},{6}}
=> [2,1,4,5,3,6] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 3
{{1,2},{3,4},{5,6}}
=> [2,1,4,3,6,5] => ([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 3
{{1,2,5},{3,6},{4}}
=> [2,5,6,4,1,3] => ([(0,5),(1,3),(1,4),(1,5),(4,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
{{1,2},{3,5},{4,6}}
=> [2,1,5,6,3,4] => ([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 4
{{1,2},{3},{4,5,6}}
=> [2,1,3,5,6,4] => ([(0,5),(1,5),(4,2),(5,3),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 3
{{1,2,6},{3},{4},{5}}
=> [2,6,3,4,5,1] => ([(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> 3
{{1,3,4,5},{2,6}}
=> [3,6,4,5,1,2] => ([(0,4),(1,3),(1,5),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
{{1,3,4},{2,6},{5}}
=> [3,6,4,1,5,2] => ([(0,4),(0,5),(1,2),(1,3),(3,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
{{1,3,5,6},{2,4}}
=> [3,4,5,2,6,1] => ([(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
{{1,3,5},{2,4},{6}}
=> [3,4,5,2,1,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
{{1,3},{2,4,5,6}}
=> [3,4,1,5,6,2] => ([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 5
{{1,3},{2,4,5},{6}}
=> [3,4,1,5,2,6] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4
{{1,3,6},{2,4},{5}}
=> [3,4,6,2,5,1] => ([(1,5),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
{{1,3},{2,4},{5,6}}
=> [3,4,1,2,6,5] => ([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4
{{1,3},{2,4},{5},{6}}
=> [3,4,1,2,5,6] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
{{1,3},{2,5},{4,6}}
=> [3,5,1,6,2,4] => ([(0,3),(0,5),(1,2),(1,4),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 5
{{1,3,6},{2},{4},{5}}
=> [3,2,6,4,5,1] => ([(1,4),(1,5),(2,4),(2,5),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 3
{{1,4,5},{2,3,6}}
=> [4,3,6,5,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
{{1,4},{2,3,6},{5}}
=> [4,3,6,1,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
{{1,5},{2,3,4,6}}
=> [5,3,4,6,1,2] => ([(0,5),(1,3),(2,4),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
{{1,6},{2,3,4,5}}
=> [6,3,4,5,2,1] => ([(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
Description
The number of simple modules with projective dimension at most 1.
Mp00128: Set partitions to compositionInteger compositions
Mp00173: Integer compositions rotate front to backInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000259: Graphs ⟶ ℤResult quality: 27% values known / values provided: 27%distinct values known / distinct values provided: 50%
Values
{{1}}
=> [1] => [1] => ([],1)
=> 0 = 1 - 1
{{1,2}}
=> [2] => [2] => ([],2)
=> ? = 1 - 1
{{1},{2}}
=> [1,1] => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
{{1,2,3}}
=> [3] => [3] => ([],3)
=> ? ∊ {2,2,2} - 1
{{1,2},{3}}
=> [2,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {2,2,2} - 1
{{1,3},{2}}
=> [2,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {2,2,2} - 1
{{1},{2,3}}
=> [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 2 = 3 - 1
{{1},{2},{3}}
=> [1,1,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
{{1,2,3,4}}
=> [4] => [4] => ([],4)
=> ? ∊ {1,2,3,3,3,3,3,3,3,4} - 1
{{1,2,3},{4}}
=> [3,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {1,2,3,3,3,3,3,3,3,4} - 1
{{1,2,4},{3}}
=> [3,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {1,2,3,3,3,3,3,3,3,4} - 1
{{1,2},{3,4}}
=> [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,3,3,3,3,3,3,3,4} - 1
{{1,2},{3},{4}}
=> [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,3,3,3,3,3,3,3,4} - 1
{{1,3,4},{2}}
=> [3,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {1,2,3,3,3,3,3,3,3,4} - 1
{{1,3},{2,4}}
=> [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,3,3,3,3,3,3,3,4} - 1
{{1,3},{2},{4}}
=> [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,3,3,3,3,3,3,3,4} - 1
{{1,4},{2,3}}
=> [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,3,3,3,3,3,3,3,4} - 1
{{1},{2,3,4}}
=> [1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 3 - 1
{{1},{2,3},{4}}
=> [1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
{{1,4},{2},{3}}
=> [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,3,3,3,3,3,3,3,4} - 1
{{1},{2,4},{3}}
=> [1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
{{1},{2},{3,4}}
=> [1,1,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
{{1},{2},{3},{4}}
=> [1,1,1,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
{{1,2,3,4,5}}
=> [5] => [5] => ([],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,2,3,4},{5}}
=> [4,1] => [1,4] => ([(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,2,3,5},{4}}
=> [4,1] => [1,4] => ([(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,2,3},{4,5}}
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,2,3},{4},{5}}
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,2,4,5},{3}}
=> [4,1] => [1,4] => ([(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,2,4},{3,5}}
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,2,4},{3},{5}}
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,2,5},{3,4}}
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,2},{3,4,5}}
=> [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,2},{3,4},{5}}
=> [2,2,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,2,5},{3},{4}}
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,2},{3,5},{4}}
=> [2,2,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,2},{3},{4,5}}
=> [2,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,2},{3},{4},{5}}
=> [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,3,4,5},{2}}
=> [4,1] => [1,4] => ([(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,3,4},{2,5}}
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,3,4},{2},{5}}
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,3,5},{2,4}}
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,3},{2,4,5}}
=> [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,3},{2,4},{5}}
=> [2,2,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,3,5},{2},{4}}
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,3},{2,5},{4}}
=> [2,2,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,3},{2},{4,5}}
=> [2,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,3},{2},{4},{5}}
=> [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,4,5},{2,3}}
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,4},{2,3,5}}
=> [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,4},{2,3},{5}}
=> [2,2,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,5},{2,3,4}}
=> [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1},{2,3,4,5}}
=> [1,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
{{1},{2,3,4},{5}}
=> [1,3,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
{{1,5},{2,3},{4}}
=> [2,2,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1},{2,3,5},{4}}
=> [1,3,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
{{1},{2,3},{4,5}}
=> [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
{{1},{2,3},{4},{5}}
=> [1,2,1,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
{{1,4,5},{2},{3}}
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,4},{2,5},{3}}
=> [2,2,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,4},{2},{3,5}}
=> [2,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,4},{2},{3},{5}}
=> [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1,5},{2,4},{3}}
=> [2,2,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1},{2,4,5},{3}}
=> [1,3,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
{{1},{2,4},{3,5}}
=> [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
{{1},{2,4},{3},{5}}
=> [1,2,1,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
{{1,5},{2},{3,4}}
=> [2,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5} - 1
{{1},{2,5},{3,4}}
=> [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
{{1},{2},{3,4,5}}
=> [1,1,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
{{1},{2},{3,4},{5}}
=> [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
{{1},{2,5},{3},{4}}
=> [1,2,1,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
{{1},{2},{3,5},{4}}
=> [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
{{1},{2},{3},{4,5}}
=> [1,1,1,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
{{1},{2},{3},{4},{5}}
=> [1,1,1,1,1] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
{{1},{2,3,4,5,6}}
=> [1,5] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
{{1},{2,3,4,5},{6}}
=> [1,4,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
{{1},{2,3,4,6},{5}}
=> [1,4,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
{{1},{2,3,4},{5,6}}
=> [1,3,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
{{1},{2,3,4},{5},{6}}
=> [1,3,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
{{1},{2,3,5,6},{4}}
=> [1,4,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
{{1},{2,3,5},{4,6}}
=> [1,3,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
{{1},{2,3,5},{4},{6}}
=> [1,3,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
{{1},{2,3,6},{4,5}}
=> [1,3,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
{{1},{2,3},{4,5,6}}
=> [1,2,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
{{1},{2,3},{4,5},{6}}
=> [1,2,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
{{1},{2,3,6},{4},{5}}
=> [1,3,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
{{1},{2,3},{4,6},{5}}
=> [1,2,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
{{1},{2,3},{4},{5,6}}
=> [1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
{{1},{2,3},{4},{5},{6}}
=> [1,2,1,1,1] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
{{1},{2,4,5,6},{3}}
=> [1,4,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
{{1},{2,4,5},{3,6}}
=> [1,3,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
{{1},{2,4,5},{3},{6}}
=> [1,3,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
{{1},{2,4,6},{3,5}}
=> [1,3,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
{{1},{2,4},{3,5,6}}
=> [1,2,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
{{1},{2,4},{3,5},{6}}
=> [1,2,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
{{1},{2,4,6},{3},{5}}
=> [1,3,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
{{1},{2,4},{3,6},{5}}
=> [1,2,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
{{1},{2,4},{3},{5,6}}
=> [1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
{{1},{2,4},{3},{5},{6}}
=> [1,2,1,1,1] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
{{1},{2,5,6},{3,4}}
=> [1,3,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Mp00080: Set partitions to permutationPermutations
Mp00223: Permutations runsortPermutations
Mp00160: Permutations graph of inversionsGraphs
St000264: Graphs ⟶ ℤResult quality: 24% values known / values provided: 24%distinct values known / distinct values provided: 33%
Values
{{1}}
=> [1] => [1] => ([],1)
=> ? = 1
{{1,2}}
=> [2,1] => [1,2] => ([],2)
=> ? ∊ {1,2}
{{1},{2}}
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,2}
{{1,2,3}}
=> [2,3,1] => [1,2,3] => ([],3)
=> ? ∊ {2,2,2,2,3}
{{1,2},{3}}
=> [2,1,3] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {2,2,2,2,3}
{{1,3},{2}}
=> [3,2,1] => [1,2,3] => ([],3)
=> ? ∊ {2,2,2,2,3}
{{1},{2,3}}
=> [1,3,2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {2,2,2,2,3}
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {2,2,2,2,3}
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => ([],4)
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
{{1,2,3},{4}}
=> [2,3,1,4] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
{{1,2},{3,4}}
=> [2,1,4,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
{{1,3,4},{2}}
=> [3,2,4,1] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
{{1,3},{2,4}}
=> [3,4,1,2] => [1,2,3,4] => ([],4)
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
{{1,4},{2,3}}
=> [4,3,2,1] => [1,2,3,4] => ([],4)
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
{{1},{2,3,4}}
=> [1,3,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,2,3,4] => ([],4)
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,3,3,4}
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,3,2,4,5] => ([(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,2,3,4,5] => ([],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => [1,2,3,4,5] => ([],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
{{1,2,3,4},{5},{6}}
=> [2,3,4,1,5,6] => [1,5,6,2,3,4] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
{{1,2,3,5},{4},{6}}
=> [2,3,5,4,1,6] => [1,6,2,3,5,4] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,2,3},{4,5,6}}
=> [2,3,1,5,6,4] => [1,5,6,2,3,4] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
{{1,2,3},{4},{5,6}}
=> [2,3,1,4,6,5] => [1,4,6,2,3,5] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
{{1,2,3},{4},{5},{6}}
=> [2,3,1,4,5,6] => [1,4,5,6,2,3] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
{{1,2,4,5},{3},{6}}
=> [2,4,3,5,1,6] => [1,6,2,4,3,5] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,2,4},{3,5,6}}
=> [2,4,5,1,6,3] => [1,6,2,4,5,3] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,2,4},{3,6},{5}}
=> [2,4,6,1,5,3] => [1,5,2,4,6,3] => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
{{1,2,4},{3},{5,6}}
=> [2,4,3,1,6,5] => [1,6,2,4,3,5] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,2,4},{3},{5},{6}}
=> [2,4,3,1,5,6] => [1,5,6,2,4,3] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
{{1,2,5},{3,4},{6}}
=> [2,5,4,3,1,6] => [1,6,2,5,3,4] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,2},{3,4,5,6}}
=> [2,1,4,5,6,3] => [1,4,5,6,2,3] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
{{1,2},{3,4,5},{6}}
=> [2,1,4,5,3,6] => [1,4,5,2,3,6] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> 4
{{1,2,6},{3,4},{5}}
=> [2,6,4,3,5,1] => [1,2,6,3,5,4] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,2},{3,4,6},{5}}
=> [2,1,4,6,5,3] => [1,4,6,2,3,5] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
{{1,2,5},{3},{4},{6}}
=> [2,5,3,4,1,6] => [1,6,2,5,3,4] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,2},{3,5},{4,6}}
=> [2,1,5,6,3,4] => [1,5,6,2,3,4] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
{{1,2,6},{3},{4,5}}
=> [2,6,3,5,4,1] => [1,2,6,3,5,4] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,2},{3},{4,5,6}}
=> [2,1,3,5,6,4] => [1,3,5,6,2,4] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
{{1,3,4,5},{2},{6}}
=> [3,2,4,5,1,6] => [1,6,2,4,5,3] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,3,4},{2,5,6}}
=> [3,5,4,1,6,2] => [1,6,2,3,5,4] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,3,4},{2,5},{6}}
=> [3,5,4,1,2,6] => [1,2,6,3,5,4] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,3,4},{2},{5,6}}
=> [3,2,4,1,6,5] => [1,6,2,4,3,5] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,3,4},{2},{5},{6}}
=> [3,2,4,1,5,6] => [1,5,6,2,4,3] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
{{1,3},{2,4,5,6}}
=> [3,4,1,5,6,2] => [1,5,6,2,3,4] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
{{1,3},{2,4,5},{6}}
=> [3,4,1,5,2,6] => [1,5,2,6,3,4] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
{{1,3},{2,4},{5},{6}}
=> [3,4,1,2,5,6] => [1,2,5,6,3,4] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> 4
{{1,3,5},{2},{4},{6}}
=> [3,2,5,4,1,6] => [1,6,2,5,3,4] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,3},{2,5,6},{4}}
=> [3,5,1,4,6,2] => [1,4,6,2,3,5] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
{{1,3},{2,5},{4,6}}
=> [3,5,1,6,2,4] => [1,6,2,4,3,5] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,3},{2},{4,5,6}}
=> [3,2,1,5,6,4] => [1,5,6,2,3,4] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
{{1,3},{2,6},{4},{5}}
=> [3,6,1,4,5,2] => [1,4,5,2,3,6] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> 4
{{1,3},{2},{4},{5,6}}
=> [3,2,1,4,6,5] => [1,4,6,2,3,5] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
{{1,3},{2},{4},{5},{6}}
=> [3,2,1,4,5,6] => [1,4,5,6,2,3] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
{{1,4,5,6},{2,3}}
=> [4,3,2,5,6,1] => [1,2,5,6,3,4] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> 4
{{1,4,5},{2,3},{6}}
=> [4,3,2,5,1,6] => [1,6,2,5,3,4] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,4},{2,3,5,6}}
=> [4,3,5,1,6,2] => [1,6,2,3,5,4] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,4},{2,3,5},{6}}
=> [4,3,5,1,2,6] => [1,2,6,3,5,4] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,4},{2,3},{5},{6}}
=> [4,3,2,1,5,6] => [1,5,6,2,3,4] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
{{1,5},{2,3},{4},{6}}
=> [5,3,2,4,1,6] => [1,6,2,4,3,5] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1},{2,3,5},{4,6}}
=> [1,3,5,6,2,4] => [1,3,5,6,2,4] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
{{1,4,5},{2},{3},{6}}
=> [4,2,3,5,1,6] => [1,6,2,3,5,4] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,4,6},{2},{3,5}}
=> [4,2,5,6,3,1] => [1,2,5,6,3,4] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> 4
{{1,4},{2},{3,5,6}}
=> [4,2,5,1,6,3] => [1,6,2,5,3,4] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
Description
The girth of a graph, which is not a tree. This is the length of the shortest cycle in the graph.
Matching statistic: St001879
Mp00080: Set partitions to permutationPermutations
Mp00061: Permutations to increasing treeBinary trees
Mp00013: Binary trees to posetPosets
St001879: Posets ⟶ ℤResult quality: 15% values known / values provided: 15%distinct values known / distinct values provided: 67%
Values
{{1}}
=> [1] => [.,.]
=> ([],1)
=> ? = 1
{{1,2}}
=> [2,1] => [[.,.],.]
=> ([(0,1)],2)
=> ? ∊ {1,2}
{{1},{2}}
=> [1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ? ∊ {1,2}
{{1,2,3}}
=> [2,3,1] => [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 2
{{1,2},{3}}
=> [2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 3
{{1,3},{2}}
=> [3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 2
{{1},{2,3}}
=> [1,3,2] => [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 2
{{1},{2},{3}}
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
{{1,2,3,4}}
=> [2,3,4,1] => [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
{{1,2,3},{4}}
=> [2,3,1,4] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,2,2,3,3,3,3,4}
{{1,2,4},{3}}
=> [2,4,3,1] => [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
{{1,2},{3,4}}
=> [2,1,4,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,2,2,3,3,3,3,4}
{{1,2},{3},{4}}
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,2,2,3,3,3,3,4}
{{1,3,4},{2}}
=> [3,2,4,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ? ∊ {1,2,2,3,3,3,3,4}
{{1,3},{2,4}}
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,2,2,3,3,3,3,4}
{{1,3},{2},{4}}
=> [3,2,1,4] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,2,2,3,3,3,3,4}
{{1,4},{2,3}}
=> [4,3,2,1] => [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
{{1},{2,3,4}}
=> [1,3,4,2] => [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
{{1},{2,3},{4}}
=> [1,3,2,4] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? ∊ {1,2,2,3,3,3,3,4}
{{1,4},{2},{3}}
=> [4,2,3,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ? ∊ {1,2,2,3,3,3,3,4}
{{1},{2,4},{3}}
=> [1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
{{1},{2},{3,4}}
=> [1,2,4,3] => [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
{{1},{2},{3},{4}}
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => [[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => [[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1},{2,5},{3,4}}
=> [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
{{1},{2},{3,4,5}}
=> [1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
{{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
{{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
{{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
{{1,2,3,4,5,6}}
=> [2,3,4,5,6,1] => [[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
{{1,2,3,4,6},{5}}
=> [2,3,4,6,5,1] => [[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
{{1,2,3,6},{4,5}}
=> [2,3,6,5,4,1] => [[.,[.,[[[.,.],.],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
{{1,2,4,6},{3,5}}
=> [2,4,5,6,3,1] => [[.,[[.,[.,[.,.]]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
{{1,2,6},{3,5},{4}}
=> [2,6,5,4,3,1] => [[.,[[[[.,.],.],.],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
{{1,3,6},{2,4,5}}
=> [3,4,6,5,2,1] => [[[.,[.,[[.,.],.]]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
{{1,3,6},{2,5},{4}}
=> [3,5,6,4,2,1] => [[[.,[[.,[.,.]],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
{{1},{2,3,4,5,6}}
=> [1,3,4,5,6,2] => [.,[[.,[.,[.,[.,.]]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
{{1},{2,3,4,6},{5}}
=> [1,3,4,6,5,2] => [.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
{{1},{2,3,6},{4,5}}
=> [1,3,6,5,4,2] => [.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
{{1},{2,4,6},{3,5}}
=> [1,4,5,6,3,2] => [.,[[[.,[.,[.,.]]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
{{1,6},{2,5},{3,4}}
=> [6,5,4,3,2,1] => [[[[[[.,.],.],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
{{1},{2},{3,4,5,6}}
=> [1,2,4,5,6,3] => [.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
{{1},{2},{3,4,6},{5}}
=> [1,2,4,6,5,3] => [.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
{{1},{2,6},{3,5},{4}}
=> [1,6,5,4,3,2] => [.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
{{1},{2},{3,6},{4,5}}
=> [1,2,6,5,4,3] => [.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
{{1},{2},{3},{4,5,6}}
=> [1,2,3,5,6,4] => [.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
{{1},{2},{3},{4,6},{5}}
=> [1,2,3,6,5,4] => [.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
{{1},{2},{3},{4},{5,6}}
=> [1,2,3,4,6,5] => [.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
{{1},{2},{3},{4},{5},{6}}
=> [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Matching statistic: St001863
Mp00080: Set partitions to permutationPermutations
Mp00089: Permutations Inverse Kreweras complementPermutations
Mp00170: Permutations to signed permutationSigned permutations
St001863: Signed permutations ⟶ ℤResult quality: 14% values known / values provided: 14%distinct values known / distinct values provided: 83%
Values
{{1}}
=> [1] => [1] => [1] => 1
{{1,2}}
=> [2,1] => [1,2] => [1,2] => 2
{{1},{2}}
=> [1,2] => [2,1] => [2,1] => 1
{{1,2,3}}
=> [2,3,1] => [1,2,3] => [1,2,3] => 3
{{1,2},{3}}
=> [2,1,3] => [1,3,2] => [1,3,2] => 2
{{1,3},{2}}
=> [3,2,1] => [2,1,3] => [2,1,3] => 2
{{1},{2,3}}
=> [1,3,2] => [3,2,1] => [3,2,1] => 2
{{1},{2},{3}}
=> [1,2,3] => [2,3,1] => [2,3,1] => 2
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => [1,2,3,4] => 4
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,4,3] => [1,2,4,3] => 3
{{1,2,4},{3}}
=> [2,4,3,1] => [1,3,2,4] => [1,3,2,4] => 3
{{1,2},{3,4}}
=> [2,1,4,3] => [1,4,3,2] => [1,4,3,2] => 3
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,3,4,2] => [1,3,4,2] => 3
{{1,3,4},{2}}
=> [3,2,4,1] => [2,1,3,4] => [2,1,3,4] => 3
{{1,3},{2,4}}
=> [3,4,1,2] => [4,1,2,3] => [4,1,2,3] => 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [2,1,4,3] => [2,1,4,3] => 2
{{1,4},{2,3}}
=> [4,3,2,1] => [3,2,1,4] => [3,2,1,4] => 3
{{1},{2,3,4}}
=> [1,3,4,2] => [4,2,3,1] => [4,2,3,1] => 3
{{1},{2,3},{4}}
=> [1,3,2,4] => [3,2,4,1] => [3,2,4,1] => 3
{{1,4},{2},{3}}
=> [4,2,3,1] => [2,3,1,4] => [2,3,1,4] => 3
{{1},{2,4},{3}}
=> [1,4,3,2] => [4,3,2,1] => [4,3,2,1] => 2
{{1},{2},{3,4}}
=> [1,2,4,3] => [2,4,3,1] => [2,4,3,1] => 3
{{1},{2},{3},{4}}
=> [1,2,3,4] => [2,3,4,1] => [2,3,4,1] => 3
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => 5
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,5,4] => [1,2,3,5,4] => 4
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,4,3,5] => [1,2,4,3,5] => 4
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,5,4,3] => [1,2,5,4,3] => 4
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,4,5,3] => [1,2,4,5,3] => 4
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,3,2,4,5] => [1,3,2,4,5] => 4
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,5,2,3,4] => [1,5,2,3,4] => 2
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,3,2,5,4] => [1,3,2,5,4] => 3
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,4,3,2,5] => [1,4,3,2,5] => 4
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,5,3,4,2] => [1,5,3,4,2] => 4
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,4,3,5,2] => [1,4,3,5,2] => 4
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,3,4,2,5] => [1,3,4,2,5] => 4
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,5,4,3,2] => [1,5,4,3,2] => 3
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,3,5,4,2] => [1,3,5,4,2] => 4
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,3,4,5,2] => [1,3,4,5,2] => 4
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [2,1,3,4,5] => [2,1,3,4,5] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [5,1,3,2,4] => [5,1,3,2,4] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [2,1,3,5,4] => [2,1,3,5,4] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [4,1,2,3,5] => [4,1,2,3,5] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [5,1,2,4,3] => [5,1,2,4,3] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [4,1,2,5,3] => [4,1,2,5,3] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [2,1,4,3,5] => [2,1,4,3,5] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [5,1,4,2,3] => [5,1,4,2,3] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [2,1,5,4,3] => [2,1,5,4,3] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [2,1,4,5,3] => [2,1,4,5,3] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [3,2,1,4,5] => [3,2,1,4,5] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [5,2,1,3,4] => [5,2,1,3,4] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [3,2,1,5,4] => [3,2,1,5,4] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => [4,2,3,1,5] => [4,2,3,1,5] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => [5,2,3,4,1] => [5,2,3,4,1] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => [4,2,3,5,1] => [4,2,3,5,1] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => [3,2,4,1,5] => [3,2,4,1,5] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => [5,2,4,3,1] => [5,2,4,3,1] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => [3,2,5,4,1] => [3,2,5,4,1] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => [3,2,4,5,1] => [3,2,4,5,1] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => [2,3,1,4,5] => [2,3,1,4,5] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => [5,3,1,2,4] => [5,3,1,2,4] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => [2,5,1,3,4] => [2,5,1,3,4] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => [2,3,1,5,4] => [2,3,1,5,4] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => [4,3,2,1,5] => [4,3,2,1,5] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => [5,3,2,4,1] => [5,3,2,4,1] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => [4,5,2,3,1] => [4,5,2,3,1] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [4,3,2,5,1] => [4,3,2,5,1] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => [2,4,3,1,5] => [2,4,3,1,5] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1},{2,5},{3,4}}
=> [1,5,4,3,2] => [5,4,3,2,1] => [5,4,3,2,1] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1},{2},{3,4,5}}
=> [1,2,4,5,3] => [2,5,3,4,1] => [2,5,3,4,1] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => [2,4,3,5,1] => [2,4,3,5,1] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => [2,3,4,1,5] => [2,3,4,1,5] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1},{2,5},{3},{4}}
=> [1,5,3,4,2] => [5,3,4,2,1] => [5,3,4,2,1] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => [2,5,4,3,1] => [2,5,4,3,1] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => [2,3,5,4,1] => [2,3,5,4,1] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => [2,3,4,5,1] => [2,3,4,5,1] => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
{{1,2,3,4,5,6}}
=> [2,3,4,5,6,1] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
{{1,2,3,4,5},{6}}
=> [2,3,4,5,1,6] => [1,2,3,4,6,5] => [1,2,3,4,6,5] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
{{1,2,3,4,6},{5}}
=> [2,3,4,6,5,1] => [1,2,3,5,4,6] => [1,2,3,5,4,6] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
{{1,2,3,4},{5,6}}
=> [2,3,4,1,6,5] => [1,2,3,6,5,4] => [1,2,3,6,5,4] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
{{1,2,3,4},{5},{6}}
=> [2,3,4,1,5,6] => [1,2,3,5,6,4] => [1,2,3,5,6,4] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
{{1,2,3,5,6},{4}}
=> [2,3,5,4,6,1] => [1,2,4,3,5,6] => [1,2,4,3,5,6] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
{{1,2,3,5},{4,6}}
=> [2,3,5,6,1,4] => [1,2,6,3,4,5] => [1,2,6,3,4,5] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
{{1,2,3,5},{4},{6}}
=> [2,3,5,4,1,6] => [1,2,4,3,6,5] => [1,2,4,3,6,5] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
{{1,2,3,6},{4,5}}
=> [2,3,6,5,4,1] => [1,2,5,4,3,6] => [1,2,5,4,3,6] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
{{1,2,3},{4,5,6}}
=> [2,3,1,5,6,4] => [1,2,6,4,5,3] => [1,2,6,4,5,3] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
{{1,2,3},{4,5},{6}}
=> [2,3,1,5,4,6] => [1,2,5,4,6,3] => [1,2,5,4,6,3] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
{{1,2,3,6},{4},{5}}
=> [2,3,6,4,5,1] => [1,2,4,5,3,6] => [1,2,4,5,3,6] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
{{1,2,3},{4,6},{5}}
=> [2,3,1,6,5,4] => [1,2,6,5,4,3] => [1,2,6,5,4,3] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
Description
The number of weak excedances of a signed permutation. For a signed permutation $\pi\in\mathfrak H_n$, this is $\lvert\{i\in[n] \mid \pi(i) \geq i\}\rvert$.
The following 1 statistic also match your data. Click on any of them to see the details.
St001626The number of maximal proper sublattices of a lattice.