Processing math: 100%

Your data matches 44 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001462: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> 1 = 0 + 1
[[1,2]]
=> 2 = 1 + 1
[[1],[2]]
=> 1 = 0 + 1
[[1,2,3]]
=> 3 = 2 + 1
[[1,3],[2]]
=> 2 = 1 + 1
[[1,2],[3]]
=> 2 = 1 + 1
[[1],[2],[3]]
=> 1 = 0 + 1
[[1,2,3,4]]
=> 4 = 3 + 1
[[1,3,4],[2]]
=> 3 = 2 + 1
[[1,2,4],[3]]
=> 3 = 2 + 1
[[1,2,3],[4]]
=> 3 = 2 + 1
[[1,3],[2,4]]
=> 2 = 1 + 1
[[1,2],[3,4]]
=> 1 = 0 + 1
[[1,4],[2],[3]]
=> 2 = 1 + 1
[[1,3],[2],[4]]
=> 1 = 0 + 1
[[1,2],[3],[4]]
=> 2 = 1 + 1
[[1],[2],[3],[4]]
=> 1 = 0 + 1
[[1,2,3,4,5]]
=> 5 = 4 + 1
[[1,3,4,5],[2]]
=> 4 = 3 + 1
[[1,2,4,5],[3]]
=> 4 = 3 + 1
[[1,2,3,5],[4]]
=> 4 = 3 + 1
[[1,2,3,4],[5]]
=> 4 = 3 + 1
[[1,3,5],[2,4]]
=> 3 = 2 + 1
[[1,2,5],[3,4]]
=> 2 = 1 + 1
[[1,3,4],[2,5]]
=> 3 = 2 + 1
[[1,2,4],[3,5]]
=> 3 = 2 + 1
[[1,2,3],[4,5]]
=> 2 = 1 + 1
[[1,4,5],[2],[3]]
=> 3 = 2 + 1
[[1,3,5],[2],[4]]
=> 2 = 1 + 1
[[1,2,5],[3],[4]]
=> 3 = 2 + 1
[[1,3,4],[2],[5]]
=> 1 = 0 + 1
[[1,2,4],[3],[5]]
=> 2 = 1 + 1
[[1,2,3],[4],[5]]
=> 3 = 2 + 1
[[1,4],[2,5],[3]]
=> 2 = 1 + 1
[[1,3],[2,5],[4]]
=> 1 = 0 + 1
[[1,2],[3,5],[4]]
=> 1 = 0 + 1
[[1,3],[2,4],[5]]
=> 2 = 1 + 1
[[1,2],[3,4],[5]]
=> 1 = 0 + 1
[[1,5],[2],[3],[4]]
=> 2 = 1 + 1
[[1,4],[2],[3],[5]]
=> 1 = 0 + 1
[[1,3],[2],[4],[5]]
=> 1 = 0 + 1
[[1,2],[3],[4],[5]]
=> 2 = 1 + 1
[[1],[2],[3],[4],[5]]
=> 1 = 0 + 1
[[1,2,3,4,5,6]]
=> 6 = 5 + 1
[[1,3,4,5,6],[2]]
=> 5 = 4 + 1
[[1,2,4,5,6],[3]]
=> 5 = 4 + 1
[[1,2,3,5,6],[4]]
=> 5 = 4 + 1
[[1,2,3,4,6],[5]]
=> 5 = 4 + 1
[[1,2,3,4,5],[6]]
=> 5 = 4 + 1
[[1,3,5,6],[2,4]]
=> 4 = 3 + 1
Description
The number of factors of a standard tableaux under concatenation. The concatenation of two standard Young tableaux T1 and T2 is obtained by adding the largest entry of T1 to each entry of T2, and then appending the rows of the result to T1, see [1, dfn 2.10]. This statistic returns the maximal number of standard tableaux such that their concatenation is the given tableau.
Matching statistic: St000234
Mp00284: Standard tableaux rowsSet partitions
Mp00171: Set partitions intertwining number to dual major indexSet partitions
Mp00080: Set partitions to permutationPermutations
St000234: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> {{1}}
=> {{1}}
=> [1] => 0
[[1,2]]
=> {{1,2}}
=> {{1,2}}
=> [2,1] => 0
[[1],[2]]
=> {{1},{2}}
=> {{1},{2}}
=> [1,2] => 1
[[1,2,3]]
=> {{1,2,3}}
=> {{1,2,3}}
=> [2,3,1] => 0
[[1,3],[2]]
=> {{1,3},{2}}
=> {{1},{2,3}}
=> [1,3,2] => 1
[[1,2],[3]]
=> {{1,2},{3}}
=> {{1,2},{3}}
=> [2,1,3] => 1
[[1],[2],[3]]
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> [1,2,3] => 2
[[1,2,3,4]]
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> [2,3,4,1] => 0
[[1,3,4],[2]]
=> {{1,3,4},{2}}
=> {{1,4},{2,3}}
=> [4,3,2,1] => 0
[[1,2,4],[3]]
=> {{1,2,4},{3}}
=> {{1,2},{3,4}}
=> [2,1,4,3] => 1
[[1,2,3],[4]]
=> {{1,2,3},{4}}
=> {{1,2,3},{4}}
=> [2,3,1,4] => 1
[[1,3],[2,4]]
=> {{1,3},{2,4}}
=> {{1},{2,3,4}}
=> [1,3,4,2] => 1
[[1,2],[3,4]]
=> {{1,2},{3,4}}
=> {{1,2,4},{3}}
=> [2,4,3,1] => 0
[[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> {{1},{2},{3,4}}
=> [1,2,4,3] => 2
[[1,3],[2],[4]]
=> {{1,3},{2},{4}}
=> {{1},{2,3},{4}}
=> [1,3,2,4] => 2
[[1,2],[3],[4]]
=> {{1,2},{3},{4}}
=> {{1,2},{3},{4}}
=> [2,1,3,4] => 2
[[1],[2],[3],[4]]
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> [1,2,3,4] => 3
[[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> {{1,2,3,4,5}}
=> [2,3,4,5,1] => 0
[[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> {{1,4,5},{2,3}}
=> [4,3,2,5,1] => 0
[[1,2,4,5],[3]]
=> {{1,2,4,5},{3}}
=> {{1,2,5},{3,4}}
=> [2,5,4,3,1] => 0
[[1,2,3,5],[4]]
=> {{1,2,3,5},{4}}
=> {{1,2,3},{4,5}}
=> [2,3,1,5,4] => 1
[[1,2,3,4],[5]]
=> {{1,2,3,4},{5}}
=> {{1,2,3,4},{5}}
=> [2,3,4,1,5] => 1
[[1,3,5],[2,4]]
=> {{1,3,5},{2,4}}
=> {{1},{2,3,4,5}}
=> [1,3,4,5,2] => 1
[[1,2,5],[3,4]]
=> {{1,2,5},{3,4}}
=> {{1,2,4},{3,5}}
=> [2,4,5,1,3] => 0
[[1,3,4],[2,5]]
=> {{1,3,4},{2,5}}
=> {{1,4},{2,3,5}}
=> [4,3,5,1,2] => 0
[[1,2,4],[3,5]]
=> {{1,2,4},{3,5}}
=> {{1,2},{3,4,5}}
=> [2,1,4,5,3] => 1
[[1,2,3],[4,5]]
=> {{1,2,3},{4,5}}
=> {{1,2,3,5},{4}}
=> [2,3,5,4,1] => 0
[[1,4,5],[2],[3]]
=> {{1,4,5},{2},{3}}
=> {{1,5},{2},{3,4}}
=> [5,2,4,3,1] => 0
[[1,3,5],[2],[4]]
=> {{1,3,5},{2},{4}}
=> {{1},{2,3,5},{4}}
=> [1,3,5,4,2] => 1
[[1,2,5],[3],[4]]
=> {{1,2,5},{3},{4}}
=> {{1,2},{3},{4,5}}
=> [2,1,3,5,4] => 2
[[1,3,4],[2],[5]]
=> {{1,3,4},{2},{5}}
=> {{1,4},{2,3},{5}}
=> [4,3,2,1,5] => 1
[[1,2,4],[3],[5]]
=> {{1,2,4},{3},{5}}
=> {{1,2},{3,4},{5}}
=> [2,1,4,3,5] => 2
[[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> {{1,2,3},{4},{5}}
=> [2,3,1,4,5] => 2
[[1,4],[2,5],[3]]
=> {{1,4},{2,5},{3}}
=> {{1},{2},{3,4,5}}
=> [1,2,4,5,3] => 2
[[1,3],[2,5],[4]]
=> {{1,3},{2,5},{4}}
=> {{1},{2,3},{4,5}}
=> [1,3,2,5,4] => 2
[[1,2],[3,5],[4]]
=> {{1,2},{3,5},{4}}
=> {{1,2},{3,5},{4}}
=> [2,1,5,4,3] => 1
[[1,3],[2,4],[5]]
=> {{1,3},{2,4},{5}}
=> {{1},{2,3,4},{5}}
=> [1,3,4,2,5] => 2
[[1,2],[3,4],[5]]
=> {{1,2},{3,4},{5}}
=> {{1,2,4},{3},{5}}
=> [2,4,3,1,5] => 1
[[1,5],[2],[3],[4]]
=> {{1,5},{2},{3},{4}}
=> {{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => 3
[[1,4],[2],[3],[5]]
=> {{1,4},{2},{3},{5}}
=> {{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => 3
[[1,3],[2],[4],[5]]
=> {{1,3},{2},{4},{5}}
=> {{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => 3
[[1,2],[3],[4],[5]]
=> {{1,2},{3},{4},{5}}
=> {{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => 3
[[1],[2],[3],[4],[5]]
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => 4
[[1,2,3,4,5,6]]
=> {{1,2,3,4,5,6}}
=> {{1,2,3,4,5,6}}
=> [2,3,4,5,6,1] => 0
[[1,3,4,5,6],[2]]
=> {{1,3,4,5,6},{2}}
=> {{1,4,5,6},{2,3}}
=> [4,3,2,5,6,1] => 0
[[1,2,4,5,6],[3]]
=> {{1,2,4,5,6},{3}}
=> {{1,2,5,6},{3,4}}
=> [2,5,4,3,6,1] => 0
[[1,2,3,5,6],[4]]
=> {{1,2,3,5,6},{4}}
=> {{1,2,3,6},{4,5}}
=> [2,3,6,5,4,1] => 0
[[1,2,3,4,6],[5]]
=> {{1,2,3,4,6},{5}}
=> {{1,2,3,4},{5,6}}
=> [2,3,4,1,6,5] => 1
[[1,2,3,4,5],[6]]
=> {{1,2,3,4,5},{6}}
=> {{1,2,3,4,5},{6}}
=> [2,3,4,5,1,6] => 1
[[1,3,5,6],[2,4]]
=> {{1,3,5,6},{2,4}}
=> {{1,6},{2,3,4,5}}
=> [6,3,4,5,2,1] => 0
Description
The number of global ascents of a permutation. The global ascents are the integers i such that C(π)={i[n1]1ji<kn:π(j)<π(k)}. Equivalently, by the pigeonhole principle, C(π)={i[n1]1ji:π(j)i}. For n>1 it can also be described as an occurrence of the mesh pattern ([1,2],{(0,2),(1,0),(1,1),(2,0),(2,1)}) or equivalently ([1,2],{(0,1),(0,2),(1,1),(1,2),(2,0)}), see [3]. According to [2], this is also the cardinality of the connectivity set of a permutation. The permutation is connected, when the connectivity set is empty. This gives [[oeis:A003319]].
Matching statistic: St000056
Mp00284: Standard tableaux rowsSet partitions
Mp00171: Set partitions intertwining number to dual major indexSet partitions
Mp00080: Set partitions to permutationPermutations
St000056: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> {{1}}
=> {{1}}
=> [1] => 1 = 0 + 1
[[1,2]]
=> {{1,2}}
=> {{1,2}}
=> [2,1] => 1 = 0 + 1
[[1],[2]]
=> {{1},{2}}
=> {{1},{2}}
=> [1,2] => 2 = 1 + 1
[[1,2,3]]
=> {{1,2,3}}
=> {{1,2,3}}
=> [2,3,1] => 1 = 0 + 1
[[1,3],[2]]
=> {{1,3},{2}}
=> {{1},{2,3}}
=> [1,3,2] => 2 = 1 + 1
[[1,2],[3]]
=> {{1,2},{3}}
=> {{1,2},{3}}
=> [2,1,3] => 2 = 1 + 1
[[1],[2],[3]]
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> [1,2,3] => 3 = 2 + 1
[[1,2,3,4]]
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> [2,3,4,1] => 1 = 0 + 1
[[1,3,4],[2]]
=> {{1,3,4},{2}}
=> {{1,4},{2,3}}
=> [4,3,2,1] => 1 = 0 + 1
[[1,2,4],[3]]
=> {{1,2,4},{3}}
=> {{1,2},{3,4}}
=> [2,1,4,3] => 2 = 1 + 1
[[1,2,3],[4]]
=> {{1,2,3},{4}}
=> {{1,2,3},{4}}
=> [2,3,1,4] => 2 = 1 + 1
[[1,3],[2,4]]
=> {{1,3},{2,4}}
=> {{1},{2,3,4}}
=> [1,3,4,2] => 2 = 1 + 1
[[1,2],[3,4]]
=> {{1,2},{3,4}}
=> {{1,2,4},{3}}
=> [2,4,3,1] => 1 = 0 + 1
[[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> {{1},{2},{3,4}}
=> [1,2,4,3] => 3 = 2 + 1
[[1,3],[2],[4]]
=> {{1,3},{2},{4}}
=> {{1},{2,3},{4}}
=> [1,3,2,4] => 3 = 2 + 1
[[1,2],[3],[4]]
=> {{1,2},{3},{4}}
=> {{1,2},{3},{4}}
=> [2,1,3,4] => 3 = 2 + 1
[[1],[2],[3],[4]]
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> [1,2,3,4] => 4 = 3 + 1
[[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> {{1,2,3,4,5}}
=> [2,3,4,5,1] => 1 = 0 + 1
[[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> {{1,4,5},{2,3}}
=> [4,3,2,5,1] => 1 = 0 + 1
[[1,2,4,5],[3]]
=> {{1,2,4,5},{3}}
=> {{1,2,5},{3,4}}
=> [2,5,4,3,1] => 1 = 0 + 1
[[1,2,3,5],[4]]
=> {{1,2,3,5},{4}}
=> {{1,2,3},{4,5}}
=> [2,3,1,5,4] => 2 = 1 + 1
[[1,2,3,4],[5]]
=> {{1,2,3,4},{5}}
=> {{1,2,3,4},{5}}
=> [2,3,4,1,5] => 2 = 1 + 1
[[1,3,5],[2,4]]
=> {{1,3,5},{2,4}}
=> {{1},{2,3,4,5}}
=> [1,3,4,5,2] => 2 = 1 + 1
[[1,2,5],[3,4]]
=> {{1,2,5},{3,4}}
=> {{1,2,4},{3,5}}
=> [2,4,5,1,3] => 1 = 0 + 1
[[1,3,4],[2,5]]
=> {{1,3,4},{2,5}}
=> {{1,4},{2,3,5}}
=> [4,3,5,1,2] => 1 = 0 + 1
[[1,2,4],[3,5]]
=> {{1,2,4},{3,5}}
=> {{1,2},{3,4,5}}
=> [2,1,4,5,3] => 2 = 1 + 1
[[1,2,3],[4,5]]
=> {{1,2,3},{4,5}}
=> {{1,2,3,5},{4}}
=> [2,3,5,4,1] => 1 = 0 + 1
[[1,4,5],[2],[3]]
=> {{1,4,5},{2},{3}}
=> {{1,5},{2},{3,4}}
=> [5,2,4,3,1] => 1 = 0 + 1
[[1,3,5],[2],[4]]
=> {{1,3,5},{2},{4}}
=> {{1},{2,3,5},{4}}
=> [1,3,5,4,2] => 2 = 1 + 1
[[1,2,5],[3],[4]]
=> {{1,2,5},{3},{4}}
=> {{1,2},{3},{4,5}}
=> [2,1,3,5,4] => 3 = 2 + 1
[[1,3,4],[2],[5]]
=> {{1,3,4},{2},{5}}
=> {{1,4},{2,3},{5}}
=> [4,3,2,1,5] => 2 = 1 + 1
[[1,2,4],[3],[5]]
=> {{1,2,4},{3},{5}}
=> {{1,2},{3,4},{5}}
=> [2,1,4,3,5] => 3 = 2 + 1
[[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> {{1,2,3},{4},{5}}
=> [2,3,1,4,5] => 3 = 2 + 1
[[1,4],[2,5],[3]]
=> {{1,4},{2,5},{3}}
=> {{1},{2},{3,4,5}}
=> [1,2,4,5,3] => 3 = 2 + 1
[[1,3],[2,5],[4]]
=> {{1,3},{2,5},{4}}
=> {{1},{2,3},{4,5}}
=> [1,3,2,5,4] => 3 = 2 + 1
[[1,2],[3,5],[4]]
=> {{1,2},{3,5},{4}}
=> {{1,2},{3,5},{4}}
=> [2,1,5,4,3] => 2 = 1 + 1
[[1,3],[2,4],[5]]
=> {{1,3},{2,4},{5}}
=> {{1},{2,3,4},{5}}
=> [1,3,4,2,5] => 3 = 2 + 1
[[1,2],[3,4],[5]]
=> {{1,2},{3,4},{5}}
=> {{1,2,4},{3},{5}}
=> [2,4,3,1,5] => 2 = 1 + 1
[[1,5],[2],[3],[4]]
=> {{1,5},{2},{3},{4}}
=> {{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => 4 = 3 + 1
[[1,4],[2],[3],[5]]
=> {{1,4},{2},{3},{5}}
=> {{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => 4 = 3 + 1
[[1,3],[2],[4],[5]]
=> {{1,3},{2},{4},{5}}
=> {{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => 4 = 3 + 1
[[1,2],[3],[4],[5]]
=> {{1,2},{3},{4},{5}}
=> {{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => 4 = 3 + 1
[[1],[2],[3],[4],[5]]
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => 5 = 4 + 1
[[1,2,3,4,5,6]]
=> {{1,2,3,4,5,6}}
=> {{1,2,3,4,5,6}}
=> [2,3,4,5,6,1] => 1 = 0 + 1
[[1,3,4,5,6],[2]]
=> {{1,3,4,5,6},{2}}
=> {{1,4,5,6},{2,3}}
=> [4,3,2,5,6,1] => 1 = 0 + 1
[[1,2,4,5,6],[3]]
=> {{1,2,4,5,6},{3}}
=> {{1,2,5,6},{3,4}}
=> [2,5,4,3,6,1] => 1 = 0 + 1
[[1,2,3,5,6],[4]]
=> {{1,2,3,5,6},{4}}
=> {{1,2,3,6},{4,5}}
=> [2,3,6,5,4,1] => 1 = 0 + 1
[[1,2,3,4,6],[5]]
=> {{1,2,3,4,6},{5}}
=> {{1,2,3,4},{5,6}}
=> [2,3,4,1,6,5] => 2 = 1 + 1
[[1,2,3,4,5],[6]]
=> {{1,2,3,4,5},{6}}
=> {{1,2,3,4,5},{6}}
=> [2,3,4,5,1,6] => 2 = 1 + 1
[[1,3,5,6],[2,4]]
=> {{1,3,5,6},{2,4}}
=> {{1,6},{2,3,4,5}}
=> [6,3,4,5,2,1] => 1 = 0 + 1
Description
The decomposition (or block) number of a permutation. For πSn, this is given by #{1kn:{π1,,πk}={1,,k}}. This is also known as the number of connected components [1] or the number of blocks [2] of the permutation, considering it as a direct sum. This is one plus [[St000234]].
Mp00081: Standard tableaux reading word permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
St000771: Graphs ⟶ ℤResult quality: 64% values known / values provided: 64%distinct values known / distinct values provided: 83%
Values
[[1]]
=> [1] => ([],1)
=> 1 = 0 + 1
[[1,2]]
=> [1,2] => ([],2)
=> ? = 1 + 1
[[1],[2]]
=> [2,1] => ([(0,1)],2)
=> 1 = 0 + 1
[[1,2,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,2} + 1
[[1,3],[2]]
=> [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,2} + 1
[[1,2],[3]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[[1],[2],[3]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[[1,2,3,4]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {0,2,2,3} + 1
[[1,3,4],[2]]
=> [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {0,2,2,3} + 1
[[1,2,4],[3]]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,2,2,3} + 1
[[1,2,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[1,3],[2,4]]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 1 = 0 + 1
[[1,2],[3,4]]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 1 + 1
[[1,4],[2],[3]]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,2,2,3} + 1
[[1,3],[2],[4]]
=> [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[[1,2],[3],[4]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[1],[2],[3],[4]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[[1,2,3,4,5]]
=> [1,2,3,4,5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,4} + 1
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,4} + 1
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,4} + 1
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,4} + 1
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,4} + 1
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,4} + 1
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1 = 0 + 1
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,4} + 1
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,4} + 1
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,4} + 1
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1 = 0 + 1
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,4} + 1
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => ([],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5} + 1
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => ([(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5} + 1
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5} + 1
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5} + 1
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5} + 1
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 3 + 1
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5} + 1
[[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5} + 1
[[1,3,4,6],[2,5]]
=> [2,5,1,3,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5} + 1
[[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5} + 1
[[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5} + 1
[[1,3,4,5],[2,6]]
=> [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2 = 1 + 1
[[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 3 = 2 + 1
[[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5} + 1
[[1,3,5,6],[2],[4]]
=> [4,2,1,3,5,6] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5} + 1
[[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5} + 1
[[1,3,4,6],[2],[5]]
=> [5,2,1,3,4,6] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5} + 1
[[1,2,4,6],[3],[5]]
=> [5,3,1,2,4,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5} + 1
[[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5} + 1
[[1,3,4,5],[2],[6]]
=> [6,2,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3 = 2 + 1
[[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> 4 = 3 + 1
[[1,4,6],[2,5],[3]]
=> [3,2,5,1,4,6] => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5} + 1
[[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5} + 1
[[1,2,6],[3,5],[4]]
=> [4,3,5,1,2,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5} + 1
[[1,3,6],[2,4],[5]]
=> [5,2,4,1,3,6] => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5} + 1
[[1,2,6],[3,4],[5]]
=> [5,3,4,1,2,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5} + 1
[[1,4,5],[2,6],[3]]
=> [3,2,6,1,4,5] => ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 1 = 0 + 1
[[1,3,5],[2,6],[4]]
=> [4,2,6,1,3,5] => ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 2 = 1 + 1
[[1,2,5],[3,6],[4]]
=> [4,3,6,1,2,5] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[1,2,4],[3,6],[5]]
=> [5,3,6,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2 = 1 + 1
[[1,2,3],[4,6],[5]]
=> [5,4,6,1,2,3] => ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[[1,3,5],[2,4],[6]]
=> [6,2,4,1,3,5] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[[1,2,5],[3,4],[6]]
=> [6,3,4,1,2,5] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[1,3,4],[2,5],[6]]
=> [6,2,5,1,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5} + 1
[[1,4,6],[2],[3],[5]]
=> [5,3,2,1,4,6] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5} + 1
[[1,3,6],[2],[4],[5]]
=> [5,4,2,1,3,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5} + 1
[[1,2,6],[3],[4],[5]]
=> [5,4,3,1,2,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5} + 1
[[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5} + 1
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums 0, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian (4121141221411214). Its eigenvalues are 0,4,4,6, so the statistic is 2. The path on four vertices has eigenvalues 0,4.7,6,9.2 and therefore statistic 1.
Matching statistic: St000681
Mp00207: Standard tableaux horizontal strip sizesInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St000681: Integer partitions ⟶ ℤResult quality: 63% values known / values provided: 63%distinct values known / distinct values provided: 83%
Values
[[1]]
=> [1] => [[1],[]]
=> []
=> ? = 0
[[1,2]]
=> [2] => [[2],[]]
=> []
=> ? ∊ {0,1}
[[1],[2]]
=> [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,1}
[[1,2,3]]
=> [3] => [[3],[]]
=> []
=> ? ∊ {0,1,1,2}
[[1,3],[2]]
=> [1,2] => [[2,1],[]]
=> []
=> ? ∊ {0,1,1,2}
[[1,2],[3]]
=> [2,1] => [[2,2],[1]]
=> [1]
=> ? ∊ {0,1,1,2}
[[1],[2],[3]]
=> [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,1,1,2}
[[1,2,3,4]]
=> [4] => [[4],[]]
=> []
=> ? ∊ {0,0,0,1,2,2,2,3}
[[1,3,4],[2]]
=> [1,3] => [[3,1],[]]
=> []
=> ? ∊ {0,0,0,1,2,2,2,3}
[[1,2,4],[3]]
=> [2,2] => [[3,2],[1]]
=> [1]
=> ? ∊ {0,0,0,1,2,2,2,3}
[[1,2,3],[4]]
=> [3,1] => [[3,3],[2]]
=> [2]
=> 1
[[1,3],[2,4]]
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> ? ∊ {0,0,0,1,2,2,2,3}
[[1,2],[3,4]]
=> [2,2] => [[3,2],[1]]
=> [1]
=> ? ∊ {0,0,0,1,2,2,2,3}
[[1,4],[2],[3]]
=> [1,1,2] => [[2,1,1],[]]
=> []
=> ? ∊ {0,0,0,1,2,2,2,3}
[[1,3],[2],[4]]
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> ? ∊ {0,0,0,1,2,2,2,3}
[[1,2],[3],[4]]
=> [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 1
[[1],[2],[3],[4]]
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,1,2,2,2,3}
[[1,2,3,4,5]]
=> [5] => [[5],[]]
=> []
=> ? ∊ {0,0,0,0,2,2,2,3,3,3,3,4}
[[1,3,4,5],[2]]
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {0,0,0,0,2,2,2,3,3,3,3,4}
[[1,2,4,5],[3]]
=> [2,3] => [[4,2],[1]]
=> [1]
=> ? ∊ {0,0,0,0,2,2,2,3,3,3,3,4}
[[1,2,3,5],[4]]
=> [3,2] => [[4,3],[2]]
=> [2]
=> 1
[[1,2,3,4],[5]]
=> [4,1] => [[4,4],[3]]
=> [3]
=> 2
[[1,3,5],[2,4]]
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> ? ∊ {0,0,0,0,2,2,2,3,3,3,3,4}
[[1,2,5],[3,4]]
=> [2,3] => [[4,2],[1]]
=> [1]
=> ? ∊ {0,0,0,0,2,2,2,3,3,3,3,4}
[[1,3,4],[2,5]]
=> [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 1
[[1,2,4],[3,5]]
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 0
[[1,2,3],[4,5]]
=> [3,2] => [[4,3],[2]]
=> [2]
=> 1
[[1,4,5],[2],[3]]
=> [1,1,3] => [[3,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,2,2,2,3,3,3,3,4}
[[1,3,5],[2],[4]]
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> ? ∊ {0,0,0,0,2,2,2,3,3,3,3,4}
[[1,2,5],[3],[4]]
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 1
[[1,3,4],[2],[5]]
=> [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 1
[[1,2,4],[3],[5]]
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 0
[[1,2,3],[4],[5]]
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 2
[[1,4],[2,5],[3]]
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> ? ∊ {0,0,0,0,2,2,2,3,3,3,3,4}
[[1,3],[2,5],[4]]
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> ? ∊ {0,0,0,0,2,2,2,3,3,3,3,4}
[[1,2],[3,5],[4]]
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 1
[[1,3],[2,4],[5]]
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
[[1,2],[3,4],[5]]
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 0
[[1,5],[2],[3],[4]]
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,2,2,2,3,3,3,3,4}
[[1,4],[2],[3],[5]]
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> ? ∊ {0,0,0,0,2,2,2,3,3,3,3,4}
[[1,3],[2],[4],[5]]
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
[[1,2],[3],[4],[5]]
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 2
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,2,2,2,3,3,3,3,4}
[[1,2,3,4,5,6]]
=> [6] => [[6],[]]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,2,2,2,2,4,4,4,5}
[[1,3,4,5,6],[2]]
=> [1,5] => [[5,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,2,2,2,2,4,4,4,5}
[[1,2,4,5,6],[3]]
=> [2,4] => [[5,2],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,2,2,2,2,4,4,4,5}
[[1,2,3,5,6],[4]]
=> [3,3] => [[5,3],[2]]
=> [2]
=> 1
[[1,2,3,4,6],[5]]
=> [4,2] => [[5,4],[3]]
=> [3]
=> 2
[[1,2,3,4,5],[6]]
=> [5,1] => [[5,5],[4]]
=> [4]
=> 3
[[1,3,5,6],[2,4]]
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,2,2,2,2,4,4,4,5}
[[1,2,5,6],[3,4]]
=> [2,4] => [[5,2],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,2,2,2,2,4,4,4,5}
[[1,3,4,6],[2,5]]
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
[[1,2,4,6],[3,5]]
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 0
[[1,2,3,6],[4,5]]
=> [3,3] => [[5,3],[2]]
=> [2]
=> 1
[[1,3,4,5],[2,6]]
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 2
[[1,2,4,5],[3,6]]
=> [2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> 3
[[1,2,3,5],[4,6]]
=> [3,2,1] => [[4,4,3],[3,2]]
=> [3,2]
=> 0
[[1,2,3,4],[5,6]]
=> [4,2] => [[5,4],[3]]
=> [3]
=> 2
[[1,4,5,6],[2],[3]]
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,2,2,2,2,4,4,4,5}
[[1,3,5,6],[2],[4]]
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,2,2,2,2,4,4,4,5}
[[1,2,5,6],[3],[4]]
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 1
[[1,3,4,6],[2],[5]]
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
[[1,2,4,6],[3],[5]]
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 0
[[1,2,3,6],[4],[5]]
=> [3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> 2
[[1,3,4,5],[2],[6]]
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 2
[[1,2,4,5],[3],[6]]
=> [2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> 3
[[1,2,3,5],[4],[6]]
=> [3,2,1] => [[4,4,3],[3,2]]
=> [3,2]
=> 0
[[1,2,3,4],[5],[6]]
=> [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 4
[[1,3,5],[2,4,6]]
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 0
[[1,2,5],[3,4,6]]
=> [2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> 3
[[1,3,4],[2,5,6]]
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
[[1,2,4],[3,5,6]]
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 0
[[1,2,3],[4,5,6]]
=> [3,3] => [[5,3],[2]]
=> [2]
=> 1
[[1,4,6],[2,5],[3]]
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,2,2,2,2,4,4,4,5}
[[1,3,6],[2,5],[4]]
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,2,2,2,2,4,4,4,5}
[[1,2,6],[3,5],[4]]
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 1
[[1,3,6],[2,4],[5]]
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 1
[[1,2,6],[3,4],[5]]
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 0
[[1,4,5],[2,6],[3]]
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 1
[[1,3,5],[2,6],[4]]
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 0
[[1,2,5],[3,6],[4]]
=> [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> 3
[[1,3,4],[2,6],[5]]
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
[[1,2,4],[3,6],[5]]
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 0
[[1,2,3],[4,6],[5]]
=> [3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> 2
[[1,3,5],[2,4],[6]]
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 0
[[1,2,5],[3,4],[6]]
=> [2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> 3
[[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,2,2,2,2,4,4,4,5}
[[1,4,6],[2],[3],[5]]
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,2,2,2,2,4,4,4,5}
[[1,4],[2,5],[3,6]]
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,2,2,2,2,4,4,4,5}
[[1,5],[2,6],[3],[4]]
=> [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,2,2,2,2,4,4,4,5}
[[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,2,2,2,2,4,4,4,5}
[[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,2,2,2,2,4,4,4,5}
[[1,5],[2],[3],[4],[6]]
=> [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,2,2,2,2,4,4,4,5}
[[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,2,2,2,2,4,4,4,5}
Description
The Grundy value of Chomp on Ferrers diagrams. Players take turns and choose a cell of the diagram, cutting off all cells below and to the right of this cell in English notation. The player who is left with the single cell partition looses. The traditional version is played on chocolate bars, see [1]. This statistic is the Grundy value of the partition, that is, the smallest non-negative integer which does not occur as value of a partition obtained by a single move.
Mp00081: Standard tableaux reading word permutationPermutations
Mp00062: Permutations Lehmer-code to major-code bijectionPermutations
Mp00065: Permutations permutation posetPosets
St001632: Posets ⟶ ℤResult quality: 50% values known / values provided: 63%distinct values known / distinct values provided: 50%
Values
[[1]]
=> [1] => [1] => ([],1)
=> ? = 0
[[1,2]]
=> [1,2] => [1,2] => ([(0,1)],2)
=> 1
[[1],[2]]
=> [2,1] => [2,1] => ([],2)
=> ? = 0
[[1,2,3]]
=> [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1
[[1,3],[2]]
=> [2,1,3] => [2,1,3] => ([(0,2),(1,2)],3)
=> 1
[[1,2],[3]]
=> [3,1,2] => [2,3,1] => ([(1,2)],3)
=> ? ∊ {0,2}
[[1],[2],[3]]
=> [3,2,1] => [3,2,1] => ([],3)
=> ? ∊ {0,2}
[[1,2,3,4]]
=> [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1
[[1,3,4],[2]]
=> [2,1,3,4] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> 1
[[1,2,4],[3]]
=> [3,1,2,4] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> 1
[[1,2,3],[4]]
=> [4,1,2,3] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ? ∊ {0,2,2,3}
[[1,3],[2,4]]
=> [2,4,1,3] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> 2
[[1,2],[3,4]]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> 0
[[1,4],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> 0
[[1,3],[2],[4]]
=> [4,2,1,3] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> ? ∊ {0,2,2,3}
[[1,2],[3],[4]]
=> [4,3,1,2] => [3,4,2,1] => ([(2,3)],4)
=> ? ∊ {0,2,2,3}
[[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => ([],4)
=> ? ∊ {0,2,2,3}
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> 1
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> 1
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> 1
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ? ∊ {1,2,2,2,2,3,3,3,3,4}
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 2
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => [3,1,4,2,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> 2
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => [3,1,4,5,2] => ([(0,4),(1,2),(1,4),(4,3)],5)
=> 0
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => [3,4,1,5,2] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> 1
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> 0
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> 0
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [3,4,2,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> ? ∊ {1,2,2,2,2,3,3,3,3,4}
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,2,2,2,2,3,3,3,3,4}
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> ? ∊ {1,2,2,2,2,3,3,3,3,4}
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => [2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> 0
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> 0
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [4,2,1,5,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 0
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [2,4,5,3,1] => ([(1,3),(1,4),(4,2)],5)
=> ? ∊ {1,2,2,2,2,3,3,3,3,4}
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,2,2,2,2,3,3,3,3,4}
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,3,3,3,3,4}
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,3,3,3,3,4}
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [4,5,3,2,1] => ([(3,4)],5)
=> ? ∊ {1,2,2,2,2,3,3,3,3,4}
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [5,4,3,2,1] => ([],5)
=> ? ∊ {1,2,2,2,2,3,3,3,3,4}
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [2,1,3,4,5,6] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> 1
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [2,3,1,4,5,6] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> 1
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [2,3,4,1,5,6] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> 1
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [2,3,4,5,1,6] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 1
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => ([(1,5),(3,4),(4,2),(5,3)],6)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => [1,3,4,2,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> 2
[[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => [3,1,4,2,5,6] => ([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> 1
[[1,3,4,6],[2,5]]
=> [2,5,1,3,4,6] => [1,3,4,5,2,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 2
[[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => [3,1,4,5,2,6] => ([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> 1
[[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => [3,4,1,5,2,6] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> 1
[[1,3,4,5],[2,6]]
=> [2,6,1,3,4,5] => [1,3,4,5,6,2] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> 2
[[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => [3,1,4,5,6,2] => ([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
=> 0
[[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => [3,4,1,5,6,2] => ([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> 1
[[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => [3,4,5,1,6,2] => ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> 1
[[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => [3,2,1,4,5,6] => ([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> 0
[[1,3,5,6],[2],[4]]
=> [4,2,1,3,5,6] => [3,2,4,1,5,6] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> 0
[[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => [3,4,2,1,5,6] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> 1
[[1,3,4,6],[2],[5]]
=> [5,2,1,3,4,6] => [3,2,4,5,1,6] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> 0
[[1,2,4,6],[3],[5]]
=> [5,3,1,2,4,6] => [3,4,2,5,1,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 1
[[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => [3,4,5,2,1,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1
[[1,3,4,5],[2],[6]]
=> [6,2,1,3,4,5] => [3,2,4,5,6,1] => ([(1,5),(2,5),(3,4),(5,3)],6)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => [3,4,2,5,6,1] => ([(1,5),(2,3),(3,5),(5,4)],6)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => [3,4,5,2,6,1] => ([(1,5),(2,3),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => [3,4,5,6,2,1] => ([(2,3),(3,5),(5,4)],6)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => [4,1,2,5,6,3] => ([(0,5),(1,4),(4,2),(4,5),(5,3)],6)
=> 1
[[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => [1,4,2,5,6,3] => ([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> 2
[[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => [4,5,1,2,6,3] => ([(0,3),(1,4),(3,5),(4,2),(4,5)],6)
=> 2
[[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => [1,4,5,2,6,3] => ([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> 2
[[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => [4,1,5,2,6,3] => ([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> 0
[[1,3,5],[2,4],[6]]
=> [6,2,4,1,3,5] => [2,4,5,3,6,1] => ([(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,2,5],[3,4],[6]]
=> [6,3,4,1,2,5] => [4,2,5,3,6,1] => ([(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,3,4],[2,5],[6]]
=> [6,2,5,1,3,4] => [2,4,5,6,3,1] => ([(1,3),(1,5),(4,2),(5,4)],6)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => [4,2,5,6,3,1] => ([(1,5),(2,3),(2,5),(5,4)],6)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => [4,5,2,6,3,1] => ([(1,4),(2,3),(2,5),(4,5)],6)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,4,5],[2],[3],[6]]
=> [6,3,2,1,4,5] => [4,3,2,5,6,1] => ([(1,5),(2,5),(3,5),(5,4)],6)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,3,5],[2],[4],[6]]
=> [6,4,2,1,3,5] => [4,3,5,2,6,1] => ([(1,5),(2,4),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,2,5],[3],[4],[6]]
=> [6,4,3,1,2,5] => [4,5,3,2,6,1] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,3,4],[2],[5],[6]]
=> [6,5,2,1,3,4] => [4,3,5,6,2,1] => ([(2,5),(3,5),(5,4)],6)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,2,4],[3],[5],[6]]
=> [6,5,3,1,2,4] => [4,5,3,6,2,1] => ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => [4,5,6,3,2,1] => ([(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,4],[2,5],[3],[6]]
=> [6,3,2,5,1,4] => [3,2,5,6,4,1] => ([(1,4),(1,5),(2,4),(2,5),(5,3)],6)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => [3,5,2,6,4,1] => ([(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,2],[3,5],[4],[6]]
=> [6,4,3,5,1,2] => [5,3,2,6,4,1] => ([(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,3],[2,4],[5],[6]]
=> [6,5,2,4,1,3] => [3,5,6,4,2,1] => ([(2,3),(2,4),(4,5)],6)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => [5,3,6,4,2,1] => ([(2,5),(3,4),(3,5)],6)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,5],[2],[3],[4],[6]]
=> [6,4,3,2,1,5] => [5,4,3,2,6,1] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,4],[2],[3],[5],[6]]
=> [6,5,3,2,1,4] => [5,4,3,6,2,1] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,3],[2],[4],[5],[6]]
=> [6,5,4,2,1,3] => [5,4,6,3,2,1] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => [5,6,4,3,2,1] => ([(4,5)],6)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => ([],6)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
Description
The number of indecomposable injective modules I with dimExt1(I,A)=1 for the incidence algebra A of a poset.
Mp00081: Standard tableaux reading word permutationPermutations
Mp00071: Permutations descent compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000454: Graphs ⟶ ℤResult quality: 53% values known / values provided: 53%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => [1] => ([],1)
=> 0
[[1,2]]
=> [1,2] => [2] => ([],2)
=> 0
[[1],[2]]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 1
[[1,2,3]]
=> [1,2,3] => [3] => ([],3)
=> 0
[[1,3],[2]]
=> [2,1,3] => [1,2] => ([(1,2)],3)
=> 1
[[1,2],[3]]
=> [3,1,2] => [1,2] => ([(1,2)],3)
=> 1
[[1],[2],[3]]
=> [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,2,3,4]]
=> [1,2,3,4] => [4] => ([],4)
=> 0
[[1,3,4],[2]]
=> [2,1,3,4] => [1,3] => ([(2,3)],4)
=> 1
[[1,2,4],[3]]
=> [3,1,2,4] => [1,3] => ([(2,3)],4)
=> 1
[[1,2,3],[4]]
=> [4,1,2,3] => [1,3] => ([(2,3)],4)
=> 1
[[1,3],[2,4]]
=> [2,4,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0}
[[1,2],[3,4]]
=> [3,4,1,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0}
[[1,4],[2],[3]]
=> [3,2,1,4] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[[1,3],[2],[4]]
=> [4,2,1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[[1],[2],[3],[4]]
=> [4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [5] => ([],5)
=> 0
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [1,4] => ([(3,4)],5)
=> 1
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => [1,4] => ([(3,4)],5)
=> 1
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => [1,4] => ([(3,4)],5)
=> 1
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [1,4] => ([(3,4)],5)
=> 1
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1}
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1}
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1}
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1}
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1}
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1}
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1}
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1}
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1}
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1}
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [6] => ([],6)
=> 0
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [1,5] => ([(4,5)],6)
=> 1
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [1,5] => ([(4,5)],6)
=> 1
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [1,5] => ([(4,5)],6)
=> 1
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [1,5] => ([(4,5)],6)
=> 1
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [1,5] => ([(4,5)],6)
=> 1
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,3,4,6],[2,5]]
=> [2,5,1,3,4,6] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,3,4,5],[2,6]]
=> [2,6,1,3,4,5] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
[[1,3,5,6],[2],[4]]
=> [4,2,1,3,5,6] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
[[1,3,4,6],[2],[5]]
=> [5,2,1,3,4,6] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,4,6],[3],[5]]
=> [5,3,1,2,4,6] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
[[1,3,4,5],[2],[6]]
=> [6,2,1,3,4,5] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
[[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,4,6],[2,5],[3]]
=> [3,2,5,1,4,6] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,6],[3,5],[4]]
=> [4,3,5,1,2,6] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,3,6],[2,4],[5]]
=> [5,2,4,1,3,6] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,6],[3,4],[5]]
=> [5,3,4,1,2,6] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,4,5],[2,6],[3]]
=> [3,2,6,1,4,5] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,3,5],[2,6],[4]]
=> [4,2,6,1,3,5] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,5],[3,6],[4]]
=> [4,3,6,1,2,5] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,4],[3,6],[5]]
=> [5,3,6,1,2,4] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,3],[4,6],[5]]
=> [5,4,6,1,2,3] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,3,5],[2,4],[6]]
=> [6,2,4,1,3,5] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,5],[3,4],[6]]
=> [6,3,4,1,2,5] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,3,4],[2,5],[6]]
=> [6,2,5,1,3,4] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,4,6],[2],[3],[5]]
=> [5,3,2,1,4,6] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,6],[2],[4],[5]]
=> [5,4,2,1,3,6] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,4],[2,5],[3,6]]
=> [3,6,2,5,1,4] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,3],[2,5],[4,6]]
=> [4,6,2,5,1,3] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2],[3,5],[4,6]]
=> [4,6,3,5,1,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,3],[2,4],[5,6]]
=> [5,6,2,4,1,3] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,5],[2,6],[3],[4]]
=> [4,3,2,6,1,5] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,3],[2,6],[4],[5]]
=> [5,4,2,6,1,3] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
Description
The largest eigenvalue of a graph if it is integral. If a graph is d-regular, then its largest eigenvalue equals d. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
Mp00083: Standard tableaux shapeInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 53% values known / values provided: 53%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1]
=> [1,0]
=> [1,0]
=> 0
[[1,2]]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
[[1],[2]]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[[1,2,3]]
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[[1,3],[2]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[[1,2],[3]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[[1],[2],[3]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[[1,2,3,4]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[[1,3,4],[2]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[[1,2,4],[3]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[[1,2,3],[4]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[[1,3],[2,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {0,0}
[[1,2],[3,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {0,0}
[[1,4],[2],[3]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[[1,3],[2],[4]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[[1,2],[3],[4]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[[1,2,3,4,5]]
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[[1,3,4,5],[2]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[[1,2,4,5],[3]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[[1,2,3,5],[4]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[[1,2,3,4],[5]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[[1,3,5],[2,4]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1}
[[1,2,5],[3,4]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1}
[[1,3,4],[2,5]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1}
[[1,2,4],[3,5]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1}
[[1,2,3],[4,5]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1}
[[1,4,5],[2],[3]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[[1,3,5],[2],[4]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[[1,2,5],[3],[4]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[[1,3,4],[2],[5]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[[1,2,4],[3],[5]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[[1,2,3],[4],[5]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[[1,4],[2,5],[3]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1}
[[1,3],[2,5],[4]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1}
[[1,2],[3,5],[4]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1}
[[1,3],[2,4],[5]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1}
[[1,2],[3,4],[5]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1}
[[1,5],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
[[1,4],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
[[1,3],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
[[1,2],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
[[1,2,3,4,5,6]]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[[1,3,4,5,6],[2]]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
[[1,2,4,5,6],[3]]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
[[1,2,3,5,6],[4]]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
[[1,2,3,4,6],[5]]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
[[1,2,3,4,5],[6]]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
[[1,3,5,6],[2,4]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,5,6],[3,4]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,3,4,6],[2,5]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,4,6],[3,5]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,3,6],[4,5]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,3,4,5],[2,6]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,4,5],[3,6]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,3,5],[4,6]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,3,4],[5,6]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,4,5,6],[2],[3]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
[[1,3,5,6],[2],[4]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
[[1,2,5,6],[3],[4]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
[[1,3,4,6],[2],[5]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
[[1,2,4,6],[3],[5]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
[[1,2,3,6],[4],[5]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
[[1,3,4,5],[2],[6]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
[[1,2,4,5],[3],[6]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
[[1,2,3,5],[4],[6]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
[[1,2,3,4],[5],[6]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
[[1,3,5],[2,4,6]]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,5],[3,4,6]]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,3,4],[2,5,6]]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,4],[3,5,6]]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,3],[4,5,6]]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,4,6],[2,5],[3]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,3,6],[2,5],[4]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,6],[3,5],[4]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,3,6],[2,4],[5]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,6],[3,4],[5]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,4,5],[2,6],[3]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,3,5],[2,6],[4]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,5],[3,6],[4]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,3,4],[2,6],[5]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,4],[3,6],[5]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,3],[4,6],[5]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,3,5],[2,4],[6]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,5],[3,4],[6]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,3,4],[2,5],[6]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,4],[3,5],[6]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2,3],[4,5],[6]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,5,6],[2],[3],[4]]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3
[[1,4,6],[2],[3],[5]]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3
[[1,3,6],[2],[4],[5]]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3
[[1,4],[2,5],[3,6]]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,3],[2,5],[4,6]]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2],[3,5],[4,6]]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,3],[2,4],[5,6]]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,2],[3,4],[5,6]]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,5],[2,6],[3],[4]]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,4],[2,6],[3],[5]]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
[[1,3],[2,6],[4],[5]]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2}
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St001876
Mp00081: Standard tableaux reading word permutationPermutations
Mp00065: Permutations permutation posetPosets
Mp00206: Posets antichains of maximal sizeLattices
St001876: Lattices ⟶ ℤResult quality: 45% values known / values provided: 45%distinct values known / distinct values provided: 83%
Values
[[1]]
=> [1] => ([],1)
=> ([],1)
=> ? = 0
[[1,2]]
=> [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1}
[[1],[2]]
=> [2,1] => ([],2)
=> ([],1)
=> ? ∊ {0,1}
[[1,2,3]]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[1,3],[2]]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {1,1,2}
[[1,2],[3]]
=> [3,1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {1,1,2}
[[1],[2],[3]]
=> [3,2,1] => ([],3)
=> ([],1)
=> ? ∊ {1,1,2}
[[1,2,3,4]]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,3,4],[2]]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ? ∊ {1,1,2,2,2,3}
[[1,2,4],[3]]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,2,3}
[[1,2,3],[4]]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
[[1,3],[2,4]]
=> [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2],[3,4]]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,4],[2],[3]]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {1,1,2,2,2,3}
[[1,3],[2],[4]]
=> [4,2,1,3] => ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {1,1,2,2,2,3}
[[1,2],[3],[4]]
=> [4,3,1,2] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,2,3}
[[1],[2],[3],[4]]
=> [4,3,2,1] => ([],4)
=> ([],1)
=> ? ∊ {1,1,2,2,2,3}
[[1,2,3,4,5]]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,4}
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,4}
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => ([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,4}
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,4}
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,4}
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => ([(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,4}
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,4}
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,4}
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,4}
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,4}
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,4}
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,4}
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,4}
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,4}
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => ([],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,4}
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => ([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,3,4,6],[2,5]]
=> [2,5,1,3,4,6] => ([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[1,3,4,5],[2,6]]
=> [2,6,1,3,4,5] => ([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => ([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
[[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,5),(1,3),(4,2),(5,4)],6)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 3
[[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => ([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[[1,3,5,6],[2],[4]]
=> [4,2,1,3,5,6] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[[1,3,4,6],[2],[5]]
=> [5,2,1,3,4,6] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,4,6],[3],[5]]
=> [5,3,1,2,4,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,3,4,5],[2],[6]]
=> [6,2,1,3,4,5] => ([(1,5),(2,5),(3,4),(5,3)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => ([(1,5),(2,3),(3,5),(5,4)],6)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => ([(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => ([(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => ([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
[[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => ([(0,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => ([(0,5),(1,4),(1,5),(4,2),(5,3)],6)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 2
[[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> 3
[[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => ([(0,5),(1,4),(4,2),(5,3)],6)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 4
[[1,4,6],[2,5],[3]]
=> [3,2,5,1,4,6] => ([(0,5),(1,3),(1,5),(2,3),(2,5),(3,4),(5,4)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,6],[3,5],[4]]
=> [4,3,5,1,2,6] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[[1,3,6],[2,4],[5]]
=> [5,2,4,1,3,6] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,6],[3,4],[5]]
=> [5,3,4,1,2,6] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,4,5],[2,6],[3]]
=> [3,2,6,1,4,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(5,3)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[[1,3,5],[2,6],[4]]
=> [4,2,6,1,3,5] => ([(0,4),(1,3),(1,5),(2,3),(2,4),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,5],[3,6],[4]]
=> [4,3,6,1,2,5] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(3,5)],6)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => ([(0,5),(1,4),(2,4),(2,5),(5,3)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,4],[3,6],[5]]
=> [5,3,6,1,2,4] => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,3],[4,6],[5]]
=> [5,4,6,1,2,3] => ([(0,5),(1,5),(2,3),(3,4)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,3,5],[2,4],[6]]
=> [6,2,4,1,3,5] => ([(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,5],[3,4],[6]]
=> [6,3,4,1,2,5] => ([(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,3,4],[2,5],[6]]
=> [6,2,5,1,3,4] => ([(1,5),(2,3),(2,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => ([(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => ([(1,3),(2,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => ([(0,5),(1,5),(2,5),(3,5),(5,4)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[[1,4,6],[2],[3],[5]]
=> [5,3,2,1,4,6] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[[1,3,6],[2],[4],[5]]
=> [5,4,2,1,3,6] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,6],[3],[4],[5]]
=> [5,4,3,1,2,6] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[[1,4,5],[2],[3],[6]]
=> [6,3,2,1,4,5] => ([(1,5),(2,5),(3,5),(5,4)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[[1,3,5],[2],[4],[6]]
=> [6,4,2,1,3,5] => ([(1,5),(2,4),(3,4),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => ([(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,4],[2,5],[3,6]]
=> [3,6,2,5,1,4] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,3],[2,5],[4,6]]
=> [4,6,2,5,1,3] => ([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,2],[3,5],[4,6]]
=> [4,6,3,5,1,2] => ([(0,5),(1,3),(2,4),(2,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[1,3],[2,4],[5,6]]
=> [5,6,2,4,1,3] => ([(0,5),(1,3),(2,4),(2,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
Description
The number of 2-regular simple modules in the incidence algebra of the lattice.
Mp00081: Standard tableaux reading word permutationPermutations
Mp00065: Permutations permutation posetPosets
Mp00206: Posets antichains of maximal sizeLattices
St001877: Lattices ⟶ ℤResult quality: 41% values known / values provided: 41%distinct values known / distinct values provided: 50%
Values
[[1]]
=> [1] => ([],1)
=> ([],1)
=> ? = 0
[[1,2]]
=> [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,1}
[[1],[2]]
=> [2,1] => ([],2)
=> ([],1)
=> ? ∊ {0,1}
[[1,2,3]]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[1,3],[2]]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {1,1,2}
[[1,2],[3]]
=> [3,1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {1,1,2}
[[1],[2],[3]]
=> [3,2,1] => ([],3)
=> ([],1)
=> ? ∊ {1,1,2}
[[1,2,3,4]]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,3,4],[2]]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ? ∊ {1,1,2,2,2,3}
[[1,2,4],[3]]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,2,3}
[[1,2,3],[4]]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
[[1,3],[2,4]]
=> [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2],[3,4]]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,4],[2],[3]]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {1,1,2,2,2,3}
[[1,3],[2],[4]]
=> [4,2,1,3] => ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {1,1,2,2,2,3}
[[1,2],[3],[4]]
=> [4,3,1,2] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,2,2,2,3}
[[1],[2],[3],[4]]
=> [4,3,2,1] => ([],4)
=> ([],1)
=> ? ∊ {1,1,2,2,2,3}
[[1,2,3,4,5]]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,4}
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,4}
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => ([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,4}
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,4}
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,4}
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => ([(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,4}
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,4}
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,4}
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,4}
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,4}
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,4}
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,4}
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,4}
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,4}
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => ([],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,3,3,3,3,4}
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => ([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,3,4,6],[2,5]]
=> [2,5,1,3,4,6] => ([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[1,3,4,5],[2,6]]
=> [2,6,1,3,4,5] => ([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => ([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
[[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,5),(1,3),(4,2),(5,4)],6)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => ([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,3,5,6],[2],[4]]
=> [4,2,1,3,5,6] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,3,4,6],[2],[5]]
=> [5,2,1,3,4,6] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,2,4,6],[3],[5]]
=> [5,3,1,2,4,6] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,3,4,5],[2],[6]]
=> [6,2,1,3,4,5] => ([(1,5),(2,5),(3,4),(5,3)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => ([(1,5),(2,3),(3,5),(5,4)],6)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => ([(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => ([(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => ([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
[[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => ([(0,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => ([(0,5),(1,4),(1,5),(4,2),(5,3)],6)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 2
[[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => ([(0,5),(1,4),(4,2),(5,3)],6)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,4,6],[2,5],[3]]
=> [3,2,5,1,4,6] => ([(0,5),(1,3),(1,5),(2,3),(2,5),(3,4),(5,4)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,2,6],[3,5],[4]]
=> [4,3,5,1,2,6] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,3,6],[2,4],[5]]
=> [5,2,4,1,3,6] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,6],[3,4],[5]]
=> [5,3,4,1,2,6] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,4,5],[2,6],[3]]
=> [3,2,6,1,4,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(5,3)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,3,5],[2,6],[4]]
=> [4,2,6,1,3,5] => ([(0,4),(1,3),(1,5),(2,3),(2,4),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,2,5],[3,6],[4]]
=> [4,3,6,1,2,5] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(3,5)],6)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => ([(0,5),(1,4),(2,4),(2,5),(5,3)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,2,4],[3,6],[5]]
=> [5,3,6,1,2,4] => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,2,3],[4,6],[5]]
=> [5,4,6,1,2,3] => ([(0,5),(1,5),(2,3),(3,4)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,3,5],[2,4],[6]]
=> [6,2,4,1,3,5] => ([(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,5],[3,4],[6]]
=> [6,3,4,1,2,5] => ([(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,3,4],[2,5],[6]]
=> [6,2,5,1,3,4] => ([(1,5),(2,3),(2,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => ([(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => ([(1,3),(2,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => ([(0,5),(1,5),(2,5),(3,5),(5,4)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,4,6],[2],[3],[5]]
=> [5,3,2,1,4,6] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,3,6],[2],[4],[5]]
=> [5,4,2,1,3,6] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => ([(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,4],[2,5],[3,6]]
=> [3,6,2,5,1,4] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,3],[2,5],[4,6]]
=> [4,6,2,5,1,3] => ([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,2],[3,5],[4,6]]
=> [4,6,3,5,1,2] => ([(0,5),(1,3),(2,4),(2,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[1,3],[2,4],[5,6]]
=> [5,6,2,4,1,3] => ([(0,5),(1,3),(2,4),(2,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[1,3],[2,4],[5],[6]]
=> [6,5,2,4,1,3] => ([(2,5),(3,4),(3,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
Description
Number of indecomposable injective modules with projective dimension 2.
The following 34 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000937The number of positive values of the symmetric group character corresponding to the partition. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001330The hat guessing number of a graph. St001570The minimal number of edges to add to make a graph Hamiltonian. St001889The size of the connectivity set of a signed permutation. St001060The distinguishing index of a graph. St001720The minimal length of a chain of small intervals in a lattice. St000455The second largest eigenvalue of a graph if it is integral. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000942The number of critical left to right maxima of the parking functions. St001904The length of the initial strictly increasing segment of a parking function. St000100The number of linear extensions of a poset. St000282The size of the preimage of the map 'to poset' from Ordered trees to Posets. St000633The size of the automorphism group of a poset. St000640The rank of the largest boolean interval in a poset. St000910The number of maximal chains of minimal length in a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001621The number of atoms of a lattice. St001624The breadth of a lattice. St001626The number of maximal proper sublattices of a lattice.