Processing math: 100%

Your data matches 178 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000214: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => 0
[1,2] => 0
[2,1] => 1
[1,2,3] => 0
[1,3,2] => 1
[2,1,3] => 1
[2,3,1] => 0
[3,1,2] => 0
[3,2,1] => 2
[1,2,3,4] => 0
[1,2,4,3] => 1
[1,3,2,4] => 1
[1,3,4,2] => 0
[1,4,2,3] => 0
[1,4,3,2] => 2
[2,1,3,4] => 1
[2,1,4,3] => 2
[2,3,1,4] => 0
[2,3,4,1] => 0
[2,4,1,3] => 0
[2,4,3,1] => 1
[3,1,2,4] => 0
[3,1,4,2] => 0
[3,2,1,4] => 2
[3,2,4,1] => 1
[3,4,1,2] => 0
[3,4,2,1] => 1
[4,1,2,3] => 0
[4,1,3,2] => 1
[4,2,1,3] => 1
[4,2,3,1] => 0
[4,3,1,2] => 1
[4,3,2,1] => 3
[1,2,3,4,5] => 0
[1,2,3,5,4] => 1
[1,2,4,3,5] => 1
[1,2,4,5,3] => 0
[1,2,5,3,4] => 0
[1,2,5,4,3] => 2
[1,3,2,4,5] => 1
[1,3,2,5,4] => 2
[1,3,4,2,5] => 0
[1,3,4,5,2] => 0
[1,3,5,2,4] => 0
[1,3,5,4,2] => 1
[1,4,2,3,5] => 0
[1,4,2,5,3] => 0
[1,4,3,2,5] => 2
[1,4,3,5,2] => 1
[1,4,5,2,3] => 0
Description
The number of adjacencies of a permutation. An adjacency of a permutation π is an index i such that π(i)1=π(i+1). Adjacencies are also known as ''small descents''. This can be also described as an occurrence of the bivincular pattern ([2,1], {((0,1),(1,0),(1,1),(1,2),(2,1)}), i.e., the middle row and the middle column are shaded, see [3].
St000237: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => 0
[1,2] => 0
[2,1] => 1
[1,2,3] => 0
[1,3,2] => 1
[2,1,3] => 1
[2,3,1] => 2
[3,1,2] => 0
[3,2,1] => 0
[1,2,3,4] => 0
[1,2,4,3] => 1
[1,3,2,4] => 1
[1,3,4,2] => 2
[1,4,2,3] => 0
[1,4,3,2] => 0
[2,1,3,4] => 1
[2,1,4,3] => 2
[2,3,1,4] => 2
[2,3,4,1] => 3
[2,4,1,3] => 1
[2,4,3,1] => 1
[3,1,2,4] => 0
[3,1,4,2] => 1
[3,2,1,4] => 0
[3,2,4,1] => 1
[3,4,1,2] => 0
[3,4,2,1] => 0
[4,1,2,3] => 0
[4,1,3,2] => 0
[4,2,1,3] => 0
[4,2,3,1] => 0
[4,3,1,2] => 1
[4,3,2,1] => 1
[1,2,3,4,5] => 0
[1,2,3,5,4] => 1
[1,2,4,3,5] => 1
[1,2,4,5,3] => 2
[1,2,5,3,4] => 0
[1,2,5,4,3] => 0
[1,3,2,4,5] => 1
[1,3,2,5,4] => 2
[1,3,4,2,5] => 2
[1,3,4,5,2] => 3
[1,3,5,2,4] => 1
[1,3,5,4,2] => 1
[1,4,2,3,5] => 0
[1,4,2,5,3] => 1
[1,4,3,2,5] => 0
[1,4,3,5,2] => 1
[1,4,5,2,3] => 0
Description
The number of small exceedances. This is the number of indices i such that πi=i+1.
St000441: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => 0
[1,2] => 1
[2,1] => 0
[1,2,3] => 2
[1,3,2] => 0
[2,1,3] => 0
[2,3,1] => 1
[3,1,2] => 1
[3,2,1] => 0
[1,2,3,4] => 3
[1,2,4,3] => 1
[1,3,2,4] => 0
[1,3,4,2] => 1
[1,4,2,3] => 1
[1,4,3,2] => 0
[2,1,3,4] => 1
[2,1,4,3] => 0
[2,3,1,4] => 1
[2,3,4,1] => 2
[2,4,1,3] => 0
[2,4,3,1] => 0
[3,1,2,4] => 1
[3,1,4,2] => 0
[3,2,1,4] => 0
[3,2,4,1] => 0
[3,4,1,2] => 2
[3,4,2,1] => 1
[4,1,2,3] => 2
[4,1,3,2] => 0
[4,2,1,3] => 0
[4,2,3,1] => 1
[4,3,1,2] => 1
[4,3,2,1] => 0
[1,2,3,4,5] => 4
[1,2,3,5,4] => 2
[1,2,4,3,5] => 1
[1,2,4,5,3] => 2
[1,2,5,3,4] => 2
[1,2,5,4,3] => 1
[1,3,2,4,5] => 1
[1,3,2,5,4] => 0
[1,3,4,2,5] => 1
[1,3,4,5,2] => 2
[1,3,5,2,4] => 0
[1,3,5,4,2] => 0
[1,4,2,3,5] => 1
[1,4,2,5,3] => 0
[1,4,3,2,5] => 0
[1,4,3,5,2] => 0
[1,4,5,2,3] => 2
Description
The number of successions of a permutation. A succession of a permutation π is an index i such that π(i)+1=π(i+1). Successions are also known as ''small ascents'' or ''1-rises''.
St001640: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => 0
[1,2] => 1
[2,1] => 0
[1,2,3] => 2
[1,3,2] => 0
[2,1,3] => 1
[2,3,1] => 0
[3,1,2] => 1
[3,2,1] => 0
[1,2,3,4] => 3
[1,2,4,3] => 1
[1,3,2,4] => 1
[1,3,4,2] => 0
[1,4,2,3] => 1
[1,4,3,2] => 0
[2,1,3,4] => 2
[2,1,4,3] => 0
[2,3,1,4] => 1
[2,3,4,1] => 0
[2,4,1,3] => 1
[2,4,3,1] => 0
[3,1,2,4] => 2
[3,1,4,2] => 0
[3,2,1,4] => 1
[3,2,4,1] => 0
[3,4,1,2] => 1
[3,4,2,1] => 0
[4,1,2,3] => 2
[4,1,3,2] => 0
[4,2,1,3] => 1
[4,2,3,1] => 0
[4,3,1,2] => 1
[4,3,2,1] => 0
[1,2,3,4,5] => 4
[1,2,3,5,4] => 2
[1,2,4,3,5] => 2
[1,2,4,5,3] => 1
[1,2,5,3,4] => 2
[1,2,5,4,3] => 1
[1,3,2,4,5] => 2
[1,3,2,5,4] => 0
[1,3,4,2,5] => 1
[1,3,4,5,2] => 0
[1,3,5,2,4] => 1
[1,3,5,4,2] => 0
[1,4,2,3,5] => 2
[1,4,2,5,3] => 0
[1,4,3,2,5] => 1
[1,4,3,5,2] => 0
[1,4,5,2,3] => 1
Description
The number of ascent tops in the permutation such that all smaller elements appear before.
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St001067: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> 0
[1,2] => [1,0,1,0]
=> 1
[2,1] => [1,1,0,0]
=> 0
[1,2,3] => [1,0,1,0,1,0]
=> 2
[1,3,2] => [1,0,1,1,0,0]
=> 1
[2,1,3] => [1,1,0,0,1,0]
=> 0
[2,3,1] => [1,1,0,1,0,0]
=> 1
[3,1,2] => [1,1,1,0,0,0]
=> 0
[3,2,1] => [1,1,1,0,0,0]
=> 0
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 3
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 2
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> 2
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 0
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 2
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 0
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 0
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 0
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 0
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 0
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> 0
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> 0
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 0
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> 0
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 0
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 3
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> 3
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> 2
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> 3
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> 2
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> 2
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> 2
Description
The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra.
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St001223: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> 0
[1,2] => [1,0,1,0]
=> 1
[2,1] => [1,1,0,0]
=> 0
[1,2,3] => [1,0,1,0,1,0]
=> 2
[1,3,2] => [1,0,1,1,0,0]
=> 1
[2,1,3] => [1,1,0,0,1,0]
=> 0
[2,3,1] => [1,1,0,1,0,0]
=> 1
[3,1,2] => [1,1,1,0,0,0]
=> 0
[3,2,1] => [1,1,1,0,0,0]
=> 0
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 3
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 2
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> 2
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 0
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 2
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 0
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 0
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 0
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 0
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 0
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> 0
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> 0
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 0
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> 0
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 0
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 3
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> 3
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> 2
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> 3
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> 2
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> 2
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> 2
Description
Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless.
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St000445: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,1,0,0]
=> 0
[1,2] => [1,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[2,1] => [1,1,0,0]
=> [1,1,1,0,0,0]
=> 0
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 0
[2,1,3] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[2,3,1] => [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[3,1,2] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[3,2,1] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 0
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 0
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 0
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 0
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 0
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 4
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 2
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 2
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 2
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 1
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 1
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 2
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 0
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 2
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 2
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 0
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 0
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 1
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 1
Description
The number of rises of length 1 of a Dyck path.
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St000932: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,1,0,0]
=> 0
[1,2] => [1,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[2,1] => [1,1,0,0]
=> [1,1,1,0,0,0]
=> 0
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[2,1,3] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 0
[2,3,1] => [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[3,1,2] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[3,2,1] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 0
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 0
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 0
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 0
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 0
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 4
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 3
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 2
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 3
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 2
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 2
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 2
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 2
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 3
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 2
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 2
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 1
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 2
Description
The number of occurrences of the pattern UDU in a Dyck path. The number of Dyck paths with statistic value 0 are counted by the Motzkin numbers [1].
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00030: Dyck paths zeta mapDyck paths
St001189: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> 0
[1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 1
[2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 2
[1,3,2] => [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[2,1,3] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 0
[2,3,1] => [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[3,2,1] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 3
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
Description
The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path.
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
St001233: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> 0
[1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 1
[2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 2
[1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[2,1,3] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 0
[2,3,1] => [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[3,2,1] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 3
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 0
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 0
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 3
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 3
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
Description
The number of indecomposable 2-dimensional modules with projective dimension one.
The following 168 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001484The number of singletons of an integer partition. St000247The number of singleton blocks of a set partition. St000931The number of occurrences of the pattern UUU in a Dyck path. St001126Number of simple module that are 1-regular in the corresponding Nakayama algebra. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St000382The first part of an integer composition. St001066The number of simple reflexive modules in the corresponding Nakayama algebra. St000502The number of successions of a set partitions. St000504The cardinality of the first block of a set partition. St001061The number of indices that are both descents and recoils of a permutation. St001176The size of a partition minus its first part. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St000010The length of the partition. St000012The area of a Dyck path. St000148The number of odd parts of a partition. St000150The floored half-sum of the multiplicities of a partition. St000160The multiplicity of the smallest part of a partition. St000228The size of a partition. St000292The number of ascents of a binary word. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000384The maximal part of the shifted composition of an integer partition. St000394The sum of the heights of the peaks of a Dyck path minus the number of peaks. St000442The maximal area to the right of an up step of a Dyck path. St000459The hook length of the base cell of a partition. St000475The number of parts equal to 1 in a partition. St000519The largest length of a factor maximising the subword complexity. St000548The number of different non-empty partial sums of an integer partition. St000784The maximum of the length and the largest part of the integer partition. St000867The sum of the hook lengths in the first row of an integer partition. St000885The number of critical steps in the Catalan decomposition of a binary word. St001008Number of indecomposable injective modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001010Number of indecomposable injective modules with projective dimension g-1 when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001164Number of indecomposable injective modules whose socle has projective dimension at most g-1 (g the global dimension) minus the number of indecomposable projective-injective modules. St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St000934The 2-degree of an integer partition. St001730The number of times the path corresponding to a binary word crosses the base line. St001036The number of inner corners of the parallelogram polyomino associated with the Dyck path. St001037The number of inner corners of the upper path of the parallelogram polyomino associated with the Dyck path. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001330The hat guessing number of a graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St001276The number of 2-regular indecomposable modules in the corresponding Nakayama algebra. St001632The number of indecomposable injective modules I with dimExt1(I,A)=1 for the incidence algebra A of a poset. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St001498The normalised height of a Nakayama algebra with magnitude 1. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000567The sum of the products of all pairs of parts. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000929The constant term of the character polynomial of an integer partition. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001594The number of indecomposable projective modules in the Nakayama algebra corresponding to the Dyck path such that the UC-condition is satisfied. St000137The Grundy value of an integer partition. St000225Difference between largest and smallest parts in a partition. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001587Half of the largest even part of an integer partition. St001657The number of twos in an integer partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000260The radius of a connected graph. St001651The Frankl number of a lattice. St000941The number of characters of the symmetric group whose value on the partition is even. St000369The dinv deficit of a Dyck path. St000376The bounce deficit of a Dyck path. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000683The number of points below the Dyck path such that the diagonal to the north-east hits the path between two down steps, and the diagonal to the north-west hits the path between two up steps. St000984The number of boxes below precisely one peak. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001139The number of occurrences of hills of size 2 in a Dyck path. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001480The number of simple summands of the module J^2/J^3. St001502The global dimension minus the dominant dimension of magnitude 1 Nakayama algebras. St001195The global dimension of the algebra A/AfA of the corresponding Nakayama algebra A with minimal left faithful projective-injective module Af. St001877Number of indecomposable injective modules with projective dimension 2. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St000454The largest eigenvalue of a graph if it is integral. St001939The number of parts that are equal to their multiplicity in the integer partition. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001280The number of parts of an integer partition that are at least two. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001525The number of symmetric hooks on the diagonal of a partition. St001571The Cartan determinant of the integer partition. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St000478Another weight of a partition according to Alladi. St000936The number of even values of the symmetric group character corresponding to the partition. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001199The dominant dimension of eAe for the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001913The number of preimages of an integer partition in Bulgarian solitaire. St000455The second largest eigenvalue of a graph if it is integral. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St000668The least common multiple of the parts of the partition. St000681The Grundy value of Chomp on Ferrers diagrams. St000708The product of the parts of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St000731The number of double exceedences of a permutation. St000460The hook length of the last cell along the main diagonal of an integer partition. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001249Sum of the odd parts of a partition. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001360The number of covering relations in Young's lattice below a partition. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001383The BG-rank of an integer partition. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001593This is the number of standard Young tableaux of the given shifted shape. St001600The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple graphs. St001601The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on trees. St001628The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple connected graphs. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001933The largest multiplicity of a part in an integer partition. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St000944The 3-degree of an integer partition. St001175The size of a partition minus the hook length of the base cell. St001248Sum of the even parts of a partition. St001279The sum of the parts of an integer partition that are at least two. St001541The Gini index of an integer partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000456The monochromatic index of a connected graph. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000993The multiplicity of the largest part of an integer partition. St001568The smallest positive integer that does not appear twice in the partition. St000284The Plancherel distribution on integer partitions. St000707The product of the factorials of the parts. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St001128The exponens consonantiae of a partition. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000039The number of crossings of a permutation. St000732The number of double deficiencies of a permutation. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001948The number of augmented double ascents of a permutation. St000939The number of characters of the symmetric group whose value on the partition is positive. St001570The minimal number of edges to add to make a graph Hamiltonian. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St000007The number of saliances of the permutation. St001720The minimal length of a chain of small intervals in a lattice. St001937The size of the center of a parking function. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.