Your data matches 6 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000244: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 1
([],2)
=> 2
([(0,1)],2)
=> 2
([],3)
=> 6
([(1,2)],3)
=> 2
([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(1,2)],3)
=> 6
([],4)
=> 24
([(2,3)],4)
=> 4
([(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(2,3)],4)
=> 6
([(0,3),(1,2)],4)
=> 8
([(0,3),(1,2),(2,3)],4)
=> 2
([(1,2),(1,3),(2,3)],4)
=> 6
([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> 8
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 24
([],5)
=> 120
([(3,4)],5)
=> 12
([(2,4),(3,4)],5)
=> 4
([(1,4),(2,4),(3,4)],5)
=> 6
([(0,4),(1,4),(2,4),(3,4)],5)
=> 24
([(1,4),(2,3)],5)
=> 8
([(1,4),(2,3),(3,4)],5)
=> 2
([(0,1),(2,4),(3,4)],5)
=> 4
([(2,3),(2,4),(3,4)],5)
=> 12
([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(1,3),(1,4),(2,3),(2,4)],5)
=> 8
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 12
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 12
([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> 12
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 8
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 10
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 24
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 8
Description
The cardinality of the automorphism group of a graph.
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00312: Integer partitions Glaisher-FranklinInteger partitions
St000511: Integer partitions ⟶ ℤResult quality: 29% values known / values provided: 31%distinct values known / distinct values provided: 29%
Values
([],1)
=> [1]
=> []
=> ?
=> ? = 1
([],2)
=> [1,1]
=> [1]
=> [1]
=> 2
([(0,1)],2)
=> [2]
=> []
=> ?
=> ? = 2
([],3)
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
([(1,2)],3)
=> [2,1]
=> [1]
=> [1]
=> 2
([(0,2),(1,2)],3)
=> [3]
=> []
=> ?
=> ? ∊ {6,6}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ?
=> ? ∊ {6,6}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [2,1]
=> 4
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [2]
=> 2
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? ∊ {6,6,8,8,24,24}
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> [1,1]
=> 4
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ?
=> ? ∊ {6,6,8,8,24,24}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1]
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? ∊ {6,6,8,8,24,24}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ?
=> ? ∊ {6,6,8,8,24,24}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? ∊ {6,6,8,8,24,24}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? ∊ {6,6,8,8,24,24}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 2
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 4
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 2
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? ∊ {2,2,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 8
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 2
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,1]
=> 4
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ?
=> ? ∊ {2,2,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? ∊ {2,2,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? ∊ {2,2,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? ∊ {2,2,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? ∊ {2,2,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ?
=> ? ∊ {2,2,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? ∊ {2,2,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ?
=> ? ∊ {2,2,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,1]
=> 4
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? ∊ {2,2,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? ∊ {2,2,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ?
=> ? ∊ {2,2,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? ∊ {2,2,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? ∊ {2,2,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? ∊ {2,2,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? ∊ {2,2,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? ∊ {2,2,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ?
=> ? ∊ {2,2,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? ∊ {2,2,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? ∊ {2,2,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? ∊ {2,2,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [4,1]
=> 4
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 2
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [2,1]
=> 4
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> [2,1,1]
=> 8
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 2
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 8
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [2,1]
=> 4
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 4
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [3]
=> 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> [1,1,1,1]
=> 16
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 4
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 8
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 4
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5,1]
=> [1]
=> [1]
=> 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
Description
The number of invariant subsets when acting with a permutation of given cycle type.
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000514: Integer partitions ⟶ ℤResult quality: 29% values known / values provided: 30%distinct values known / distinct values provided: 29%
Values
([],1)
=> []
=> ?
=> ?
=> ? = 1
([],2)
=> []
=> ?
=> ?
=> ? ∊ {2,2}
([(0,1)],2)
=> [1]
=> []
=> []
=> ? ∊ {2,2}
([],3)
=> []
=> ?
=> ?
=> ? ∊ {2,2,6,6}
([(1,2)],3)
=> [1]
=> []
=> []
=> ? ∊ {2,2,6,6}
([(0,2),(1,2)],3)
=> [1,1]
=> [1]
=> [1]
=> ? ∊ {2,2,6,6}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> []
=> ? ∊ {2,2,6,6}
([],4)
=> []
=> ?
=> ?
=> ? ∊ {2,4,4,6,6,8,8,24,24}
([(2,3)],4)
=> [1]
=> []
=> []
=> ? ∊ {2,4,4,6,6,8,8,24,24}
([(1,3),(2,3)],4)
=> [1,1]
=> [1]
=> [1]
=> ? ∊ {2,4,4,6,6,8,8,24,24}
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> [1]
=> ? ∊ {2,4,4,6,6,8,8,24,24}
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> []
=> ? ∊ {2,4,4,6,6,8,8,24,24}
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1]
=> ? ∊ {2,4,4,6,6,8,8,24,24}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> []
=> ? ∊ {2,4,4,6,6,8,8,24,24}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> []
=> ? ∊ {2,4,4,6,6,8,8,24,24}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> []
=> ? ∊ {2,4,4,6,6,8,8,24,24}
([],5)
=> []
=> ?
=> ?
=> ? ∊ {2,2,4,4,4,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(3,4)],5)
=> [1]
=> []
=> []
=> ? ∊ {2,2,4,4,4,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(2,4),(3,4)],5)
=> [1,1]
=> [1]
=> [1]
=> ? ∊ {2,2,4,4,4,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> [1]
=> ? ∊ {2,2,4,4,4,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> []
=> ? ∊ {2,2,4,4,4,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> [1]
=> ? ∊ {2,2,4,4,4,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> []
=> ? ∊ {2,2,4,4,4,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> ? ∊ {2,2,4,4,4,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {2,2,4,4,4,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> [1]
=> ? ∊ {2,2,4,4,4,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> []
=> ? ∊ {2,2,4,4,4,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> []
=> ? ∊ {2,2,4,4,4,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> [1]
=> ? ∊ {2,2,4,4,4,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [3]
=> [1,1,1]
=> 8
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> []
=> ? ∊ {2,2,4,4,4,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> []
=> ? ∊ {2,2,4,4,4,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> []
=> ? ∊ {2,2,4,4,4,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> [1]
=> ? ∊ {2,2,4,4,4,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> []
=> ? ∊ {2,2,4,4,4,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1]
=> [1]
=> ? ∊ {2,2,4,4,4,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> []
=> ? ∊ {2,2,4,4,4,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> []
=> ? ∊ {2,2,4,4,4,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> []
=> ? ∊ {2,2,4,4,4,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> []
=> []
=> ? ∊ {2,2,4,4,4,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> []
=> []
=> ? ∊ {2,2,4,4,4,4,4,4,6,6,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([],6)
=> []
=> ?
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(4,5)],6)
=> [1]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(3,5),(4,5)],6)
=> [1,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 4
([(2,5),(3,4)],6)
=> [1,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
([(3,4),(3,5),(4,5)],6)
=> [3]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 4
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> [2]
=> 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 4
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> [2]
=> 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 4
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> [2]
=> 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> [2]
=> 2
([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> [1,1]
=> [2]
=> 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 4
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> [2]
=> 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> [2]
=> 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,3]
=> [3]
=> [1,1,1]
=> 8
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,3,1]
=> [3,1]
=> [2,1,1]
=> 16
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> [2]
=> 2
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 4
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,1,1]
=> [1,1]
=> [2]
=> 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 2
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 2
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> [4,3]
=> [3]
=> [1,1,1]
=> 8
Description
The number of invariant simple graphs when acting with a permutation of given cycle type.
Mp00243: Graphs weak duplicate orderPosets
Mp00206: Posets antichains of maximal sizeLattices
St001630: Lattices ⟶ ℤResult quality: 14% values known / values provided: 18%distinct values known / distinct values provided: 14%
Values
([],1)
=> ([],1)
=> ([],1)
=> ? = 1
([],2)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2}
([(0,1)],2)
=> ([],2)
=> ([],1)
=> ? ∊ {2,2}
([],3)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,6,6}
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {2,2,6,6}
([(0,2),(1,2)],3)
=> ([],2)
=> ([],1)
=> ? ∊ {2,2,6,6}
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],1)
=> ? ∊ {2,2,6,6}
([],4)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,4,4,6,6,8,8,24,24}
([(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {2,2,4,4,6,6,8,8,24,24}
([(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {2,2,4,4,6,6,8,8,24,24}
([(0,3),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ? ∊ {2,2,4,4,6,6,8,8,24,24}
([(0,3),(1,2)],4)
=> ([],4)
=> ([],1)
=> ? ∊ {2,2,4,4,6,6,8,8,24,24}
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {2,2,4,4,6,6,8,8,24,24}
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {2,2,4,4,6,6,8,8,24,24}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],2)
=> ([],1)
=> ? ∊ {2,2,4,4,6,6,8,8,24,24}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],3)
=> ([],1)
=> ? ∊ {2,2,4,4,6,6,8,8,24,24}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],1)
=> ? ∊ {2,2,4,4,6,6,8,8,24,24}
([],5)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(1,4),(2,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(2,4),(3,4)],5)
=> ([],4)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(2,3),(2,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],4)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([],6)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(2,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
Description
The global dimension of the incidence algebra of the lattice over the rational numbers.
Mp00243: Graphs weak duplicate orderPosets
Mp00206: Posets antichains of maximal sizeLattices
St001878: Lattices ⟶ ℤResult quality: 14% values known / values provided: 18%distinct values known / distinct values provided: 14%
Values
([],1)
=> ([],1)
=> ([],1)
=> ? = 1
([],2)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2}
([(0,1)],2)
=> ([],2)
=> ([],1)
=> ? ∊ {2,2}
([],3)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,6,6}
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {2,2,6,6}
([(0,2),(1,2)],3)
=> ([],2)
=> ([],1)
=> ? ∊ {2,2,6,6}
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],1)
=> ? ∊ {2,2,6,6}
([],4)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,4,4,6,6,8,8,24,24}
([(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {2,2,4,4,6,6,8,8,24,24}
([(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {2,2,4,4,6,6,8,8,24,24}
([(0,3),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ? ∊ {2,2,4,4,6,6,8,8,24,24}
([(0,3),(1,2)],4)
=> ([],4)
=> ([],1)
=> ? ∊ {2,2,4,4,6,6,8,8,24,24}
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {2,2,4,4,6,6,8,8,24,24}
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {2,2,4,4,6,6,8,8,24,24}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],2)
=> ([],1)
=> ? ∊ {2,2,4,4,6,6,8,8,24,24}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],3)
=> ([],1)
=> ? ∊ {2,2,4,4,6,6,8,8,24,24}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],1)
=> ? ∊ {2,2,4,4,6,6,8,8,24,24}
([],5)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(1,4),(2,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(2,4),(3,4)],5)
=> ([],4)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(2,3),(2,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],4)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([],6)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5)],6)
=> ([(0,2),(2,1)],3)
=> 1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(2,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Matching statistic: St001060
Mp00274: Graphs block-cut treeGraphs
Mp00247: Graphs de-duplicateGraphs
St001060: Graphs ⟶ ℤResult quality: 7% values known / values provided: 13%distinct values known / distinct values provided: 7%
Values
([],1)
=> ([],1)
=> ([],1)
=> ? = 1
([],2)
=> ([],2)
=> ([],1)
=> ? ∊ {2,2}
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2}
([],3)
=> ([],3)
=> ([],1)
=> ? ∊ {2,2,6,6}
([(1,2)],3)
=> ([],2)
=> ([],1)
=> ? ∊ {2,2,6,6}
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {2,2,6,6}
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,6,6}
([],4)
=> ([],4)
=> ([],1)
=> ? ∊ {2,2,4,4,6,6,8,8,24,24}
([(2,3)],4)
=> ([],3)
=> ([],1)
=> ? ∊ {2,2,4,4,6,6,8,8,24,24}
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,4,4,6,6,8,8,24,24}
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {2,2,4,4,6,6,8,8,24,24}
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> ? ∊ {2,2,4,4,6,6,8,8,24,24}
([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ? ∊ {2,2,4,4,6,6,8,8,24,24}
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {2,2,4,4,6,6,8,8,24,24}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,4,4,6,6,8,8,24,24}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,4,4,6,6,8,8,24,24}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,4,4,6,6,8,8,24,24}
([],5)
=> ([],5)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(3,4)],5)
=> ([],4)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2
([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,8,8,8,8,10,12,12,12,12,12,12,24,24,120,120}
([],6)
=> ([],6)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(4,5)],6)
=> ([],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,10,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,16,16,16,16,16,16,24,24,36,36,48,48,48,48,48,48,48,48,72,72,120,120,720,720}
([(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
Description
The distinguishing index of a graph. This is the smallest number of colours such that there is a colouring of the edges which is not preserved by any automorphism. If the graph has a connected component which is a single edge, or at least two isolated vertices, this statistic is undefined.