searching the database
Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000296
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
St000296: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
0 => 1
1 => 1
00 => 2
01 => 0
10 => 0
11 => 2
000 => 3
001 => 0
010 => 3
011 => 0
100 => 0
101 => 3
110 => 0
111 => 3
0000 => 4
0001 => 0
0010 => 1
0011 => 0
0100 => 1
0101 => 0
0110 => 4
0111 => 0
1000 => 0
1001 => 4
1010 => 0
1011 => 1
1100 => 0
1101 => 1
1110 => 0
1111 => 4
00000 => 5
00001 => 0
00010 => 1
00011 => 0
00100 => 5
00101 => 0
00110 => 1
00111 => 0
01000 => 1
01001 => 0
01010 => 5
01011 => 0
01100 => 1
01101 => 0
01110 => 5
01111 => 0
10000 => 0
10001 => 5
10010 => 0
10011 => 1
Description
The length of the symmetric border of a binary word.
The symmetric border of a word is the longest word which is a prefix and its reverse is a suffix.
The statistic value is equal to the length of the word if and only if the word is [[https://en.wikipedia.org/wiki/Palindrome|palindromic]].
Matching statistic: St001880
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 50%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 50%
Values
0 => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {1,1}
1 => [1] => [[1],[]]
=> ([],1)
=> ? ∊ {1,1}
00 => [2] => [[2],[]]
=> ([(0,1)],2)
=> ? ∊ {0,0,2,2}
01 => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {0,0,2,2}
10 => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {0,0,2,2}
11 => [2] => [[2],[]]
=> ([(0,1)],2)
=> ? ∊ {0,0,2,2}
000 => [3] => [[3],[]]
=> ([(0,2),(2,1)],3)
=> 3
001 => [2,1] => [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0}
010 => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3
011 => [1,2] => [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ? ∊ {0,0,0,0}
100 => [1,2] => [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ? ∊ {0,0,0,0}
101 => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3
110 => [2,1] => [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0}
111 => [3] => [[3],[]]
=> ([(0,2),(2,1)],3)
=> 3
0000 => [4] => [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
0001 => [3,1] => [[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1}
0010 => [2,1,1] => [[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1}
0011 => [2,2] => [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1}
0100 => [1,1,2] => [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1}
0101 => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
0110 => [1,2,1] => [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1}
0111 => [1,3] => [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1}
1000 => [1,3] => [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1}
1001 => [1,2,1] => [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1}
1010 => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
1011 => [1,1,2] => [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1}
1100 => [2,2] => [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1}
1101 => [2,1,1] => [[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1}
1110 => [3,1] => [[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1}
1111 => [4] => [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
00000 => [5] => [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
00001 => [4,1] => [[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,5,5,5,5}
00010 => [3,1,1] => [[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,5,5,5,5}
00011 => [3,2] => [[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,5,5,5,5}
00100 => [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,5,5,5,5}
00101 => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,5,5,5,5}
00110 => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,5,5,5,5}
00111 => [2,3] => [[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,5,5,5,5}
01000 => [1,1,3] => [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,5,5,5,5}
01001 => [1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,5,5,5,5}
01010 => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
01011 => [1,1,1,2] => [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,5,5,5,5}
01100 => [1,2,2] => [[3,2,1],[1]]
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,5,5,5,5}
01101 => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,5,5,5,5}
01110 => [1,3,1] => [[3,3,1],[2]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,5,5,5,5}
01111 => [1,4] => [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,5,5,5,5}
10000 => [1,4] => [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,5,5,5,5}
10001 => [1,3,1] => [[3,3,1],[2]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,5,5,5,5}
10010 => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,5,5,5,5}
10011 => [1,2,2] => [[3,2,1],[1]]
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,5,5,5,5}
10100 => [1,1,1,2] => [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,5,5,5,5}
10101 => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
10110 => [1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,5,5,5,5}
10111 => [1,1,3] => [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,5,5,5,5}
11000 => [2,3] => [[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,5,5,5,5}
11001 => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,5,5,5,5}
11010 => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,5,5,5,5}
11011 => [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,5,5,5,5}
11100 => [3,2] => [[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,5,5,5,5}
11101 => [3,1,1] => [[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,5,5,5,5}
11110 => [4,1] => [[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,5,5,5,5}
11111 => [5] => [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
000000 => [6] => [[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
010101 => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
101010 => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
111111 => [6] => [[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
0000000 => [7] => [[7],[]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
0101010 => [1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
1010101 => [1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
1111111 => [7] => [[7],[]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!