Values
=>
Cc0014;cc-rep
([(0,2),(2,1)],3)=>3
([(0,1),(0,2),(1,3),(2,3)],4)=>4
([(0,3),(2,1),(3,2)],4)=>4
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)=>1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)=>5
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)=>4
([(0,4),(2,3),(3,1),(4,2)],5)=>5
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)=>5
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)=>1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)=>2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)=>2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)=>4
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)=>2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)=>2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)=>1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)=>6
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)=>5
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)=>4
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)=>6
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)=>6
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)=>6
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)=>6
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)=>5
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)=>2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)=>2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)=>4
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)=>3
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)=>3
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)=>1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)=>1
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)=>4
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)=>4
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)=>2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)=>6
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)=>2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)=>7
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)=>2
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)=>2
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)=>7
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)=>1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)=>2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)=>2
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)=>1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)=>2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)=>1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)=>2
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)=>2
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)=>3
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)=>7
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)=>5
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)=>3
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)=>7
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)=>5
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)=>6
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)=>6
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)=>7
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)=>3
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)=>6
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)=>6
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)=>4
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)=>2
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)=>2
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)=>6
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)=>3
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)=>3
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)=>4
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)=>7
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)=>2
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)=>6
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)=>5
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)=>3
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)=>7
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)=>7
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)=>5
search for individual values
searching the database for the individual values of this statistic
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Code
DeclareOperation("2gorensteininjectivemodules",[IsList]); InstallMethod(2gorensteininjectivemodules, "for a representation of a quiver", [IsList],0,function(LIST) local A,L,LL,M,B,n,T,D,injA,W,simA,S,P,projA,R,RegA,CoRegA; A:=LIST[1]; injA:=IndecInjectiveModules(A); W:=Filtered(injA,x->IsProjectiveModule(x)=true or InjDimensionOfModule(Source(ProjectiveCover(NthSyzygy(x,1))),33)<=1); return(Size(W)); end);
Created
Oct 03, 2020 at 20:59 by Rene Marczinzik
Updated
Oct 03, 2020 at 20:59 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!