searching the database
Your data matches 32 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001880
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([(0,2),(2,1)],3)
=> 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(0,3),(2,1),(3,2)],4)
=> 4
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> 4
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> 5
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 4
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 6
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 6
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 6
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 5
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 4
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> 3
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> 3
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> 4
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> 4
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> 6
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 7
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> 2
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> 2
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 7
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> 2
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> 2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> 2
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> 2
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> 3
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Matching statistic: St000777
Values
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 4
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 4
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? = 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> ? = 5
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? = 4
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 5
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> ? = 5
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(4,5)],6)
=> ? = 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(4,5)],6)
=> ? = 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4)],6)
=> ? = 6
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? = 5
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 6
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ? = 6
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 6
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 6
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? = 5
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],7)
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(5,6)],7)
=> ? = 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,1),(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],7)
=> ? = 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],7)
=> ? = 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> ? = 4
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,6),(5,6)],7)
=> ? = 3
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 3
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5)],7)
=> ? = 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],7)
=> ? = 1
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> ? = 4
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(4,6),(5,6)],7)
=> ? = 4
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> ([(0,1),(0,6),(1,5),(2,4),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(4,6),(5,6)],7)
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(0,4),(1,2),(1,6),(2,5),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ? = 6
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,1),(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],7)
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 7
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(4,6),(5,6)],7)
=> ? = 2
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(5,6)],7)
=> ? = 2
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ([(0,3),(0,6),(1,2),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> 7
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,1),(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],7)
=> ? = 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> ? = 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5)],7)
=> ? = 2
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,4),(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(5,6)],7)
=> ? = 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(4,6),(5,6)],7)
=> ? = 2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(4,6),(5,6)],7)
=> ? = 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,1),(0,6),(1,5),(2,4),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(4,6),(5,6)],7)
=> ? = 2
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(4,6),(5,6)],7)
=> ? = 2
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 3
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 7
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,6),(1,2),(1,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 5
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> ? = 3
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(0,2),(0,6),(1,3),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 7
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ([(0,6),(1,2),(1,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 5
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> ([(0,5),(0,6),(1,2),(1,4),(2,3),(3,5),(4,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(4,6)],7)
=> ([(0,5),(0,6),(1,2),(1,4),(2,3),(3,5),(4,6)],7)
=> 4
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> ([(0,5),(0,6),(1,2),(1,4),(2,3),(3,5),(4,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(4,6)],7)
=> ([(0,5),(0,6),(1,2),(1,4),(2,3),(3,5),(4,6)],7)
=> 4
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,3),(0,6),(1,2),(1,5),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> 7
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,6),(1,2),(1,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 5
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ([(0,3),(0,6),(1,2),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> 7
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(0,2),(0,6),(1,3),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 7
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> ([(0,6),(1,2),(1,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 5
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Matching statistic: St001875
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 5 = 4 + 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ? = 1 + 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 6 = 5 + 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 4 + 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 6 = 5 + 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,7),(4,9),(4,11),(5,7),(5,8),(5,10),(6,2),(6,3),(6,4),(6,5),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17),(17,1)],18)
=> ? = 1 + 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,6),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,1),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,5)],11)
=> ? = 2 + 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,6),(2,10),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(6,3),(6,4),(6,5),(7,11),(8,11),(9,2),(9,11),(10,1),(11,10)],12)
=> ? = 2 + 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,6),(2,9),(3,8),(4,3),(4,7),(5,2),(5,7),(6,4),(6,5),(7,8),(7,9),(8,10),(9,10),(10,1)],11)
=> ? = 4 + 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,6),(2,7),(3,8),(3,10),(4,8),(4,9),(5,3),(5,4),(5,7),(6,2),(6,5),(7,9),(7,10),(8,11),(9,11),(10,11),(11,1)],12)
=> ? = 2 + 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,5),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,6),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,1)],11)
=> ? = 2 + 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,6),(2,10),(2,11),(3,7),(3,9),(4,7),(4,8),(5,2),(5,8),(5,9),(6,3),(6,4),(6,5),(7,12),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13),(13,1)],14)
=> ? = 1 + 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 6 + 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ? = 5 + 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ? = 4 + 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 6 + 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 6 + 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 6 + 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ? = 5 + 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ?
=> ? = 1 + 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,7),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,1),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,6)],19)
=> ? = 2 + 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,7),(1,14),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,11),(6,12),(6,13),(7,3),(7,4),(7,5),(7,6),(8,17),(8,18),(9,15),(9,18),(10,16),(10,18),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,2),(15,19),(16,19),(17,19),(18,1),(18,19),(19,14)],20)
=> ? = 2 + 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ?
=> ? = 1 + 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,7),(2,11),(2,12),(3,10),(4,9),(5,8),(5,11),(6,8),(6,12),(7,2),(7,5),(7,6),(8,14),(9,13),(10,13),(11,4),(11,14),(12,3),(12,14),(13,1),(14,9),(14,10)],15)
=> ? = 4 + 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,10),(3,9),(3,11),(4,8),(4,11),(5,8),(5,9),(6,1),(7,3),(7,4),(7,5),(8,12),(9,12),(10,6),(11,2),(11,12),(12,10)],13)
=> ? = 3 + 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,6),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,7),(6,5),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,1)],12)
=> ? = 3 + 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,2),(2,3),(2,4),(2,5),(3,13),(3,14),(4,7),(4,14),(4,15),(5,6),(5,13),(5,15),(6,9),(6,11),(7,10),(7,12),(8,19),(9,17),(10,18),(11,8),(11,17),(12,8),(12,18),(13,9),(13,16),(14,10),(14,16),(15,11),(15,12),(15,16),(16,17),(16,18),(17,19),(18,19),(19,1)],20)
=> ? = 1 + 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ?
=> ? = 1 + 1
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,7),(1,10),(1,11),(3,9),(4,8),(5,4),(5,13),(6,3),(6,13),(7,5),(7,6),(8,10),(8,12),(9,11),(9,12),(10,14),(11,14),(12,14),(13,1),(13,8),(13,9),(14,2)],15)
=> ? = 4 + 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,7),(2,8),(3,12),(4,10),(4,11),(5,9),(5,11),(6,4),(6,5),(6,8),(7,2),(7,6),(8,9),(8,10),(9,13),(10,13),(11,3),(11,13),(12,1),(13,12)],14)
=> ? = 4 + 1
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> ([(0,7),(2,13),(3,11),(3,12),(4,8),(4,10),(5,8),(5,9),(6,4),(6,5),(6,13),(7,2),(7,6),(8,14),(9,11),(9,14),(10,12),(10,14),(11,15),(12,15),(13,3),(13,9),(13,10),(14,15),(15,1)],16)
=> ? = 2 + 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,7),(1,11),(3,8),(4,10),(5,4),(5,8),(6,1),(6,9),(7,3),(7,5),(8,6),(8,10),(9,11),(10,9),(11,2)],12)
=> ? = 6 + 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,6),(2,8),(3,10),(3,11),(3,14),(4,9),(4,11),(4,13),(5,9),(5,10),(5,12),(6,2),(6,7),(7,3),(7,4),(7,5),(7,8),(8,12),(8,13),(8,14),(9,17),(9,18),(10,15),(10,18),(11,16),(11,18),(12,15),(12,17),(13,16),(13,17),(14,15),(14,16),(15,19),(16,19),(17,19),(18,19),(19,1)],20)
=> ? = 2 + 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,7),(2,9),(3,9),(4,8),(5,8),(6,2),(6,3),(7,4),(7,5),(8,6),(9,1)],10)
=> ? = 7 + 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,7),(2,8),(2,12),(3,8),(3,11),(4,10),(5,4),(5,9),(6,2),(6,3),(6,9),(7,5),(7,6),(8,15),(9,10),(9,11),(9,12),(10,13),(10,14),(11,13),(11,15),(12,14),(12,15),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 2 + 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,6),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,7),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,1)],19)
=> ? = 2 + 1
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ? = 7 + 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ?
=> ? = 1 + 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,7),(1,11),(1,12),(3,8),(3,10),(4,8),(4,9),(5,2),(6,1),(6,9),(6,10),(7,3),(7,4),(7,6),(8,14),(9,11),(9,14),(10,12),(10,14),(11,13),(12,13),(13,5),(14,13)],15)
=> ? = 2 + 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,7),(1,12),(3,11),(3,13),(4,8),(4,9),(5,8),(5,10),(6,3),(6,9),(6,10),(7,4),(7,5),(7,6),(8,15),(9,13),(9,15),(10,11),(10,15),(11,14),(12,2),(13,1),(13,14),(14,12),(15,14)],16)
=> ? = 2 + 1
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,7),(2,9),(2,12),(3,8),(3,14),(4,11),(4,13),(5,8),(5,10),(6,4),(6,10),(6,14),(7,3),(7,5),(7,6),(8,16),(9,17),(10,13),(10,16),(11,12),(11,15),(12,17),(13,15),(14,2),(14,11),(14,16),(15,17),(16,9),(16,15),(17,1)],18)
=> ? = 1 + 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,7),(2,12),(3,8),(3,9),(4,9),(4,10),(5,8),(5,10),(6,2),(6,11),(7,3),(7,4),(7,5),(8,13),(9,13),(10,6),(10,13),(11,12),(12,1),(13,11)],14)
=> ? = 2 + 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,7),(2,8),(2,10),(3,8),(3,9),(4,11),(4,12),(5,6),(5,9),(5,10),(6,4),(6,13),(6,14),(7,2),(7,3),(7,5),(8,15),(9,13),(9,15),(10,14),(10,15),(11,17),(12,17),(13,11),(13,16),(14,12),(14,16),(15,16),(16,17),(17,1)],18)
=> ? = 1 + 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,7),(1,13),(3,11),(3,12),(4,8),(4,10),(5,8),(5,9),(6,3),(6,9),(6,10),(7,4),(7,5),(7,6),(8,15),(9,11),(9,15),(10,12),(10,15),(11,14),(12,14),(13,2),(14,13),(15,1),(15,14)],16)
=> ? = 2 + 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,7),(2,11),(2,12),(3,8),(4,10),(4,13),(5,9),(5,13),(6,2),(6,9),(6,10),(7,4),(7,5),(7,6),(8,14),(9,11),(9,16),(10,12),(10,16),(11,15),(12,15),(13,3),(13,16),(14,1),(15,14),(16,8),(16,15)],17)
=> ? = 2 + 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,7),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,1),(6,5),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,6)],12)
=> ? = 3 + 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 7 + 1
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,7),(2,8),(3,9),(4,5),(4,8),(5,3),(5,10),(6,1),(7,2),(7,4),(8,10),(9,6),(10,9)],11)
=> ? = 5 + 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,7),(2,8),(3,9),(3,11),(4,9),(4,10),(5,1),(6,3),(6,4),(6,8),(7,2),(7,6),(8,10),(8,11),(9,12),(10,12),(11,12),(12,5)],13)
=> ? = 3 + 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,7),(2,8),(3,8),(4,5),(5,1),(6,4),(7,2),(7,3),(8,6)],9)
=> ? = 7 + 1
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ([(0,7),(2,10),(3,9),(4,3),(4,8),(5,2),(5,8),(6,1),(7,4),(7,5),(8,9),(8,10),(9,11),(10,11),(11,6)],12)
=> ? = 5 + 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(0,7),(1,10),(3,8),(4,9),(5,4),(5,11),(6,5),(6,8),(7,3),(7,6),(8,11),(9,10),(10,2),(11,1),(11,9)],12)
=> ? = 6 + 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,7),(2,11),(3,10),(4,9),(5,6),(5,11),(6,4),(6,8),(7,2),(7,5),(8,9),(8,10),(9,12),(10,12),(11,3),(11,8),(12,1)],13)
=> ? = 6 + 1
Description
The number of simple modules with projective dimension at most 1.
Matching statistic: St000144
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
St000144: Dyck paths ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 57%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
St000144: Dyck paths ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 57%
Values
([(0,2),(2,1)],3)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 4
([(0,3),(2,1),(3,2)],4)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 5
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 4
([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 5
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 5
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> [4,2,2,2,2,2,2,2]
=> ?
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [5,2,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> [8,2,2]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [5,3,3]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 4
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> [8,2,2]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> [5,2,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> [8,6]
=> [1,0,1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 6
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> [9]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 5
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> [6,4]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 4
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [6,2]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 6
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [6,2]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 6
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 6
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [6,2]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 6
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> [9]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 5
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
=> ?
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> [5,2,2,2,2,2,2,2]
=> ?
=> ?
=> ? = 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> [8,2,2,2,2,2,2]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ?
=> ? = 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [8,6,2,2,2,2]
=> ?
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> [8,5,2]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 4
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> [9,2,2]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 3
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> [6,2,2,2]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 3
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> [8,6,6]
=> ?
=> ?
=> ? = 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> [8,6,2,2,2,2]
=> ?
=> ?
=> ? = 1
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> [8,5,2]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 4
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> [6,4,2,2]
=> [1,0,1,0,1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 4
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> [6,5,5]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> [12]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 6
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> [8,2,2,2,2,2,2]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ?
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [6,2,2]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 7
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> [6,5,3,3]
=> [1,0,1,1,1,0,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 2
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> [5,2,2,2,2,2,2,2]
=> ?
=> ?
=> ? = 2
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> [7,2]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 7
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> [8,6,6,6]
=> ?
=> ?
=> ? = 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> [9,6]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> [16]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> [10,8]
=> ?
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> [6,4,2,2]
=> [1,0,1,0,1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> [6,4,4,4]
=> ?
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> [6,5,5]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 2
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> [6,5,3,3]
=> [1,0,1,1,1,0,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 2
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> [6,2,2,2]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 3
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [6,5]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 7
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> [7,4]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 5
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> [9,2,2]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 3
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> [7,2]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 7
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> [6,3,3]
=> [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> [12]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 6
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> [10,3]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ?
=> ? = 6
Description
The pyramid weight of the Dyck path.
The pyramid weight of a Dyck path is the sum of the lengths of the maximal pyramids (maximal sequences of the form $1^h0^h$) in the path.
Maximal pyramids are called lower interactions by Le Borgne [2], see [[St000331]] and [[St000335]] for related statistics.
Matching statistic: St000259
Values
([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ([(0,9),(1,8),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(4,5),(4,6),(4,8),(5,9),(6,9),(7,9)],10)
=> ? = 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> 5
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(1,6),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7)],8)
=> ? = 4
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 5
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> 5
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,7),(4,9),(4,11),(5,7),(5,8),(5,10),(6,2),(6,3),(6,4),(6,5),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17),(17,1)],18)
=> ([(0,6),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,7),(4,9),(4,11),(5,7),(5,8),(5,10),(6,2),(6,3),(6,4),(6,5),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17),(17,1)],18)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,6),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,1),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,5)],11)
=> ([(0,6),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,1),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,5)],11)
=> ?
=> ? = 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,6),(2,10),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(6,3),(6,4),(6,5),(7,11),(8,11),(9,2),(9,11),(10,1),(11,10)],12)
=> ([(0,6),(2,10),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(6,3),(6,4),(6,5),(7,11),(8,11),(9,2),(9,11),(10,1),(11,10)],12)
=> ?
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,6),(2,9),(3,8),(4,3),(4,7),(5,2),(5,7),(6,4),(6,5),(7,8),(7,9),(8,10),(9,10),(10,1)],11)
=> ([(0,6),(2,9),(3,8),(4,3),(4,7),(5,2),(5,7),(6,4),(6,5),(7,8),(7,9),(8,10),(9,10),(10,1)],11)
=> ?
=> ? = 4
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,6),(2,7),(3,8),(3,10),(4,8),(4,9),(5,3),(5,4),(5,7),(6,2),(6,5),(7,9),(7,10),(8,11),(9,11),(10,11),(11,1)],12)
=> ([(0,6),(2,7),(3,8),(3,10),(4,8),(4,9),(5,3),(5,4),(5,7),(6,2),(6,5),(7,9),(7,10),(8,11),(9,11),(10,11),(11,1)],12)
=> ?
=> ? = 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,5),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,6),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,1)],11)
=> ([(0,5),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,6),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,1)],11)
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,6),(2,10),(2,11),(3,7),(3,9),(4,7),(4,8),(5,2),(5,8),(5,9),(6,3),(6,4),(6,5),(7,12),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13),(13,1)],14)
=> ([(0,6),(2,10),(2,11),(3,7),(3,9),(4,7),(4,8),(5,2),(5,8),(5,9),(6,3),(6,4),(6,5),(7,12),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13),(13,1)],14)
=> ?
=> ? = 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(0,8),(1,7),(2,5),(2,6),(3,7),(3,9),(4,8),(4,9),(5,7),(5,9),(6,8),(6,9)],10)
=> ? = 6
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ?
=> ? = 5
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ?
=> ? = 4
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ?
=> ? = 6
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(1,4),(2,6),(2,7),(3,6),(3,7),(4,6),(5,7)],8)
=> ? = 6
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 6
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ?
=> ? = 6
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ?
=> ? = 5
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ?
=> ?
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,7),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,1),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,6)],19)
=> ([(0,7),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,1),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,6)],19)
=> ?
=> ? = 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,7),(1,14),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,11),(6,12),(6,13),(7,3),(7,4),(7,5),(7,6),(8,17),(8,18),(9,15),(9,18),(10,16),(10,18),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,2),(15,19),(16,19),(17,19),(18,1),(18,19),(19,14)],20)
=> ([(0,7),(1,14),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,11),(6,12),(6,13),(7,3),(7,4),(7,5),(7,6),(8,17),(8,18),(9,15),(9,18),(10,16),(10,18),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,2),(15,19),(16,19),(17,19),(18,1),(18,19),(19,14)],20)
=> ?
=> ? = 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ?
=> ?
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,7),(2,11),(2,12),(3,10),(4,9),(5,8),(5,11),(6,8),(6,12),(7,2),(7,5),(7,6),(8,14),(9,13),(10,13),(11,4),(11,14),(12,3),(12,14),(13,1),(14,9),(14,10)],15)
=> ([(0,7),(2,11),(2,12),(3,10),(4,9),(5,8),(5,11),(6,8),(6,12),(7,2),(7,5),(7,6),(8,14),(9,13),(10,13),(11,4),(11,14),(12,3),(12,14),(13,1),(14,9),(14,10)],15)
=> ?
=> ? = 4
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,10),(3,9),(3,11),(4,8),(4,11),(5,8),(5,9),(6,1),(7,3),(7,4),(7,5),(8,12),(9,12),(10,6),(11,2),(11,12),(12,10)],13)
=> ([(0,7),(2,10),(3,9),(3,11),(4,8),(4,11),(5,8),(5,9),(6,1),(7,3),(7,4),(7,5),(8,12),(9,12),(10,6),(11,2),(11,12),(12,10)],13)
=> ?
=> ? = 3
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,6),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,7),(6,5),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,1)],12)
=> ([(0,6),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,7),(6,5),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,1)],12)
=> ?
=> ? = 3
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,2),(2,3),(2,4),(2,5),(3,13),(3,14),(4,7),(4,14),(4,15),(5,6),(5,13),(5,15),(6,9),(6,11),(7,10),(7,12),(8,19),(9,17),(10,18),(11,8),(11,17),(12,8),(12,18),(13,9),(13,16),(14,10),(14,16),(15,11),(15,12),(15,16),(16,17),(16,18),(17,19),(18,19),(19,1)],20)
=> ([(0,2),(2,3),(2,4),(2,5),(3,13),(3,14),(4,7),(4,14),(4,15),(5,6),(5,13),(5,15),(6,9),(6,11),(7,10),(7,12),(8,19),(9,17),(10,18),(11,8),(11,17),(12,8),(12,18),(13,9),(13,16),(14,10),(14,16),(15,11),(15,12),(15,16),(16,17),(16,18),(17,19),(18,19),(19,1)],20)
=> ?
=> ? = 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ?
=> ?
=> ?
=> ? = 1
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,7),(1,10),(1,11),(3,9),(4,8),(5,4),(5,13),(6,3),(6,13),(7,5),(7,6),(8,10),(8,12),(9,11),(9,12),(10,14),(11,14),(12,14),(13,1),(13,8),(13,9),(14,2)],15)
=> ([(0,7),(1,10),(1,11),(3,9),(4,8),(5,4),(5,13),(6,3),(6,13),(7,5),(7,6),(8,10),(8,12),(9,11),(9,12),(10,14),(11,14),(12,14),(13,1),(13,8),(13,9),(14,2)],15)
=> ?
=> ? = 4
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,7),(2,8),(3,12),(4,10),(4,11),(5,9),(5,11),(6,4),(6,5),(6,8),(7,2),(7,6),(8,9),(8,10),(9,13),(10,13),(11,3),(11,13),(12,1),(13,12)],14)
=> ([(0,7),(2,8),(3,12),(4,10),(4,11),(5,9),(5,11),(6,4),(6,5),(6,8),(7,2),(7,6),(8,9),(8,10),(9,13),(10,13),(11,3),(11,13),(12,1),(13,12)],14)
=> ?
=> ? = 4
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> ([(0,7),(2,13),(3,11),(3,12),(4,8),(4,10),(5,8),(5,9),(6,4),(6,5),(6,13),(7,2),(7,6),(8,14),(9,11),(9,14),(10,12),(10,14),(11,15),(12,15),(13,3),(13,9),(13,10),(14,15),(15,1)],16)
=> ([(0,7),(2,13),(3,11),(3,12),(4,8),(4,10),(5,8),(5,9),(6,4),(6,5),(6,13),(7,2),(7,6),(8,14),(9,11),(9,14),(10,12),(10,14),(11,15),(12,15),(13,3),(13,9),(13,10),(14,15),(15,1)],16)
=> ?
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,7),(1,11),(3,8),(4,10),(5,4),(5,8),(6,1),(6,9),(7,3),(7,5),(8,6),(8,10),(9,11),(10,9),(11,2)],12)
=> ([(0,7),(1,11),(3,8),(4,10),(5,4),(5,8),(6,1),(6,9),(7,3),(7,5),(8,6),(8,10),(9,11),(10,9),(11,2)],12)
=> ?
=> ? = 6
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,6),(2,8),(3,10),(3,11),(3,14),(4,9),(4,11),(4,13),(5,9),(5,10),(5,12),(6,2),(6,7),(7,3),(7,4),(7,5),(7,8),(8,12),(8,13),(8,14),(9,17),(9,18),(10,15),(10,18),(11,16),(11,18),(12,15),(12,17),(13,16),(13,17),(14,15),(14,16),(15,19),(16,19),(17,19),(18,19),(19,1)],20)
=> ([(0,6),(2,8),(3,10),(3,11),(3,14),(4,9),(4,11),(4,13),(5,9),(5,10),(5,12),(6,2),(6,7),(7,3),(7,4),(7,5),(7,8),(8,12),(8,13),(8,14),(9,17),(9,18),(10,15),(10,18),(11,16),(11,18),(12,15),(12,17),(13,16),(13,17),(14,15),(14,16),(15,19),(16,19),(17,19),(18,19),(19,1)],20)
=> ?
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,7),(2,9),(3,9),(4,8),(5,8),(6,2),(6,3),(7,4),(7,5),(8,6),(9,1)],10)
=> ([(0,7),(2,9),(3,9),(4,8),(5,8),(6,2),(6,3),(7,4),(7,5),(8,6),(9,1)],10)
=> ?
=> ? = 7
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,7),(2,8),(2,12),(3,8),(3,11),(4,10),(5,4),(5,9),(6,2),(6,3),(6,9),(7,5),(7,6),(8,15),(9,10),(9,11),(9,12),(10,13),(10,14),(11,13),(11,15),(12,14),(12,15),(13,16),(14,16),(15,16),(16,1)],17)
=> ([(0,7),(2,8),(2,12),(3,8),(3,11),(4,10),(5,4),(5,9),(6,2),(6,3),(6,9),(7,5),(7,6),(8,15),(9,10),(9,11),(9,12),(10,13),(10,14),(11,13),(11,15),(12,14),(12,15),(13,16),(14,16),(15,16),(16,1)],17)
=> ?
=> ? = 2
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,6),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,7),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,1)],19)
=> ([(0,6),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,7),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,1)],19)
=> ?
=> ? = 2
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ?
=> ? = 7
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ?
=> ?
=> ?
=> ? = 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,7),(1,11),(1,12),(3,8),(3,10),(4,8),(4,9),(5,2),(6,1),(6,9),(6,10),(7,3),(7,4),(7,6),(8,14),(9,11),(9,14),(10,12),(10,14),(11,13),(12,13),(13,5),(14,13)],15)
=> ([(0,7),(1,11),(1,12),(3,8),(3,10),(4,8),(4,9),(5,2),(6,1),(6,9),(6,10),(7,3),(7,4),(7,6),(8,14),(9,11),(9,14),(10,12),(10,14),(11,13),(12,13),(13,5),(14,13)],15)
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,7),(1,12),(3,11),(3,13),(4,8),(4,9),(5,8),(5,10),(6,3),(6,9),(6,10),(7,4),(7,5),(7,6),(8,15),(9,13),(9,15),(10,11),(10,15),(11,14),(12,2),(13,1),(13,14),(14,12),(15,14)],16)
=> ([(0,7),(1,12),(3,11),(3,13),(4,8),(4,9),(5,8),(5,10),(6,3),(6,9),(6,10),(7,4),(7,5),(7,6),(8,15),(9,13),(9,15),(10,11),(10,15),(11,14),(12,2),(13,1),(13,14),(14,12),(15,14)],16)
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,7),(2,9),(2,12),(3,8),(3,14),(4,11),(4,13),(5,8),(5,10),(6,4),(6,10),(6,14),(7,3),(7,5),(7,6),(8,16),(9,17),(10,13),(10,16),(11,12),(11,15),(12,17),(13,15),(14,2),(14,11),(14,16),(15,17),(16,9),(16,15),(17,1)],18)
=> ([(0,7),(2,9),(2,12),(3,8),(3,14),(4,11),(4,13),(5,8),(5,10),(6,4),(6,10),(6,14),(7,3),(7,5),(7,6),(8,16),(9,17),(10,13),(10,16),(11,12),(11,15),(12,17),(13,15),(14,2),(14,11),(14,16),(15,17),(16,9),(16,15),(17,1)],18)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,7),(2,12),(3,8),(3,9),(4,9),(4,10),(5,8),(5,10),(6,2),(6,11),(7,3),(7,4),(7,5),(8,13),(9,13),(10,6),(10,13),(11,12),(12,1),(13,11)],14)
=> ([(0,7),(2,12),(3,8),(3,9),(4,9),(4,10),(5,8),(5,10),(6,2),(6,11),(7,3),(7,4),(7,5),(8,13),(9,13),(10,6),(10,13),(11,12),(12,1),(13,11)],14)
=> ?
=> ? = 2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,7),(2,8),(2,10),(3,8),(3,9),(4,11),(4,12),(5,6),(5,9),(5,10),(6,4),(6,13),(6,14),(7,2),(7,3),(7,5),(8,15),(9,13),(9,15),(10,14),(10,15),(11,17),(12,17),(13,11),(13,16),(14,12),(14,16),(15,16),(16,17),(17,1)],18)
=> ([(0,7),(2,8),(2,10),(3,8),(3,9),(4,11),(4,12),(5,6),(5,9),(5,10),(6,4),(6,13),(6,14),(7,2),(7,3),(7,5),(8,15),(9,13),(9,15),(10,14),(10,15),(11,17),(12,17),(13,11),(13,16),(14,12),(14,16),(15,16),(16,17),(17,1)],18)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,7),(1,13),(3,11),(3,12),(4,8),(4,10),(5,8),(5,9),(6,3),(6,9),(6,10),(7,4),(7,5),(7,6),(8,15),(9,11),(9,15),(10,12),(10,15),(11,14),(12,14),(13,2),(14,13),(15,1),(15,14)],16)
=> ([(0,7),(1,13),(3,11),(3,12),(4,8),(4,10),(5,8),(5,9),(6,3),(6,9),(6,10),(7,4),(7,5),(7,6),(8,15),(9,11),(9,15),(10,12),(10,15),(11,14),(12,14),(13,2),(14,13),(15,1),(15,14)],16)
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,7),(2,11),(2,12),(3,8),(4,10),(4,13),(5,9),(5,13),(6,2),(6,9),(6,10),(7,4),(7,5),(7,6),(8,14),(9,11),(9,16),(10,12),(10,16),(11,15),(12,15),(13,3),(13,16),(14,1),(15,14),(16,8),(16,15)],17)
=> ([(0,7),(2,11),(2,12),(3,8),(4,10),(4,13),(5,9),(5,13),(6,2),(6,9),(6,10),(7,4),(7,5),(7,6),(8,14),(9,11),(9,16),(10,12),(10,16),(11,15),(12,15),(13,3),(13,16),(14,1),(15,14),(16,8),(16,15)],17)
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,7),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,1),(6,5),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,6)],12)
=> ([(0,7),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,1),(6,5),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,6)],12)
=> ?
=> ? = 3
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ([(0,9),(1,5),(2,9),(2,10),(3,7),(3,10),(4,6),(4,8),(5,7),(6,9),(6,10),(7,8),(8,10)],11)
=> ? = 7
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,7),(2,8),(3,9),(4,5),(4,8),(5,3),(5,10),(6,1),(7,2),(7,4),(8,10),(9,6),(10,9)],11)
=> ([(0,7),(2,8),(3,9),(4,5),(4,8),(5,3),(5,10),(6,1),(7,2),(7,4),(8,10),(9,6),(10,9)],11)
=> ?
=> ? = 5
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,7),(2,8),(3,9),(3,11),(4,9),(4,10),(5,1),(6,3),(6,4),(6,8),(7,2),(7,6),(8,10),(8,11),(9,12),(10,12),(11,12),(12,5)],13)
=> ([(0,7),(2,8),(3,9),(3,11),(4,9),(4,10),(5,1),(6,3),(6,4),(6,8),(7,2),(7,6),(8,10),(8,11),(9,12),(10,12),(11,12),(12,5)],13)
=> ?
=> ? = 3
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,7),(2,8),(3,8),(4,5),(5,1),(6,4),(7,2),(7,3),(8,6)],9)
=> ([(0,7),(2,8),(3,8),(4,5),(5,1),(6,4),(7,2),(7,3),(8,6)],9)
=> ?
=> ? = 7
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ([(0,7),(2,10),(3,9),(4,3),(4,8),(5,2),(5,8),(6,1),(7,4),(7,5),(8,9),(8,10),(9,11),(10,11),(11,6)],12)
=> ([(0,7),(2,10),(3,9),(4,3),(4,8),(5,2),(5,8),(6,1),(7,4),(7,5),(8,9),(8,10),(9,11),(10,11),(11,6)],12)
=> ?
=> ? = 5
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(0,7),(1,10),(3,8),(4,9),(5,4),(5,11),(6,5),(6,8),(7,3),(7,6),(8,11),(9,10),(10,2),(11,1),(11,9)],12)
=> ([(0,7),(1,10),(3,8),(4,9),(5,4),(5,11),(6,5),(6,8),(7,3),(7,6),(8,11),(9,10),(10,2),(11,1),(11,9)],12)
=> ?
=> ? = 6
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,7),(2,11),(3,10),(4,9),(5,6),(5,11),(6,4),(6,8),(7,2),(7,5),(8,9),(8,10),(9,12),(10,12),(11,3),(11,8),(12,1)],13)
=> ([(0,7),(2,11),(3,10),(4,9),(5,6),(5,11),(6,4),(6,8),(7,2),(7,5),(8,9),(8,10),(9,12),(10,12),(11,3),(11,8),(12,1)],13)
=> ?
=> ? = 6
Description
The diameter of a connected graph.
This is the greatest distance between any pair of vertices.
Matching statistic: St000778
Values
([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 4
([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 4
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ([(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8)],10)
=> ? = 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> 5
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ? = 4
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 5
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> 5
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,7),(4,9),(4,11),(5,7),(5,8),(5,10),(6,2),(6,3),(6,4),(6,5),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17),(17,1)],18)
=> ([(0,6),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,7),(4,9),(4,11),(5,7),(5,8),(5,10),(6,2),(6,3),(6,4),(6,5),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17),(17,1)],18)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,6),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,1),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,5)],11)
=> ([(0,6),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,1),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,5)],11)
=> ?
=> ? = 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,6),(2,10),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(6,3),(6,4),(6,5),(7,11),(8,11),(9,2),(9,11),(10,1),(11,10)],12)
=> ([(0,6),(2,10),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(6,3),(6,4),(6,5),(7,11),(8,11),(9,2),(9,11),(10,1),(11,10)],12)
=> ?
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,6),(2,9),(3,8),(4,3),(4,7),(5,2),(5,7),(6,4),(6,5),(7,8),(7,9),(8,10),(9,10),(10,1)],11)
=> ([(0,6),(2,9),(3,8),(4,3),(4,7),(5,2),(5,7),(6,4),(6,5),(7,8),(7,9),(8,10),(9,10),(10,1)],11)
=> ?
=> ? = 4
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,6),(2,7),(3,8),(3,10),(4,8),(4,9),(5,3),(5,4),(5,7),(6,2),(6,5),(7,9),(7,10),(8,11),(9,11),(10,11),(11,1)],12)
=> ([(0,6),(2,7),(3,8),(3,10),(4,8),(4,9),(5,3),(5,4),(5,7),(6,2),(6,5),(7,9),(7,10),(8,11),(9,11),(10,11),(11,1)],12)
=> ?
=> ? = 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,5),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,6),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,1)],11)
=> ([(0,5),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,6),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,1)],11)
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,6),(2,10),(2,11),(3,7),(3,9),(4,7),(4,8),(5,2),(5,8),(5,9),(6,3),(6,4),(6,5),(7,12),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13),(13,1)],14)
=> ([(0,6),(2,10),(2,11),(3,7),(3,9),(4,7),(4,8),(5,2),(5,8),(5,9),(6,3),(6,4),(6,5),(7,12),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13),(13,1)],14)
=> ?
=> ? = 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 6
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ?
=> ? = 5
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ?
=> ? = 4
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ?
=> ? = 6
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(6,7)],8)
=> ? = 6
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> 6
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ?
=> ? = 6
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ?
=> ? = 5
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ?
=> ?
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,7),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,1),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,6)],19)
=> ([(0,7),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,1),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,6)],19)
=> ?
=> ? = 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,7),(1,14),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,11),(6,12),(6,13),(7,3),(7,4),(7,5),(7,6),(8,17),(8,18),(9,15),(9,18),(10,16),(10,18),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,2),(15,19),(16,19),(17,19),(18,1),(18,19),(19,14)],20)
=> ([(0,7),(1,14),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,11),(6,12),(6,13),(7,3),(7,4),(7,5),(7,6),(8,17),(8,18),(9,15),(9,18),(10,16),(10,18),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,2),(15,19),(16,19),(17,19),(18,1),(18,19),(19,14)],20)
=> ?
=> ? = 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ?
=> ?
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,7),(2,11),(2,12),(3,10),(4,9),(5,8),(5,11),(6,8),(6,12),(7,2),(7,5),(7,6),(8,14),(9,13),(10,13),(11,4),(11,14),(12,3),(12,14),(13,1),(14,9),(14,10)],15)
=> ([(0,7),(2,11),(2,12),(3,10),(4,9),(5,8),(5,11),(6,8),(6,12),(7,2),(7,5),(7,6),(8,14),(9,13),(10,13),(11,4),(11,14),(12,3),(12,14),(13,1),(14,9),(14,10)],15)
=> ?
=> ? = 4
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,10),(3,9),(3,11),(4,8),(4,11),(5,8),(5,9),(6,1),(7,3),(7,4),(7,5),(8,12),(9,12),(10,6),(11,2),(11,12),(12,10)],13)
=> ([(0,7),(2,10),(3,9),(3,11),(4,8),(4,11),(5,8),(5,9),(6,1),(7,3),(7,4),(7,5),(8,12),(9,12),(10,6),(11,2),(11,12),(12,10)],13)
=> ?
=> ? = 3
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,6),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,7),(6,5),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,1)],12)
=> ([(0,6),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,7),(6,5),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,1)],12)
=> ?
=> ? = 3
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,2),(2,3),(2,4),(2,5),(3,13),(3,14),(4,7),(4,14),(4,15),(5,6),(5,13),(5,15),(6,9),(6,11),(7,10),(7,12),(8,19),(9,17),(10,18),(11,8),(11,17),(12,8),(12,18),(13,9),(13,16),(14,10),(14,16),(15,11),(15,12),(15,16),(16,17),(16,18),(17,19),(18,19),(19,1)],20)
=> ([(0,2),(2,3),(2,4),(2,5),(3,13),(3,14),(4,7),(4,14),(4,15),(5,6),(5,13),(5,15),(6,9),(6,11),(7,10),(7,12),(8,19),(9,17),(10,18),(11,8),(11,17),(12,8),(12,18),(13,9),(13,16),(14,10),(14,16),(15,11),(15,12),(15,16),(16,17),(16,18),(17,19),(18,19),(19,1)],20)
=> ?
=> ? = 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ?
=> ?
=> ?
=> ? = 1
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,7),(1,10),(1,11),(3,9),(4,8),(5,4),(5,13),(6,3),(6,13),(7,5),(7,6),(8,10),(8,12),(9,11),(9,12),(10,14),(11,14),(12,14),(13,1),(13,8),(13,9),(14,2)],15)
=> ([(0,7),(1,10),(1,11),(3,9),(4,8),(5,4),(5,13),(6,3),(6,13),(7,5),(7,6),(8,10),(8,12),(9,11),(9,12),(10,14),(11,14),(12,14),(13,1),(13,8),(13,9),(14,2)],15)
=> ?
=> ? = 4
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,7),(2,8),(3,12),(4,10),(4,11),(5,9),(5,11),(6,4),(6,5),(6,8),(7,2),(7,6),(8,9),(8,10),(9,13),(10,13),(11,3),(11,13),(12,1),(13,12)],14)
=> ([(0,7),(2,8),(3,12),(4,10),(4,11),(5,9),(5,11),(6,4),(6,5),(6,8),(7,2),(7,6),(8,9),(8,10),(9,13),(10,13),(11,3),(11,13),(12,1),(13,12)],14)
=> ?
=> ? = 4
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> ([(0,7),(2,13),(3,11),(3,12),(4,8),(4,10),(5,8),(5,9),(6,4),(6,5),(6,13),(7,2),(7,6),(8,14),(9,11),(9,14),(10,12),(10,14),(11,15),(12,15),(13,3),(13,9),(13,10),(14,15),(15,1)],16)
=> ([(0,7),(2,13),(3,11),(3,12),(4,8),(4,10),(5,8),(5,9),(6,4),(6,5),(6,13),(7,2),(7,6),(8,14),(9,11),(9,14),(10,12),(10,14),(11,15),(12,15),(13,3),(13,9),(13,10),(14,15),(15,1)],16)
=> ?
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,7),(1,11),(3,8),(4,10),(5,4),(5,8),(6,1),(6,9),(7,3),(7,5),(8,6),(8,10),(9,11),(10,9),(11,2)],12)
=> ([(0,7),(1,11),(3,8),(4,10),(5,4),(5,8),(6,1),(6,9),(7,3),(7,5),(8,6),(8,10),(9,11),(10,9),(11,2)],12)
=> ?
=> ? = 6
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,6),(2,8),(3,10),(3,11),(3,14),(4,9),(4,11),(4,13),(5,9),(5,10),(5,12),(6,2),(6,7),(7,3),(7,4),(7,5),(7,8),(8,12),(8,13),(8,14),(9,17),(9,18),(10,15),(10,18),(11,16),(11,18),(12,15),(12,17),(13,16),(13,17),(14,15),(14,16),(15,19),(16,19),(17,19),(18,19),(19,1)],20)
=> ([(0,6),(2,8),(3,10),(3,11),(3,14),(4,9),(4,11),(4,13),(5,9),(5,10),(5,12),(6,2),(6,7),(7,3),(7,4),(7,5),(7,8),(8,12),(8,13),(8,14),(9,17),(9,18),(10,15),(10,18),(11,16),(11,18),(12,15),(12,17),(13,16),(13,17),(14,15),(14,16),(15,19),(16,19),(17,19),(18,19),(19,1)],20)
=> ?
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,7),(2,9),(3,9),(4,8),(5,8),(6,2),(6,3),(7,4),(7,5),(8,6),(9,1)],10)
=> ([(0,7),(2,9),(3,9),(4,8),(5,8),(6,2),(6,3),(7,4),(7,5),(8,6),(9,1)],10)
=> ?
=> ? = 7
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,7),(2,8),(2,12),(3,8),(3,11),(4,10),(5,4),(5,9),(6,2),(6,3),(6,9),(7,5),(7,6),(8,15),(9,10),(9,11),(9,12),(10,13),(10,14),(11,13),(11,15),(12,14),(12,15),(13,16),(14,16),(15,16),(16,1)],17)
=> ([(0,7),(2,8),(2,12),(3,8),(3,11),(4,10),(5,4),(5,9),(6,2),(6,3),(6,9),(7,5),(7,6),(8,15),(9,10),(9,11),(9,12),(10,13),(10,14),(11,13),(11,15),(12,14),(12,15),(13,16),(14,16),(15,16),(16,1)],17)
=> ?
=> ? = 2
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,6),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,7),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,1)],19)
=> ([(0,6),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,7),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,1)],19)
=> ?
=> ? = 2
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ?
=> ? = 7
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ?
=> ?
=> ?
=> ? = 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,7),(1,11),(1,12),(3,8),(3,10),(4,8),(4,9),(5,2),(6,1),(6,9),(6,10),(7,3),(7,4),(7,6),(8,14),(9,11),(9,14),(10,12),(10,14),(11,13),(12,13),(13,5),(14,13)],15)
=> ([(0,7),(1,11),(1,12),(3,8),(3,10),(4,8),(4,9),(5,2),(6,1),(6,9),(6,10),(7,3),(7,4),(7,6),(8,14),(9,11),(9,14),(10,12),(10,14),(11,13),(12,13),(13,5),(14,13)],15)
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,7),(1,12),(3,11),(3,13),(4,8),(4,9),(5,8),(5,10),(6,3),(6,9),(6,10),(7,4),(7,5),(7,6),(8,15),(9,13),(9,15),(10,11),(10,15),(11,14),(12,2),(13,1),(13,14),(14,12),(15,14)],16)
=> ([(0,7),(1,12),(3,11),(3,13),(4,8),(4,9),(5,8),(5,10),(6,3),(6,9),(6,10),(7,4),(7,5),(7,6),(8,15),(9,13),(9,15),(10,11),(10,15),(11,14),(12,2),(13,1),(13,14),(14,12),(15,14)],16)
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,7),(2,9),(2,12),(3,8),(3,14),(4,11),(4,13),(5,8),(5,10),(6,4),(6,10),(6,14),(7,3),(7,5),(7,6),(8,16),(9,17),(10,13),(10,16),(11,12),(11,15),(12,17),(13,15),(14,2),(14,11),(14,16),(15,17),(16,9),(16,15),(17,1)],18)
=> ([(0,7),(2,9),(2,12),(3,8),(3,14),(4,11),(4,13),(5,8),(5,10),(6,4),(6,10),(6,14),(7,3),(7,5),(7,6),(8,16),(9,17),(10,13),(10,16),(11,12),(11,15),(12,17),(13,15),(14,2),(14,11),(14,16),(15,17),(16,9),(16,15),(17,1)],18)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,7),(2,12),(3,8),(3,9),(4,9),(4,10),(5,8),(5,10),(6,2),(6,11),(7,3),(7,4),(7,5),(8,13),(9,13),(10,6),(10,13),(11,12),(12,1),(13,11)],14)
=> ([(0,7),(2,12),(3,8),(3,9),(4,9),(4,10),(5,8),(5,10),(6,2),(6,11),(7,3),(7,4),(7,5),(8,13),(9,13),(10,6),(10,13),(11,12),(12,1),(13,11)],14)
=> ?
=> ? = 2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,7),(2,8),(2,10),(3,8),(3,9),(4,11),(4,12),(5,6),(5,9),(5,10),(6,4),(6,13),(6,14),(7,2),(7,3),(7,5),(8,15),(9,13),(9,15),(10,14),(10,15),(11,17),(12,17),(13,11),(13,16),(14,12),(14,16),(15,16),(16,17),(17,1)],18)
=> ([(0,7),(2,8),(2,10),(3,8),(3,9),(4,11),(4,12),(5,6),(5,9),(5,10),(6,4),(6,13),(6,14),(7,2),(7,3),(7,5),(8,15),(9,13),(9,15),(10,14),(10,15),(11,17),(12,17),(13,11),(13,16),(14,12),(14,16),(15,16),(16,17),(17,1)],18)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,7),(1,13),(3,11),(3,12),(4,8),(4,10),(5,8),(5,9),(6,3),(6,9),(6,10),(7,4),(7,5),(7,6),(8,15),(9,11),(9,15),(10,12),(10,15),(11,14),(12,14),(13,2),(14,13),(15,1),(15,14)],16)
=> ([(0,7),(1,13),(3,11),(3,12),(4,8),(4,10),(5,8),(5,9),(6,3),(6,9),(6,10),(7,4),(7,5),(7,6),(8,15),(9,11),(9,15),(10,12),(10,15),(11,14),(12,14),(13,2),(14,13),(15,1),(15,14)],16)
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,7),(2,11),(2,12),(3,8),(4,10),(4,13),(5,9),(5,13),(6,2),(6,9),(6,10),(7,4),(7,5),(7,6),(8,14),(9,11),(9,16),(10,12),(10,16),(11,15),(12,15),(13,3),(13,16),(14,1),(15,14),(16,8),(16,15)],17)
=> ([(0,7),(2,11),(2,12),(3,8),(4,10),(4,13),(5,9),(5,13),(6,2),(6,9),(6,10),(7,4),(7,5),(7,6),(8,14),(9,11),(9,16),(10,12),(10,16),(11,15),(12,15),(13,3),(13,16),(14,1),(15,14),(16,8),(16,15)],17)
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,7),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,1),(6,5),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,6)],12)
=> ([(0,7),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,1),(6,5),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,6)],12)
=> ?
=> ? = 3
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ([(5,10),(6,9),(7,8),(8,10),(9,10)],11)
=> ? = 7
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,7),(2,8),(3,9),(4,5),(4,8),(5,3),(5,10),(6,1),(7,2),(7,4),(8,10),(9,6),(10,9)],11)
=> ([(0,7),(2,8),(3,9),(4,5),(4,8),(5,3),(5,10),(6,1),(7,2),(7,4),(8,10),(9,6),(10,9)],11)
=> ?
=> ? = 5
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,7),(2,8),(3,9),(3,11),(4,9),(4,10),(5,1),(6,3),(6,4),(6,8),(7,2),(7,6),(8,10),(8,11),(9,12),(10,12),(11,12),(12,5)],13)
=> ([(0,7),(2,8),(3,9),(3,11),(4,9),(4,10),(5,1),(6,3),(6,4),(6,8),(7,2),(7,6),(8,10),(8,11),(9,12),(10,12),(11,12),(12,5)],13)
=> ?
=> ? = 3
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,7),(2,8),(3,8),(4,5),(5,1),(6,4),(7,2),(7,3),(8,6)],9)
=> ([(0,7),(2,8),(3,8),(4,5),(5,1),(6,4),(7,2),(7,3),(8,6)],9)
=> ?
=> ? = 7
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ([(0,7),(2,10),(3,9),(4,3),(4,8),(5,2),(5,8),(6,1),(7,4),(7,5),(8,9),(8,10),(9,11),(10,11),(11,6)],12)
=> ([(0,7),(2,10),(3,9),(4,3),(4,8),(5,2),(5,8),(6,1),(7,4),(7,5),(8,9),(8,10),(9,11),(10,11),(11,6)],12)
=> ?
=> ? = 5
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(0,7),(1,10),(3,8),(4,9),(5,4),(5,11),(6,5),(6,8),(7,3),(7,6),(8,11),(9,10),(10,2),(11,1),(11,9)],12)
=> ([(0,7),(1,10),(3,8),(4,9),(5,4),(5,11),(6,5),(6,8),(7,3),(7,6),(8,11),(9,10),(10,2),(11,1),(11,9)],12)
=> ?
=> ? = 6
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,7),(2,11),(3,10),(4,9),(5,6),(5,11),(6,4),(6,8),(7,2),(7,5),(8,9),(8,10),(9,12),(10,12),(11,3),(11,8),(12,1)],13)
=> ([(0,7),(2,11),(3,10),(4,9),(5,6),(5,11),(6,4),(6,8),(7,2),(7,5),(8,9),(8,10),(9,12),(10,12),(11,3),(11,8),(12,1)],13)
=> ?
=> ? = 6
Description
The metric dimension of a graph.
This is the length of the shortest vector of vertices, such that every vertex is uniquely determined by the vector of distances from these vertices.
Matching statistic: St001120
Values
([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ([(0,9),(1,8),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(4,5),(4,6),(4,8),(5,9),(6,9),(7,9)],10)
=> ? = 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> 5
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(1,6),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7)],8)
=> ? = 4
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 5
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> 5
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,7),(4,9),(4,11),(5,7),(5,8),(5,10),(6,2),(6,3),(6,4),(6,5),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17),(17,1)],18)
=> ([(0,6),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,7),(4,9),(4,11),(5,7),(5,8),(5,10),(6,2),(6,3),(6,4),(6,5),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17),(17,1)],18)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,6),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,1),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,5)],11)
=> ([(0,6),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,1),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,5)],11)
=> ?
=> ? = 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,6),(2,10),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(6,3),(6,4),(6,5),(7,11),(8,11),(9,2),(9,11),(10,1),(11,10)],12)
=> ([(0,6),(2,10),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(6,3),(6,4),(6,5),(7,11),(8,11),(9,2),(9,11),(10,1),(11,10)],12)
=> ?
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,6),(2,9),(3,8),(4,3),(4,7),(5,2),(5,7),(6,4),(6,5),(7,8),(7,9),(8,10),(9,10),(10,1)],11)
=> ([(0,6),(2,9),(3,8),(4,3),(4,7),(5,2),(5,7),(6,4),(6,5),(7,8),(7,9),(8,10),(9,10),(10,1)],11)
=> ?
=> ? = 4
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,6),(2,7),(3,8),(3,10),(4,8),(4,9),(5,3),(5,4),(5,7),(6,2),(6,5),(7,9),(7,10),(8,11),(9,11),(10,11),(11,1)],12)
=> ([(0,6),(2,7),(3,8),(3,10),(4,8),(4,9),(5,3),(5,4),(5,7),(6,2),(6,5),(7,9),(7,10),(8,11),(9,11),(10,11),(11,1)],12)
=> ?
=> ? = 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,5),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,6),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,1)],11)
=> ([(0,5),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,6),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,1)],11)
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,6),(2,10),(2,11),(3,7),(3,9),(4,7),(4,8),(5,2),(5,8),(5,9),(6,3),(6,4),(6,5),(7,12),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13),(13,1)],14)
=> ([(0,6),(2,10),(2,11),(3,7),(3,9),(4,7),(4,8),(5,2),(5,8),(5,9),(6,3),(6,4),(6,5),(7,12),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13),(13,1)],14)
=> ?
=> ? = 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(0,8),(1,7),(2,5),(2,6),(3,7),(3,9),(4,8),(4,9),(5,7),(5,9),(6,8),(6,9)],10)
=> ? = 6
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ?
=> ? = 5
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ?
=> ? = 4
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ?
=> ? = 6
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(1,4),(2,6),(2,7),(3,6),(3,7),(4,6),(5,7)],8)
=> ? = 6
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 6
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ?
=> ? = 6
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ?
=> ? = 5
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ?
=> ?
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,7),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,1),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,6)],19)
=> ([(0,7),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,1),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,6)],19)
=> ?
=> ? = 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,7),(1,14),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,11),(6,12),(6,13),(7,3),(7,4),(7,5),(7,6),(8,17),(8,18),(9,15),(9,18),(10,16),(10,18),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,2),(15,19),(16,19),(17,19),(18,1),(18,19),(19,14)],20)
=> ([(0,7),(1,14),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,11),(6,12),(6,13),(7,3),(7,4),(7,5),(7,6),(8,17),(8,18),(9,15),(9,18),(10,16),(10,18),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,2),(15,19),(16,19),(17,19),(18,1),(18,19),(19,14)],20)
=> ?
=> ? = 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ?
=> ?
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,7),(2,11),(2,12),(3,10),(4,9),(5,8),(5,11),(6,8),(6,12),(7,2),(7,5),(7,6),(8,14),(9,13),(10,13),(11,4),(11,14),(12,3),(12,14),(13,1),(14,9),(14,10)],15)
=> ([(0,7),(2,11),(2,12),(3,10),(4,9),(5,8),(5,11),(6,8),(6,12),(7,2),(7,5),(7,6),(8,14),(9,13),(10,13),(11,4),(11,14),(12,3),(12,14),(13,1),(14,9),(14,10)],15)
=> ?
=> ? = 4
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,10),(3,9),(3,11),(4,8),(4,11),(5,8),(5,9),(6,1),(7,3),(7,4),(7,5),(8,12),(9,12),(10,6),(11,2),(11,12),(12,10)],13)
=> ([(0,7),(2,10),(3,9),(3,11),(4,8),(4,11),(5,8),(5,9),(6,1),(7,3),(7,4),(7,5),(8,12),(9,12),(10,6),(11,2),(11,12),(12,10)],13)
=> ?
=> ? = 3
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,6),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,7),(6,5),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,1)],12)
=> ([(0,6),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,7),(6,5),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,1)],12)
=> ?
=> ? = 3
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,2),(2,3),(2,4),(2,5),(3,13),(3,14),(4,7),(4,14),(4,15),(5,6),(5,13),(5,15),(6,9),(6,11),(7,10),(7,12),(8,19),(9,17),(10,18),(11,8),(11,17),(12,8),(12,18),(13,9),(13,16),(14,10),(14,16),(15,11),(15,12),(15,16),(16,17),(16,18),(17,19),(18,19),(19,1)],20)
=> ([(0,2),(2,3),(2,4),(2,5),(3,13),(3,14),(4,7),(4,14),(4,15),(5,6),(5,13),(5,15),(6,9),(6,11),(7,10),(7,12),(8,19),(9,17),(10,18),(11,8),(11,17),(12,8),(12,18),(13,9),(13,16),(14,10),(14,16),(15,11),(15,12),(15,16),(16,17),(16,18),(17,19),(18,19),(19,1)],20)
=> ?
=> ? = 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ?
=> ?
=> ?
=> ? = 1
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,7),(1,10),(1,11),(3,9),(4,8),(5,4),(5,13),(6,3),(6,13),(7,5),(7,6),(8,10),(8,12),(9,11),(9,12),(10,14),(11,14),(12,14),(13,1),(13,8),(13,9),(14,2)],15)
=> ([(0,7),(1,10),(1,11),(3,9),(4,8),(5,4),(5,13),(6,3),(6,13),(7,5),(7,6),(8,10),(8,12),(9,11),(9,12),(10,14),(11,14),(12,14),(13,1),(13,8),(13,9),(14,2)],15)
=> ?
=> ? = 4
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,7),(2,8),(3,12),(4,10),(4,11),(5,9),(5,11),(6,4),(6,5),(6,8),(7,2),(7,6),(8,9),(8,10),(9,13),(10,13),(11,3),(11,13),(12,1),(13,12)],14)
=> ([(0,7),(2,8),(3,12),(4,10),(4,11),(5,9),(5,11),(6,4),(6,5),(6,8),(7,2),(7,6),(8,9),(8,10),(9,13),(10,13),(11,3),(11,13),(12,1),(13,12)],14)
=> ?
=> ? = 4
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> ([(0,7),(2,13),(3,11),(3,12),(4,8),(4,10),(5,8),(5,9),(6,4),(6,5),(6,13),(7,2),(7,6),(8,14),(9,11),(9,14),(10,12),(10,14),(11,15),(12,15),(13,3),(13,9),(13,10),(14,15),(15,1)],16)
=> ([(0,7),(2,13),(3,11),(3,12),(4,8),(4,10),(5,8),(5,9),(6,4),(6,5),(6,13),(7,2),(7,6),(8,14),(9,11),(9,14),(10,12),(10,14),(11,15),(12,15),(13,3),(13,9),(13,10),(14,15),(15,1)],16)
=> ?
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,7),(1,11),(3,8),(4,10),(5,4),(5,8),(6,1),(6,9),(7,3),(7,5),(8,6),(8,10),(9,11),(10,9),(11,2)],12)
=> ([(0,7),(1,11),(3,8),(4,10),(5,4),(5,8),(6,1),(6,9),(7,3),(7,5),(8,6),(8,10),(9,11),(10,9),(11,2)],12)
=> ?
=> ? = 6
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,6),(2,8),(3,10),(3,11),(3,14),(4,9),(4,11),(4,13),(5,9),(5,10),(5,12),(6,2),(6,7),(7,3),(7,4),(7,5),(7,8),(8,12),(8,13),(8,14),(9,17),(9,18),(10,15),(10,18),(11,16),(11,18),(12,15),(12,17),(13,16),(13,17),(14,15),(14,16),(15,19),(16,19),(17,19),(18,19),(19,1)],20)
=> ([(0,6),(2,8),(3,10),(3,11),(3,14),(4,9),(4,11),(4,13),(5,9),(5,10),(5,12),(6,2),(6,7),(7,3),(7,4),(7,5),(7,8),(8,12),(8,13),(8,14),(9,17),(9,18),(10,15),(10,18),(11,16),(11,18),(12,15),(12,17),(13,16),(13,17),(14,15),(14,16),(15,19),(16,19),(17,19),(18,19),(19,1)],20)
=> ?
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,7),(2,9),(3,9),(4,8),(5,8),(6,2),(6,3),(7,4),(7,5),(8,6),(9,1)],10)
=> ([(0,7),(2,9),(3,9),(4,8),(5,8),(6,2),(6,3),(7,4),(7,5),(8,6),(9,1)],10)
=> ?
=> ? = 7
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,7),(2,8),(2,12),(3,8),(3,11),(4,10),(5,4),(5,9),(6,2),(6,3),(6,9),(7,5),(7,6),(8,15),(9,10),(9,11),(9,12),(10,13),(10,14),(11,13),(11,15),(12,14),(12,15),(13,16),(14,16),(15,16),(16,1)],17)
=> ([(0,7),(2,8),(2,12),(3,8),(3,11),(4,10),(5,4),(5,9),(6,2),(6,3),(6,9),(7,5),(7,6),(8,15),(9,10),(9,11),(9,12),(10,13),(10,14),(11,13),(11,15),(12,14),(12,15),(13,16),(14,16),(15,16),(16,1)],17)
=> ?
=> ? = 2
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,6),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,7),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,1)],19)
=> ([(0,6),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,7),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,1)],19)
=> ?
=> ? = 2
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ?
=> ? = 7
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ?
=> ?
=> ?
=> ? = 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,7),(1,11),(1,12),(3,8),(3,10),(4,8),(4,9),(5,2),(6,1),(6,9),(6,10),(7,3),(7,4),(7,6),(8,14),(9,11),(9,14),(10,12),(10,14),(11,13),(12,13),(13,5),(14,13)],15)
=> ([(0,7),(1,11),(1,12),(3,8),(3,10),(4,8),(4,9),(5,2),(6,1),(6,9),(6,10),(7,3),(7,4),(7,6),(8,14),(9,11),(9,14),(10,12),(10,14),(11,13),(12,13),(13,5),(14,13)],15)
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,7),(1,12),(3,11),(3,13),(4,8),(4,9),(5,8),(5,10),(6,3),(6,9),(6,10),(7,4),(7,5),(7,6),(8,15),(9,13),(9,15),(10,11),(10,15),(11,14),(12,2),(13,1),(13,14),(14,12),(15,14)],16)
=> ([(0,7),(1,12),(3,11),(3,13),(4,8),(4,9),(5,8),(5,10),(6,3),(6,9),(6,10),(7,4),(7,5),(7,6),(8,15),(9,13),(9,15),(10,11),(10,15),(11,14),(12,2),(13,1),(13,14),(14,12),(15,14)],16)
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,7),(2,9),(2,12),(3,8),(3,14),(4,11),(4,13),(5,8),(5,10),(6,4),(6,10),(6,14),(7,3),(7,5),(7,6),(8,16),(9,17),(10,13),(10,16),(11,12),(11,15),(12,17),(13,15),(14,2),(14,11),(14,16),(15,17),(16,9),(16,15),(17,1)],18)
=> ([(0,7),(2,9),(2,12),(3,8),(3,14),(4,11),(4,13),(5,8),(5,10),(6,4),(6,10),(6,14),(7,3),(7,5),(7,6),(8,16),(9,17),(10,13),(10,16),(11,12),(11,15),(12,17),(13,15),(14,2),(14,11),(14,16),(15,17),(16,9),(16,15),(17,1)],18)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,7),(2,12),(3,8),(3,9),(4,9),(4,10),(5,8),(5,10),(6,2),(6,11),(7,3),(7,4),(7,5),(8,13),(9,13),(10,6),(10,13),(11,12),(12,1),(13,11)],14)
=> ([(0,7),(2,12),(3,8),(3,9),(4,9),(4,10),(5,8),(5,10),(6,2),(6,11),(7,3),(7,4),(7,5),(8,13),(9,13),(10,6),(10,13),(11,12),(12,1),(13,11)],14)
=> ?
=> ? = 2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,7),(2,8),(2,10),(3,8),(3,9),(4,11),(4,12),(5,6),(5,9),(5,10),(6,4),(6,13),(6,14),(7,2),(7,3),(7,5),(8,15),(9,13),(9,15),(10,14),(10,15),(11,17),(12,17),(13,11),(13,16),(14,12),(14,16),(15,16),(16,17),(17,1)],18)
=> ([(0,7),(2,8),(2,10),(3,8),(3,9),(4,11),(4,12),(5,6),(5,9),(5,10),(6,4),(6,13),(6,14),(7,2),(7,3),(7,5),(8,15),(9,13),(9,15),(10,14),(10,15),(11,17),(12,17),(13,11),(13,16),(14,12),(14,16),(15,16),(16,17),(17,1)],18)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,7),(1,13),(3,11),(3,12),(4,8),(4,10),(5,8),(5,9),(6,3),(6,9),(6,10),(7,4),(7,5),(7,6),(8,15),(9,11),(9,15),(10,12),(10,15),(11,14),(12,14),(13,2),(14,13),(15,1),(15,14)],16)
=> ([(0,7),(1,13),(3,11),(3,12),(4,8),(4,10),(5,8),(5,9),(6,3),(6,9),(6,10),(7,4),(7,5),(7,6),(8,15),(9,11),(9,15),(10,12),(10,15),(11,14),(12,14),(13,2),(14,13),(15,1),(15,14)],16)
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,7),(2,11),(2,12),(3,8),(4,10),(4,13),(5,9),(5,13),(6,2),(6,9),(6,10),(7,4),(7,5),(7,6),(8,14),(9,11),(9,16),(10,12),(10,16),(11,15),(12,15),(13,3),(13,16),(14,1),(15,14),(16,8),(16,15)],17)
=> ([(0,7),(2,11),(2,12),(3,8),(4,10),(4,13),(5,9),(5,13),(6,2),(6,9),(6,10),(7,4),(7,5),(7,6),(8,14),(9,11),(9,16),(10,12),(10,16),(11,15),(12,15),(13,3),(13,16),(14,1),(15,14),(16,8),(16,15)],17)
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,7),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,1),(6,5),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,6)],12)
=> ([(0,7),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,1),(6,5),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,6)],12)
=> ?
=> ? = 3
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ([(0,9),(1,5),(2,9),(2,10),(3,7),(3,10),(4,6),(4,8),(5,7),(6,9),(6,10),(7,8),(8,10)],11)
=> ? = 7
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,7),(2,8),(3,9),(4,5),(4,8),(5,3),(5,10),(6,1),(7,2),(7,4),(8,10),(9,6),(10,9)],11)
=> ([(0,7),(2,8),(3,9),(4,5),(4,8),(5,3),(5,10),(6,1),(7,2),(7,4),(8,10),(9,6),(10,9)],11)
=> ?
=> ? = 5
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,7),(2,8),(3,9),(3,11),(4,9),(4,10),(5,1),(6,3),(6,4),(6,8),(7,2),(7,6),(8,10),(8,11),(9,12),(10,12),(11,12),(12,5)],13)
=> ([(0,7),(2,8),(3,9),(3,11),(4,9),(4,10),(5,1),(6,3),(6,4),(6,8),(7,2),(7,6),(8,10),(8,11),(9,12),(10,12),(11,12),(12,5)],13)
=> ?
=> ? = 3
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,7),(2,8),(3,8),(4,5),(5,1),(6,4),(7,2),(7,3),(8,6)],9)
=> ([(0,7),(2,8),(3,8),(4,5),(5,1),(6,4),(7,2),(7,3),(8,6)],9)
=> ?
=> ? = 7
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ([(0,7),(2,10),(3,9),(4,3),(4,8),(5,2),(5,8),(6,1),(7,4),(7,5),(8,9),(8,10),(9,11),(10,11),(11,6)],12)
=> ([(0,7),(2,10),(3,9),(4,3),(4,8),(5,2),(5,8),(6,1),(7,4),(7,5),(8,9),(8,10),(9,11),(10,11),(11,6)],12)
=> ?
=> ? = 5
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(0,7),(1,10),(3,8),(4,9),(5,4),(5,11),(6,5),(6,8),(7,3),(7,6),(8,11),(9,10),(10,2),(11,1),(11,9)],12)
=> ([(0,7),(1,10),(3,8),(4,9),(5,4),(5,11),(6,5),(6,8),(7,3),(7,6),(8,11),(9,10),(10,2),(11,1),(11,9)],12)
=> ?
=> ? = 6
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,7),(2,11),(3,10),(4,9),(5,6),(5,11),(6,4),(6,8),(7,2),(7,5),(8,9),(8,10),(9,12),(10,12),(11,3),(11,8),(12,1)],13)
=> ([(0,7),(2,11),(3,10),(4,9),(5,6),(5,11),(6,4),(6,8),(7,2),(7,5),(8,9),(8,10),(9,12),(10,12),(11,3),(11,8),(12,1)],13)
=> ?
=> ? = 6
Description
The length of a longest path in a graph.
Matching statistic: St001340
Values
([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 4
([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 4
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ([(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8)],10)
=> ? = 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> 5
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ? = 4
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 5
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> 5
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,7),(4,9),(4,11),(5,7),(5,8),(5,10),(6,2),(6,3),(6,4),(6,5),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17),(17,1)],18)
=> ([(0,6),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,7),(4,9),(4,11),(5,7),(5,8),(5,10),(6,2),(6,3),(6,4),(6,5),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17),(17,1)],18)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,6),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,1),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,5)],11)
=> ([(0,6),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,1),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,5)],11)
=> ?
=> ? = 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,6),(2,10),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(6,3),(6,4),(6,5),(7,11),(8,11),(9,2),(9,11),(10,1),(11,10)],12)
=> ([(0,6),(2,10),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(6,3),(6,4),(6,5),(7,11),(8,11),(9,2),(9,11),(10,1),(11,10)],12)
=> ?
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,6),(2,9),(3,8),(4,3),(4,7),(5,2),(5,7),(6,4),(6,5),(7,8),(7,9),(8,10),(9,10),(10,1)],11)
=> ([(0,6),(2,9),(3,8),(4,3),(4,7),(5,2),(5,7),(6,4),(6,5),(7,8),(7,9),(8,10),(9,10),(10,1)],11)
=> ?
=> ? = 4
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,6),(2,7),(3,8),(3,10),(4,8),(4,9),(5,3),(5,4),(5,7),(6,2),(6,5),(7,9),(7,10),(8,11),(9,11),(10,11),(11,1)],12)
=> ([(0,6),(2,7),(3,8),(3,10),(4,8),(4,9),(5,3),(5,4),(5,7),(6,2),(6,5),(7,9),(7,10),(8,11),(9,11),(10,11),(11,1)],12)
=> ?
=> ? = 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,5),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,6),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,1)],11)
=> ([(0,5),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,6),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,1)],11)
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,6),(2,10),(2,11),(3,7),(3,9),(4,7),(4,8),(5,2),(5,8),(5,9),(6,3),(6,4),(6,5),(7,12),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13),(13,1)],14)
=> ([(0,6),(2,10),(2,11),(3,7),(3,9),(4,7),(4,8),(5,2),(5,8),(5,9),(6,3),(6,4),(6,5),(7,12),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13),(13,1)],14)
=> ?
=> ? = 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 6
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ?
=> ? = 5
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ?
=> ? = 4
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ?
=> ? = 6
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(6,7)],8)
=> ? = 6
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> 6
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ?
=> ? = 6
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ?
=> ? = 5
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ?
=> ?
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,7),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,1),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,6)],19)
=> ([(0,7),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,1),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,6)],19)
=> ?
=> ? = 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,7),(1,14),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,11),(6,12),(6,13),(7,3),(7,4),(7,5),(7,6),(8,17),(8,18),(9,15),(9,18),(10,16),(10,18),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,2),(15,19),(16,19),(17,19),(18,1),(18,19),(19,14)],20)
=> ([(0,7),(1,14),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,11),(6,12),(6,13),(7,3),(7,4),(7,5),(7,6),(8,17),(8,18),(9,15),(9,18),(10,16),(10,18),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,2),(15,19),(16,19),(17,19),(18,1),(18,19),(19,14)],20)
=> ?
=> ? = 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ?
=> ?
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,7),(2,11),(2,12),(3,10),(4,9),(5,8),(5,11),(6,8),(6,12),(7,2),(7,5),(7,6),(8,14),(9,13),(10,13),(11,4),(11,14),(12,3),(12,14),(13,1),(14,9),(14,10)],15)
=> ([(0,7),(2,11),(2,12),(3,10),(4,9),(5,8),(5,11),(6,8),(6,12),(7,2),(7,5),(7,6),(8,14),(9,13),(10,13),(11,4),(11,14),(12,3),(12,14),(13,1),(14,9),(14,10)],15)
=> ?
=> ? = 4
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,10),(3,9),(3,11),(4,8),(4,11),(5,8),(5,9),(6,1),(7,3),(7,4),(7,5),(8,12),(9,12),(10,6),(11,2),(11,12),(12,10)],13)
=> ([(0,7),(2,10),(3,9),(3,11),(4,8),(4,11),(5,8),(5,9),(6,1),(7,3),(7,4),(7,5),(8,12),(9,12),(10,6),(11,2),(11,12),(12,10)],13)
=> ?
=> ? = 3
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,6),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,7),(6,5),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,1)],12)
=> ([(0,6),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,7),(6,5),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,1)],12)
=> ?
=> ? = 3
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,2),(2,3),(2,4),(2,5),(3,13),(3,14),(4,7),(4,14),(4,15),(5,6),(5,13),(5,15),(6,9),(6,11),(7,10),(7,12),(8,19),(9,17),(10,18),(11,8),(11,17),(12,8),(12,18),(13,9),(13,16),(14,10),(14,16),(15,11),(15,12),(15,16),(16,17),(16,18),(17,19),(18,19),(19,1)],20)
=> ([(0,2),(2,3),(2,4),(2,5),(3,13),(3,14),(4,7),(4,14),(4,15),(5,6),(5,13),(5,15),(6,9),(6,11),(7,10),(7,12),(8,19),(9,17),(10,18),(11,8),(11,17),(12,8),(12,18),(13,9),(13,16),(14,10),(14,16),(15,11),(15,12),(15,16),(16,17),(16,18),(17,19),(18,19),(19,1)],20)
=> ?
=> ? = 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ?
=> ?
=> ?
=> ? = 1
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,7),(1,10),(1,11),(3,9),(4,8),(5,4),(5,13),(6,3),(6,13),(7,5),(7,6),(8,10),(8,12),(9,11),(9,12),(10,14),(11,14),(12,14),(13,1),(13,8),(13,9),(14,2)],15)
=> ([(0,7),(1,10),(1,11),(3,9),(4,8),(5,4),(5,13),(6,3),(6,13),(7,5),(7,6),(8,10),(8,12),(9,11),(9,12),(10,14),(11,14),(12,14),(13,1),(13,8),(13,9),(14,2)],15)
=> ?
=> ? = 4
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,7),(2,8),(3,12),(4,10),(4,11),(5,9),(5,11),(6,4),(6,5),(6,8),(7,2),(7,6),(8,9),(8,10),(9,13),(10,13),(11,3),(11,13),(12,1),(13,12)],14)
=> ([(0,7),(2,8),(3,12),(4,10),(4,11),(5,9),(5,11),(6,4),(6,5),(6,8),(7,2),(7,6),(8,9),(8,10),(9,13),(10,13),(11,3),(11,13),(12,1),(13,12)],14)
=> ?
=> ? = 4
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> ([(0,7),(2,13),(3,11),(3,12),(4,8),(4,10),(5,8),(5,9),(6,4),(6,5),(6,13),(7,2),(7,6),(8,14),(9,11),(9,14),(10,12),(10,14),(11,15),(12,15),(13,3),(13,9),(13,10),(14,15),(15,1)],16)
=> ([(0,7),(2,13),(3,11),(3,12),(4,8),(4,10),(5,8),(5,9),(6,4),(6,5),(6,13),(7,2),(7,6),(8,14),(9,11),(9,14),(10,12),(10,14),(11,15),(12,15),(13,3),(13,9),(13,10),(14,15),(15,1)],16)
=> ?
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,7),(1,11),(3,8),(4,10),(5,4),(5,8),(6,1),(6,9),(7,3),(7,5),(8,6),(8,10),(9,11),(10,9),(11,2)],12)
=> ([(0,7),(1,11),(3,8),(4,10),(5,4),(5,8),(6,1),(6,9),(7,3),(7,5),(8,6),(8,10),(9,11),(10,9),(11,2)],12)
=> ?
=> ? = 6
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,6),(2,8),(3,10),(3,11),(3,14),(4,9),(4,11),(4,13),(5,9),(5,10),(5,12),(6,2),(6,7),(7,3),(7,4),(7,5),(7,8),(8,12),(8,13),(8,14),(9,17),(9,18),(10,15),(10,18),(11,16),(11,18),(12,15),(12,17),(13,16),(13,17),(14,15),(14,16),(15,19),(16,19),(17,19),(18,19),(19,1)],20)
=> ([(0,6),(2,8),(3,10),(3,11),(3,14),(4,9),(4,11),(4,13),(5,9),(5,10),(5,12),(6,2),(6,7),(7,3),(7,4),(7,5),(7,8),(8,12),(8,13),(8,14),(9,17),(9,18),(10,15),(10,18),(11,16),(11,18),(12,15),(12,17),(13,16),(13,17),(14,15),(14,16),(15,19),(16,19),(17,19),(18,19),(19,1)],20)
=> ?
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,7),(2,9),(3,9),(4,8),(5,8),(6,2),(6,3),(7,4),(7,5),(8,6),(9,1)],10)
=> ([(0,7),(2,9),(3,9),(4,8),(5,8),(6,2),(6,3),(7,4),(7,5),(8,6),(9,1)],10)
=> ?
=> ? = 7
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,7),(2,8),(2,12),(3,8),(3,11),(4,10),(5,4),(5,9),(6,2),(6,3),(6,9),(7,5),(7,6),(8,15),(9,10),(9,11),(9,12),(10,13),(10,14),(11,13),(11,15),(12,14),(12,15),(13,16),(14,16),(15,16),(16,1)],17)
=> ([(0,7),(2,8),(2,12),(3,8),(3,11),(4,10),(5,4),(5,9),(6,2),(6,3),(6,9),(7,5),(7,6),(8,15),(9,10),(9,11),(9,12),(10,13),(10,14),(11,13),(11,15),(12,14),(12,15),(13,16),(14,16),(15,16),(16,1)],17)
=> ?
=> ? = 2
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,6),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,7),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,1)],19)
=> ([(0,6),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,7),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,1)],19)
=> ?
=> ? = 2
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ?
=> ? = 7
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ?
=> ?
=> ?
=> ? = 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,7),(1,11),(1,12),(3,8),(3,10),(4,8),(4,9),(5,2),(6,1),(6,9),(6,10),(7,3),(7,4),(7,6),(8,14),(9,11),(9,14),(10,12),(10,14),(11,13),(12,13),(13,5),(14,13)],15)
=> ([(0,7),(1,11),(1,12),(3,8),(3,10),(4,8),(4,9),(5,2),(6,1),(6,9),(6,10),(7,3),(7,4),(7,6),(8,14),(9,11),(9,14),(10,12),(10,14),(11,13),(12,13),(13,5),(14,13)],15)
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,7),(1,12),(3,11),(3,13),(4,8),(4,9),(5,8),(5,10),(6,3),(6,9),(6,10),(7,4),(7,5),(7,6),(8,15),(9,13),(9,15),(10,11),(10,15),(11,14),(12,2),(13,1),(13,14),(14,12),(15,14)],16)
=> ([(0,7),(1,12),(3,11),(3,13),(4,8),(4,9),(5,8),(5,10),(6,3),(6,9),(6,10),(7,4),(7,5),(7,6),(8,15),(9,13),(9,15),(10,11),(10,15),(11,14),(12,2),(13,1),(13,14),(14,12),(15,14)],16)
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,7),(2,9),(2,12),(3,8),(3,14),(4,11),(4,13),(5,8),(5,10),(6,4),(6,10),(6,14),(7,3),(7,5),(7,6),(8,16),(9,17),(10,13),(10,16),(11,12),(11,15),(12,17),(13,15),(14,2),(14,11),(14,16),(15,17),(16,9),(16,15),(17,1)],18)
=> ([(0,7),(2,9),(2,12),(3,8),(3,14),(4,11),(4,13),(5,8),(5,10),(6,4),(6,10),(6,14),(7,3),(7,5),(7,6),(8,16),(9,17),(10,13),(10,16),(11,12),(11,15),(12,17),(13,15),(14,2),(14,11),(14,16),(15,17),(16,9),(16,15),(17,1)],18)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,7),(2,12),(3,8),(3,9),(4,9),(4,10),(5,8),(5,10),(6,2),(6,11),(7,3),(7,4),(7,5),(8,13),(9,13),(10,6),(10,13),(11,12),(12,1),(13,11)],14)
=> ([(0,7),(2,12),(3,8),(3,9),(4,9),(4,10),(5,8),(5,10),(6,2),(6,11),(7,3),(7,4),(7,5),(8,13),(9,13),(10,6),(10,13),(11,12),(12,1),(13,11)],14)
=> ?
=> ? = 2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,7),(2,8),(2,10),(3,8),(3,9),(4,11),(4,12),(5,6),(5,9),(5,10),(6,4),(6,13),(6,14),(7,2),(7,3),(7,5),(8,15),(9,13),(9,15),(10,14),(10,15),(11,17),(12,17),(13,11),(13,16),(14,12),(14,16),(15,16),(16,17),(17,1)],18)
=> ([(0,7),(2,8),(2,10),(3,8),(3,9),(4,11),(4,12),(5,6),(5,9),(5,10),(6,4),(6,13),(6,14),(7,2),(7,3),(7,5),(8,15),(9,13),(9,15),(10,14),(10,15),(11,17),(12,17),(13,11),(13,16),(14,12),(14,16),(15,16),(16,17),(17,1)],18)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,7),(1,13),(3,11),(3,12),(4,8),(4,10),(5,8),(5,9),(6,3),(6,9),(6,10),(7,4),(7,5),(7,6),(8,15),(9,11),(9,15),(10,12),(10,15),(11,14),(12,14),(13,2),(14,13),(15,1),(15,14)],16)
=> ([(0,7),(1,13),(3,11),(3,12),(4,8),(4,10),(5,8),(5,9),(6,3),(6,9),(6,10),(7,4),(7,5),(7,6),(8,15),(9,11),(9,15),(10,12),(10,15),(11,14),(12,14),(13,2),(14,13),(15,1),(15,14)],16)
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,7),(2,11),(2,12),(3,8),(4,10),(4,13),(5,9),(5,13),(6,2),(6,9),(6,10),(7,4),(7,5),(7,6),(8,14),(9,11),(9,16),(10,12),(10,16),(11,15),(12,15),(13,3),(13,16),(14,1),(15,14),(16,8),(16,15)],17)
=> ([(0,7),(2,11),(2,12),(3,8),(4,10),(4,13),(5,9),(5,13),(6,2),(6,9),(6,10),(7,4),(7,5),(7,6),(8,14),(9,11),(9,16),(10,12),(10,16),(11,15),(12,15),(13,3),(13,16),(14,1),(15,14),(16,8),(16,15)],17)
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,7),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,1),(6,5),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,6)],12)
=> ([(0,7),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,1),(6,5),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,6)],12)
=> ?
=> ? = 3
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ([(5,10),(6,9),(7,8),(8,10),(9,10)],11)
=> ? = 7
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,7),(2,8),(3,9),(4,5),(4,8),(5,3),(5,10),(6,1),(7,2),(7,4),(8,10),(9,6),(10,9)],11)
=> ([(0,7),(2,8),(3,9),(4,5),(4,8),(5,3),(5,10),(6,1),(7,2),(7,4),(8,10),(9,6),(10,9)],11)
=> ?
=> ? = 5
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,7),(2,8),(3,9),(3,11),(4,9),(4,10),(5,1),(6,3),(6,4),(6,8),(7,2),(7,6),(8,10),(8,11),(9,12),(10,12),(11,12),(12,5)],13)
=> ([(0,7),(2,8),(3,9),(3,11),(4,9),(4,10),(5,1),(6,3),(6,4),(6,8),(7,2),(7,6),(8,10),(8,11),(9,12),(10,12),(11,12),(12,5)],13)
=> ?
=> ? = 3
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,7),(2,8),(3,8),(4,5),(5,1),(6,4),(7,2),(7,3),(8,6)],9)
=> ([(0,7),(2,8),(3,8),(4,5),(5,1),(6,4),(7,2),(7,3),(8,6)],9)
=> ?
=> ? = 7
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ([(0,7),(2,10),(3,9),(4,3),(4,8),(5,2),(5,8),(6,1),(7,4),(7,5),(8,9),(8,10),(9,11),(10,11),(11,6)],12)
=> ([(0,7),(2,10),(3,9),(4,3),(4,8),(5,2),(5,8),(6,1),(7,4),(7,5),(8,9),(8,10),(9,11),(10,11),(11,6)],12)
=> ?
=> ? = 5
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(0,7),(1,10),(3,8),(4,9),(5,4),(5,11),(6,5),(6,8),(7,3),(7,6),(8,11),(9,10),(10,2),(11,1),(11,9)],12)
=> ([(0,7),(1,10),(3,8),(4,9),(5,4),(5,11),(6,5),(6,8),(7,3),(7,6),(8,11),(9,10),(10,2),(11,1),(11,9)],12)
=> ?
=> ? = 6
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,7),(2,11),(3,10),(4,9),(5,6),(5,11),(6,4),(6,8),(7,2),(7,5),(8,9),(8,10),(9,12),(10,12),(11,3),(11,8),(12,1)],13)
=> ([(0,7),(2,11),(3,10),(4,9),(5,6),(5,11),(6,4),(6,8),(7,2),(7,5),(8,9),(8,10),(9,12),(10,12),(11,3),(11,8),(12,1)],13)
=> ?
=> ? = 6
Description
The cardinality of a minimal non-edge isolating set of a graph.
Let $\mathcal F$ be a set of graphs. A set of vertices $S$ is $\mathcal F$-isolating, if the subgraph induced by the vertices in the complement of the closed neighbourhood of $S$ does not contain any graph in $\mathcal F$.
This statistic returns the cardinality of the smallest isolating set when $\mathcal F$ contains only the graph with two isolated vertices.
Matching statistic: St001512
Values
([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ([(0,9),(1,8),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(4,5),(4,6),(4,8),(5,9),(6,9),(7,9)],10)
=> ? = 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> 5
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(1,6),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7)],8)
=> ? = 4
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 5
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> 5
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,7),(4,9),(4,11),(5,7),(5,8),(5,10),(6,2),(6,3),(6,4),(6,5),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17),(17,1)],18)
=> ([(0,6),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,7),(4,9),(4,11),(5,7),(5,8),(5,10),(6,2),(6,3),(6,4),(6,5),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17),(17,1)],18)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,6),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,1),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,5)],11)
=> ([(0,6),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,1),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,5)],11)
=> ?
=> ? = 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,6),(2,10),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(6,3),(6,4),(6,5),(7,11),(8,11),(9,2),(9,11),(10,1),(11,10)],12)
=> ([(0,6),(2,10),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(6,3),(6,4),(6,5),(7,11),(8,11),(9,2),(9,11),(10,1),(11,10)],12)
=> ?
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,6),(2,9),(3,8),(4,3),(4,7),(5,2),(5,7),(6,4),(6,5),(7,8),(7,9),(8,10),(9,10),(10,1)],11)
=> ([(0,6),(2,9),(3,8),(4,3),(4,7),(5,2),(5,7),(6,4),(6,5),(7,8),(7,9),(8,10),(9,10),(10,1)],11)
=> ?
=> ? = 4
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,6),(2,7),(3,8),(3,10),(4,8),(4,9),(5,3),(5,4),(5,7),(6,2),(6,5),(7,9),(7,10),(8,11),(9,11),(10,11),(11,1)],12)
=> ([(0,6),(2,7),(3,8),(3,10),(4,8),(4,9),(5,3),(5,4),(5,7),(6,2),(6,5),(7,9),(7,10),(8,11),(9,11),(10,11),(11,1)],12)
=> ?
=> ? = 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,5),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,6),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,1)],11)
=> ([(0,5),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,6),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,1)],11)
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,6),(2,10),(2,11),(3,7),(3,9),(4,7),(4,8),(5,2),(5,8),(5,9),(6,3),(6,4),(6,5),(7,12),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13),(13,1)],14)
=> ([(0,6),(2,10),(2,11),(3,7),(3,9),(4,7),(4,8),(5,2),(5,8),(5,9),(6,3),(6,4),(6,5),(7,12),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13),(13,1)],14)
=> ?
=> ? = 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(0,8),(1,7),(2,5),(2,6),(3,7),(3,9),(4,8),(4,9),(5,7),(5,9),(6,8),(6,9)],10)
=> ? = 6
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ?
=> ? = 5
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ?
=> ? = 4
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ?
=> ? = 6
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(1,4),(2,6),(2,7),(3,6),(3,7),(4,6),(5,7)],8)
=> ? = 6
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 6
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ?
=> ? = 6
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ?
=> ? = 5
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ?
=> ?
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,7),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,1),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,6)],19)
=> ([(0,7),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,1),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,6)],19)
=> ?
=> ? = 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,7),(1,14),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,11),(6,12),(6,13),(7,3),(7,4),(7,5),(7,6),(8,17),(8,18),(9,15),(9,18),(10,16),(10,18),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,2),(15,19),(16,19),(17,19),(18,1),(18,19),(19,14)],20)
=> ([(0,7),(1,14),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,11),(6,12),(6,13),(7,3),(7,4),(7,5),(7,6),(8,17),(8,18),(9,15),(9,18),(10,16),(10,18),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,2),(15,19),(16,19),(17,19),(18,1),(18,19),(19,14)],20)
=> ?
=> ? = 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ?
=> ?
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,7),(2,11),(2,12),(3,10),(4,9),(5,8),(5,11),(6,8),(6,12),(7,2),(7,5),(7,6),(8,14),(9,13),(10,13),(11,4),(11,14),(12,3),(12,14),(13,1),(14,9),(14,10)],15)
=> ([(0,7),(2,11),(2,12),(3,10),(4,9),(5,8),(5,11),(6,8),(6,12),(7,2),(7,5),(7,6),(8,14),(9,13),(10,13),(11,4),(11,14),(12,3),(12,14),(13,1),(14,9),(14,10)],15)
=> ?
=> ? = 4
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,10),(3,9),(3,11),(4,8),(4,11),(5,8),(5,9),(6,1),(7,3),(7,4),(7,5),(8,12),(9,12),(10,6),(11,2),(11,12),(12,10)],13)
=> ([(0,7),(2,10),(3,9),(3,11),(4,8),(4,11),(5,8),(5,9),(6,1),(7,3),(7,4),(7,5),(8,12),(9,12),(10,6),(11,2),(11,12),(12,10)],13)
=> ?
=> ? = 3
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,6),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,7),(6,5),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,1)],12)
=> ([(0,6),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,7),(6,5),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,1)],12)
=> ?
=> ? = 3
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,2),(2,3),(2,4),(2,5),(3,13),(3,14),(4,7),(4,14),(4,15),(5,6),(5,13),(5,15),(6,9),(6,11),(7,10),(7,12),(8,19),(9,17),(10,18),(11,8),(11,17),(12,8),(12,18),(13,9),(13,16),(14,10),(14,16),(15,11),(15,12),(15,16),(16,17),(16,18),(17,19),(18,19),(19,1)],20)
=> ([(0,2),(2,3),(2,4),(2,5),(3,13),(3,14),(4,7),(4,14),(4,15),(5,6),(5,13),(5,15),(6,9),(6,11),(7,10),(7,12),(8,19),(9,17),(10,18),(11,8),(11,17),(12,8),(12,18),(13,9),(13,16),(14,10),(14,16),(15,11),(15,12),(15,16),(16,17),(16,18),(17,19),(18,19),(19,1)],20)
=> ?
=> ? = 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ?
=> ?
=> ?
=> ? = 1
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,7),(1,10),(1,11),(3,9),(4,8),(5,4),(5,13),(6,3),(6,13),(7,5),(7,6),(8,10),(8,12),(9,11),(9,12),(10,14),(11,14),(12,14),(13,1),(13,8),(13,9),(14,2)],15)
=> ([(0,7),(1,10),(1,11),(3,9),(4,8),(5,4),(5,13),(6,3),(6,13),(7,5),(7,6),(8,10),(8,12),(9,11),(9,12),(10,14),(11,14),(12,14),(13,1),(13,8),(13,9),(14,2)],15)
=> ?
=> ? = 4
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,7),(2,8),(3,12),(4,10),(4,11),(5,9),(5,11),(6,4),(6,5),(6,8),(7,2),(7,6),(8,9),(8,10),(9,13),(10,13),(11,3),(11,13),(12,1),(13,12)],14)
=> ([(0,7),(2,8),(3,12),(4,10),(4,11),(5,9),(5,11),(6,4),(6,5),(6,8),(7,2),(7,6),(8,9),(8,10),(9,13),(10,13),(11,3),(11,13),(12,1),(13,12)],14)
=> ?
=> ? = 4
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> ([(0,7),(2,13),(3,11),(3,12),(4,8),(4,10),(5,8),(5,9),(6,4),(6,5),(6,13),(7,2),(7,6),(8,14),(9,11),(9,14),(10,12),(10,14),(11,15),(12,15),(13,3),(13,9),(13,10),(14,15),(15,1)],16)
=> ([(0,7),(2,13),(3,11),(3,12),(4,8),(4,10),(5,8),(5,9),(6,4),(6,5),(6,13),(7,2),(7,6),(8,14),(9,11),(9,14),(10,12),(10,14),(11,15),(12,15),(13,3),(13,9),(13,10),(14,15),(15,1)],16)
=> ?
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,7),(1,11),(3,8),(4,10),(5,4),(5,8),(6,1),(6,9),(7,3),(7,5),(8,6),(8,10),(9,11),(10,9),(11,2)],12)
=> ([(0,7),(1,11),(3,8),(4,10),(5,4),(5,8),(6,1),(6,9),(7,3),(7,5),(8,6),(8,10),(9,11),(10,9),(11,2)],12)
=> ?
=> ? = 6
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,6),(2,8),(3,10),(3,11),(3,14),(4,9),(4,11),(4,13),(5,9),(5,10),(5,12),(6,2),(6,7),(7,3),(7,4),(7,5),(7,8),(8,12),(8,13),(8,14),(9,17),(9,18),(10,15),(10,18),(11,16),(11,18),(12,15),(12,17),(13,16),(13,17),(14,15),(14,16),(15,19),(16,19),(17,19),(18,19),(19,1)],20)
=> ([(0,6),(2,8),(3,10),(3,11),(3,14),(4,9),(4,11),(4,13),(5,9),(5,10),(5,12),(6,2),(6,7),(7,3),(7,4),(7,5),(7,8),(8,12),(8,13),(8,14),(9,17),(9,18),(10,15),(10,18),(11,16),(11,18),(12,15),(12,17),(13,16),(13,17),(14,15),(14,16),(15,19),(16,19),(17,19),(18,19),(19,1)],20)
=> ?
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,7),(2,9),(3,9),(4,8),(5,8),(6,2),(6,3),(7,4),(7,5),(8,6),(9,1)],10)
=> ([(0,7),(2,9),(3,9),(4,8),(5,8),(6,2),(6,3),(7,4),(7,5),(8,6),(9,1)],10)
=> ?
=> ? = 7
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,7),(2,8),(2,12),(3,8),(3,11),(4,10),(5,4),(5,9),(6,2),(6,3),(6,9),(7,5),(7,6),(8,15),(9,10),(9,11),(9,12),(10,13),(10,14),(11,13),(11,15),(12,14),(12,15),(13,16),(14,16),(15,16),(16,1)],17)
=> ([(0,7),(2,8),(2,12),(3,8),(3,11),(4,10),(5,4),(5,9),(6,2),(6,3),(6,9),(7,5),(7,6),(8,15),(9,10),(9,11),(9,12),(10,13),(10,14),(11,13),(11,15),(12,14),(12,15),(13,16),(14,16),(15,16),(16,1)],17)
=> ?
=> ? = 2
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,6),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,7),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,1)],19)
=> ([(0,6),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,7),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,1)],19)
=> ?
=> ? = 2
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ?
=> ? = 7
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ?
=> ?
=> ?
=> ? = 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,7),(1,11),(1,12),(3,8),(3,10),(4,8),(4,9),(5,2),(6,1),(6,9),(6,10),(7,3),(7,4),(7,6),(8,14),(9,11),(9,14),(10,12),(10,14),(11,13),(12,13),(13,5),(14,13)],15)
=> ([(0,7),(1,11),(1,12),(3,8),(3,10),(4,8),(4,9),(5,2),(6,1),(6,9),(6,10),(7,3),(7,4),(7,6),(8,14),(9,11),(9,14),(10,12),(10,14),(11,13),(12,13),(13,5),(14,13)],15)
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,7),(1,12),(3,11),(3,13),(4,8),(4,9),(5,8),(5,10),(6,3),(6,9),(6,10),(7,4),(7,5),(7,6),(8,15),(9,13),(9,15),(10,11),(10,15),(11,14),(12,2),(13,1),(13,14),(14,12),(15,14)],16)
=> ([(0,7),(1,12),(3,11),(3,13),(4,8),(4,9),(5,8),(5,10),(6,3),(6,9),(6,10),(7,4),(7,5),(7,6),(8,15),(9,13),(9,15),(10,11),(10,15),(11,14),(12,2),(13,1),(13,14),(14,12),(15,14)],16)
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,7),(2,9),(2,12),(3,8),(3,14),(4,11),(4,13),(5,8),(5,10),(6,4),(6,10),(6,14),(7,3),(7,5),(7,6),(8,16),(9,17),(10,13),(10,16),(11,12),(11,15),(12,17),(13,15),(14,2),(14,11),(14,16),(15,17),(16,9),(16,15),(17,1)],18)
=> ([(0,7),(2,9),(2,12),(3,8),(3,14),(4,11),(4,13),(5,8),(5,10),(6,4),(6,10),(6,14),(7,3),(7,5),(7,6),(8,16),(9,17),(10,13),(10,16),(11,12),(11,15),(12,17),(13,15),(14,2),(14,11),(14,16),(15,17),(16,9),(16,15),(17,1)],18)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,7),(2,12),(3,8),(3,9),(4,9),(4,10),(5,8),(5,10),(6,2),(6,11),(7,3),(7,4),(7,5),(8,13),(9,13),(10,6),(10,13),(11,12),(12,1),(13,11)],14)
=> ([(0,7),(2,12),(3,8),(3,9),(4,9),(4,10),(5,8),(5,10),(6,2),(6,11),(7,3),(7,4),(7,5),(8,13),(9,13),(10,6),(10,13),(11,12),(12,1),(13,11)],14)
=> ?
=> ? = 2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,7),(2,8),(2,10),(3,8),(3,9),(4,11),(4,12),(5,6),(5,9),(5,10),(6,4),(6,13),(6,14),(7,2),(7,3),(7,5),(8,15),(9,13),(9,15),(10,14),(10,15),(11,17),(12,17),(13,11),(13,16),(14,12),(14,16),(15,16),(16,17),(17,1)],18)
=> ([(0,7),(2,8),(2,10),(3,8),(3,9),(4,11),(4,12),(5,6),(5,9),(5,10),(6,4),(6,13),(6,14),(7,2),(7,3),(7,5),(8,15),(9,13),(9,15),(10,14),(10,15),(11,17),(12,17),(13,11),(13,16),(14,12),(14,16),(15,16),(16,17),(17,1)],18)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,7),(1,13),(3,11),(3,12),(4,8),(4,10),(5,8),(5,9),(6,3),(6,9),(6,10),(7,4),(7,5),(7,6),(8,15),(9,11),(9,15),(10,12),(10,15),(11,14),(12,14),(13,2),(14,13),(15,1),(15,14)],16)
=> ([(0,7),(1,13),(3,11),(3,12),(4,8),(4,10),(5,8),(5,9),(6,3),(6,9),(6,10),(7,4),(7,5),(7,6),(8,15),(9,11),(9,15),(10,12),(10,15),(11,14),(12,14),(13,2),(14,13),(15,1),(15,14)],16)
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,7),(2,11),(2,12),(3,8),(4,10),(4,13),(5,9),(5,13),(6,2),(6,9),(6,10),(7,4),(7,5),(7,6),(8,14),(9,11),(9,16),(10,12),(10,16),(11,15),(12,15),(13,3),(13,16),(14,1),(15,14),(16,8),(16,15)],17)
=> ([(0,7),(2,11),(2,12),(3,8),(4,10),(4,13),(5,9),(5,13),(6,2),(6,9),(6,10),(7,4),(7,5),(7,6),(8,14),(9,11),(9,16),(10,12),(10,16),(11,15),(12,15),(13,3),(13,16),(14,1),(15,14),(16,8),(16,15)],17)
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,7),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,1),(6,5),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,6)],12)
=> ([(0,7),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,1),(6,5),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,6)],12)
=> ?
=> ? = 3
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ([(0,9),(1,5),(2,9),(2,10),(3,7),(3,10),(4,6),(4,8),(5,7),(6,9),(6,10),(7,8),(8,10)],11)
=> ? = 7
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,7),(2,8),(3,9),(4,5),(4,8),(5,3),(5,10),(6,1),(7,2),(7,4),(8,10),(9,6),(10,9)],11)
=> ([(0,7),(2,8),(3,9),(4,5),(4,8),(5,3),(5,10),(6,1),(7,2),(7,4),(8,10),(9,6),(10,9)],11)
=> ?
=> ? = 5
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,7),(2,8),(3,9),(3,11),(4,9),(4,10),(5,1),(6,3),(6,4),(6,8),(7,2),(7,6),(8,10),(8,11),(9,12),(10,12),(11,12),(12,5)],13)
=> ([(0,7),(2,8),(3,9),(3,11),(4,9),(4,10),(5,1),(6,3),(6,4),(6,8),(7,2),(7,6),(8,10),(8,11),(9,12),(10,12),(11,12),(12,5)],13)
=> ?
=> ? = 3
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,7),(2,8),(3,8),(4,5),(5,1),(6,4),(7,2),(7,3),(8,6)],9)
=> ([(0,7),(2,8),(3,8),(4,5),(5,1),(6,4),(7,2),(7,3),(8,6)],9)
=> ?
=> ? = 7
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ([(0,7),(2,10),(3,9),(4,3),(4,8),(5,2),(5,8),(6,1),(7,4),(7,5),(8,9),(8,10),(9,11),(10,11),(11,6)],12)
=> ([(0,7),(2,10),(3,9),(4,3),(4,8),(5,2),(5,8),(6,1),(7,4),(7,5),(8,9),(8,10),(9,11),(10,11),(11,6)],12)
=> ?
=> ? = 5
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(0,7),(1,10),(3,8),(4,9),(5,4),(5,11),(6,5),(6,8),(7,3),(7,6),(8,11),(9,10),(10,2),(11,1),(11,9)],12)
=> ([(0,7),(1,10),(3,8),(4,9),(5,4),(5,11),(6,5),(6,8),(7,3),(7,6),(8,11),(9,10),(10,2),(11,1),(11,9)],12)
=> ?
=> ? = 6
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,7),(2,11),(3,10),(4,9),(5,6),(5,11),(6,4),(6,8),(7,2),(7,5),(8,9),(8,10),(9,12),(10,12),(11,3),(11,8),(12,1)],13)
=> ([(0,7),(2,11),(3,10),(4,9),(5,6),(5,11),(6,4),(6,8),(7,2),(7,5),(8,9),(8,10),(9,12),(10,12),(11,3),(11,8),(12,1)],13)
=> ?
=> ? = 6
Description
The minimum rank of a graph.
The minimum rank of a simple graph G is the smallest possible rank over all symmetric real matrices whose entry in row $i$ and column $j$ (for $i\neq j$) is nonzero whenever $\{i, j\}$ is an edge in
$G$, and zero otherwise.
Matching statistic: St001949
Values
([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 4
([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 4
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ([(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8)],10)
=> ? = 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> 5
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ? = 4
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 5
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> 5
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,7),(4,9),(4,11),(5,7),(5,8),(5,10),(6,2),(6,3),(6,4),(6,5),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17),(17,1)],18)
=> ([(0,6),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,7),(4,9),(4,11),(5,7),(5,8),(5,10),(6,2),(6,3),(6,4),(6,5),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17),(17,1)],18)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,6),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,1),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,5)],11)
=> ([(0,6),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,1),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,5)],11)
=> ?
=> ? = 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,6),(2,10),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(6,3),(6,4),(6,5),(7,11),(8,11),(9,2),(9,11),(10,1),(11,10)],12)
=> ([(0,6),(2,10),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(6,3),(6,4),(6,5),(7,11),(8,11),(9,2),(9,11),(10,1),(11,10)],12)
=> ?
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,6),(2,9),(3,8),(4,3),(4,7),(5,2),(5,7),(6,4),(6,5),(7,8),(7,9),(8,10),(9,10),(10,1)],11)
=> ([(0,6),(2,9),(3,8),(4,3),(4,7),(5,2),(5,7),(6,4),(6,5),(7,8),(7,9),(8,10),(9,10),(10,1)],11)
=> ?
=> ? = 4
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,6),(2,7),(3,8),(3,10),(4,8),(4,9),(5,3),(5,4),(5,7),(6,2),(6,5),(7,9),(7,10),(8,11),(9,11),(10,11),(11,1)],12)
=> ([(0,6),(2,7),(3,8),(3,10),(4,8),(4,9),(5,3),(5,4),(5,7),(6,2),(6,5),(7,9),(7,10),(8,11),(9,11),(10,11),(11,1)],12)
=> ?
=> ? = 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,5),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,6),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,1)],11)
=> ([(0,5),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,6),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,1)],11)
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,6),(2,10),(2,11),(3,7),(3,9),(4,7),(4,8),(5,2),(5,8),(5,9),(6,3),(6,4),(6,5),(7,12),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13),(13,1)],14)
=> ([(0,6),(2,10),(2,11),(3,7),(3,9),(4,7),(4,8),(5,2),(5,8),(5,9),(6,3),(6,4),(6,5),(7,12),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13),(13,1)],14)
=> ?
=> ? = 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 6
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ?
=> ? = 5
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ?
=> ? = 4
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ?
=> ? = 6
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(6,7)],8)
=> ? = 6
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> 6
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ?
=> ? = 6
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ?
=> ? = 5
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ?
=> ?
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,7),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,1),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,6)],19)
=> ([(0,7),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,1),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,6)],19)
=> ?
=> ? = 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,7),(1,14),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,11),(6,12),(6,13),(7,3),(7,4),(7,5),(7,6),(8,17),(8,18),(9,15),(9,18),(10,16),(10,18),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,2),(15,19),(16,19),(17,19),(18,1),(18,19),(19,14)],20)
=> ([(0,7),(1,14),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,11),(6,12),(6,13),(7,3),(7,4),(7,5),(7,6),(8,17),(8,18),(9,15),(9,18),(10,16),(10,18),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,2),(15,19),(16,19),(17,19),(18,1),(18,19),(19,14)],20)
=> ?
=> ? = 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ?
=> ?
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,7),(2,11),(2,12),(3,10),(4,9),(5,8),(5,11),(6,8),(6,12),(7,2),(7,5),(7,6),(8,14),(9,13),(10,13),(11,4),(11,14),(12,3),(12,14),(13,1),(14,9),(14,10)],15)
=> ([(0,7),(2,11),(2,12),(3,10),(4,9),(5,8),(5,11),(6,8),(6,12),(7,2),(7,5),(7,6),(8,14),(9,13),(10,13),(11,4),(11,14),(12,3),(12,14),(13,1),(14,9),(14,10)],15)
=> ?
=> ? = 4
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,10),(3,9),(3,11),(4,8),(4,11),(5,8),(5,9),(6,1),(7,3),(7,4),(7,5),(8,12),(9,12),(10,6),(11,2),(11,12),(12,10)],13)
=> ([(0,7),(2,10),(3,9),(3,11),(4,8),(4,11),(5,8),(5,9),(6,1),(7,3),(7,4),(7,5),(8,12),(9,12),(10,6),(11,2),(11,12),(12,10)],13)
=> ?
=> ? = 3
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,6),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,7),(6,5),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,1)],12)
=> ([(0,6),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,7),(6,5),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,1)],12)
=> ?
=> ? = 3
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,2),(2,3),(2,4),(2,5),(3,13),(3,14),(4,7),(4,14),(4,15),(5,6),(5,13),(5,15),(6,9),(6,11),(7,10),(7,12),(8,19),(9,17),(10,18),(11,8),(11,17),(12,8),(12,18),(13,9),(13,16),(14,10),(14,16),(15,11),(15,12),(15,16),(16,17),(16,18),(17,19),(18,19),(19,1)],20)
=> ([(0,2),(2,3),(2,4),(2,5),(3,13),(3,14),(4,7),(4,14),(4,15),(5,6),(5,13),(5,15),(6,9),(6,11),(7,10),(7,12),(8,19),(9,17),(10,18),(11,8),(11,17),(12,8),(12,18),(13,9),(13,16),(14,10),(14,16),(15,11),(15,12),(15,16),(16,17),(16,18),(17,19),(18,19),(19,1)],20)
=> ?
=> ? = 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ?
=> ?
=> ?
=> ? = 1
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,7),(1,10),(1,11),(3,9),(4,8),(5,4),(5,13),(6,3),(6,13),(7,5),(7,6),(8,10),(8,12),(9,11),(9,12),(10,14),(11,14),(12,14),(13,1),(13,8),(13,9),(14,2)],15)
=> ([(0,7),(1,10),(1,11),(3,9),(4,8),(5,4),(5,13),(6,3),(6,13),(7,5),(7,6),(8,10),(8,12),(9,11),(9,12),(10,14),(11,14),(12,14),(13,1),(13,8),(13,9),(14,2)],15)
=> ?
=> ? = 4
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,7),(2,8),(3,12),(4,10),(4,11),(5,9),(5,11),(6,4),(6,5),(6,8),(7,2),(7,6),(8,9),(8,10),(9,13),(10,13),(11,3),(11,13),(12,1),(13,12)],14)
=> ([(0,7),(2,8),(3,12),(4,10),(4,11),(5,9),(5,11),(6,4),(6,5),(6,8),(7,2),(7,6),(8,9),(8,10),(9,13),(10,13),(11,3),(11,13),(12,1),(13,12)],14)
=> ?
=> ? = 4
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> ([(0,7),(2,13),(3,11),(3,12),(4,8),(4,10),(5,8),(5,9),(6,4),(6,5),(6,13),(7,2),(7,6),(8,14),(9,11),(9,14),(10,12),(10,14),(11,15),(12,15),(13,3),(13,9),(13,10),(14,15),(15,1)],16)
=> ([(0,7),(2,13),(3,11),(3,12),(4,8),(4,10),(5,8),(5,9),(6,4),(6,5),(6,13),(7,2),(7,6),(8,14),(9,11),(9,14),(10,12),(10,14),(11,15),(12,15),(13,3),(13,9),(13,10),(14,15),(15,1)],16)
=> ?
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,7),(1,11),(3,8),(4,10),(5,4),(5,8),(6,1),(6,9),(7,3),(7,5),(8,6),(8,10),(9,11),(10,9),(11,2)],12)
=> ([(0,7),(1,11),(3,8),(4,10),(5,4),(5,8),(6,1),(6,9),(7,3),(7,5),(8,6),(8,10),(9,11),(10,9),(11,2)],12)
=> ?
=> ? = 6
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,6),(2,8),(3,10),(3,11),(3,14),(4,9),(4,11),(4,13),(5,9),(5,10),(5,12),(6,2),(6,7),(7,3),(7,4),(7,5),(7,8),(8,12),(8,13),(8,14),(9,17),(9,18),(10,15),(10,18),(11,16),(11,18),(12,15),(12,17),(13,16),(13,17),(14,15),(14,16),(15,19),(16,19),(17,19),(18,19),(19,1)],20)
=> ([(0,6),(2,8),(3,10),(3,11),(3,14),(4,9),(4,11),(4,13),(5,9),(5,10),(5,12),(6,2),(6,7),(7,3),(7,4),(7,5),(7,8),(8,12),(8,13),(8,14),(9,17),(9,18),(10,15),(10,18),(11,16),(11,18),(12,15),(12,17),(13,16),(13,17),(14,15),(14,16),(15,19),(16,19),(17,19),(18,19),(19,1)],20)
=> ?
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,7),(2,9),(3,9),(4,8),(5,8),(6,2),(6,3),(7,4),(7,5),(8,6),(9,1)],10)
=> ([(0,7),(2,9),(3,9),(4,8),(5,8),(6,2),(6,3),(7,4),(7,5),(8,6),(9,1)],10)
=> ?
=> ? = 7
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,7),(2,8),(2,12),(3,8),(3,11),(4,10),(5,4),(5,9),(6,2),(6,3),(6,9),(7,5),(7,6),(8,15),(9,10),(9,11),(9,12),(10,13),(10,14),(11,13),(11,15),(12,14),(12,15),(13,16),(14,16),(15,16),(16,1)],17)
=> ([(0,7),(2,8),(2,12),(3,8),(3,11),(4,10),(5,4),(5,9),(6,2),(6,3),(6,9),(7,5),(7,6),(8,15),(9,10),(9,11),(9,12),(10,13),(10,14),(11,13),(11,15),(12,14),(12,15),(13,16),(14,16),(15,16),(16,1)],17)
=> ?
=> ? = 2
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,6),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,7),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,1)],19)
=> ([(0,6),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,7),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,1)],19)
=> ?
=> ? = 2
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ?
=> ? = 7
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ?
=> ?
=> ?
=> ? = 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,7),(1,11),(1,12),(3,8),(3,10),(4,8),(4,9),(5,2),(6,1),(6,9),(6,10),(7,3),(7,4),(7,6),(8,14),(9,11),(9,14),(10,12),(10,14),(11,13),(12,13),(13,5),(14,13)],15)
=> ([(0,7),(1,11),(1,12),(3,8),(3,10),(4,8),(4,9),(5,2),(6,1),(6,9),(6,10),(7,3),(7,4),(7,6),(8,14),(9,11),(9,14),(10,12),(10,14),(11,13),(12,13),(13,5),(14,13)],15)
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,7),(1,12),(3,11),(3,13),(4,8),(4,9),(5,8),(5,10),(6,3),(6,9),(6,10),(7,4),(7,5),(7,6),(8,15),(9,13),(9,15),(10,11),(10,15),(11,14),(12,2),(13,1),(13,14),(14,12),(15,14)],16)
=> ([(0,7),(1,12),(3,11),(3,13),(4,8),(4,9),(5,8),(5,10),(6,3),(6,9),(6,10),(7,4),(7,5),(7,6),(8,15),(9,13),(9,15),(10,11),(10,15),(11,14),(12,2),(13,1),(13,14),(14,12),(15,14)],16)
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,7),(2,9),(2,12),(3,8),(3,14),(4,11),(4,13),(5,8),(5,10),(6,4),(6,10),(6,14),(7,3),(7,5),(7,6),(8,16),(9,17),(10,13),(10,16),(11,12),(11,15),(12,17),(13,15),(14,2),(14,11),(14,16),(15,17),(16,9),(16,15),(17,1)],18)
=> ([(0,7),(2,9),(2,12),(3,8),(3,14),(4,11),(4,13),(5,8),(5,10),(6,4),(6,10),(6,14),(7,3),(7,5),(7,6),(8,16),(9,17),(10,13),(10,16),(11,12),(11,15),(12,17),(13,15),(14,2),(14,11),(14,16),(15,17),(16,9),(16,15),(17,1)],18)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,7),(2,12),(3,8),(3,9),(4,9),(4,10),(5,8),(5,10),(6,2),(6,11),(7,3),(7,4),(7,5),(8,13),(9,13),(10,6),(10,13),(11,12),(12,1),(13,11)],14)
=> ([(0,7),(2,12),(3,8),(3,9),(4,9),(4,10),(5,8),(5,10),(6,2),(6,11),(7,3),(7,4),(7,5),(8,13),(9,13),(10,6),(10,13),(11,12),(12,1),(13,11)],14)
=> ?
=> ? = 2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,7),(2,8),(2,10),(3,8),(3,9),(4,11),(4,12),(5,6),(5,9),(5,10),(6,4),(6,13),(6,14),(7,2),(7,3),(7,5),(8,15),(9,13),(9,15),(10,14),(10,15),(11,17),(12,17),(13,11),(13,16),(14,12),(14,16),(15,16),(16,17),(17,1)],18)
=> ([(0,7),(2,8),(2,10),(3,8),(3,9),(4,11),(4,12),(5,6),(5,9),(5,10),(6,4),(6,13),(6,14),(7,2),(7,3),(7,5),(8,15),(9,13),(9,15),(10,14),(10,15),(11,17),(12,17),(13,11),(13,16),(14,12),(14,16),(15,16),(16,17),(17,1)],18)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,7),(1,13),(3,11),(3,12),(4,8),(4,10),(5,8),(5,9),(6,3),(6,9),(6,10),(7,4),(7,5),(7,6),(8,15),(9,11),(9,15),(10,12),(10,15),(11,14),(12,14),(13,2),(14,13),(15,1),(15,14)],16)
=> ([(0,7),(1,13),(3,11),(3,12),(4,8),(4,10),(5,8),(5,9),(6,3),(6,9),(6,10),(7,4),(7,5),(7,6),(8,15),(9,11),(9,15),(10,12),(10,15),(11,14),(12,14),(13,2),(14,13),(15,1),(15,14)],16)
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,7),(2,11),(2,12),(3,8),(4,10),(4,13),(5,9),(5,13),(6,2),(6,9),(6,10),(7,4),(7,5),(7,6),(8,14),(9,11),(9,16),(10,12),(10,16),(11,15),(12,15),(13,3),(13,16),(14,1),(15,14),(16,8),(16,15)],17)
=> ([(0,7),(2,11),(2,12),(3,8),(4,10),(4,13),(5,9),(5,13),(6,2),(6,9),(6,10),(7,4),(7,5),(7,6),(8,14),(9,11),(9,16),(10,12),(10,16),(11,15),(12,15),(13,3),(13,16),(14,1),(15,14),(16,8),(16,15)],17)
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,7),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,1),(6,5),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,6)],12)
=> ([(0,7),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,1),(6,5),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,6)],12)
=> ?
=> ? = 3
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ([(5,10),(6,9),(7,8),(8,10),(9,10)],11)
=> ? = 7
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,7),(2,8),(3,9),(4,5),(4,8),(5,3),(5,10),(6,1),(7,2),(7,4),(8,10),(9,6),(10,9)],11)
=> ([(0,7),(2,8),(3,9),(4,5),(4,8),(5,3),(5,10),(6,1),(7,2),(7,4),(8,10),(9,6),(10,9)],11)
=> ?
=> ? = 5
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,7),(2,8),(3,9),(3,11),(4,9),(4,10),(5,1),(6,3),(6,4),(6,8),(7,2),(7,6),(8,10),(8,11),(9,12),(10,12),(11,12),(12,5)],13)
=> ([(0,7),(2,8),(3,9),(3,11),(4,9),(4,10),(5,1),(6,3),(6,4),(6,8),(7,2),(7,6),(8,10),(8,11),(9,12),(10,12),(11,12),(12,5)],13)
=> ?
=> ? = 3
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,7),(2,8),(3,8),(4,5),(5,1),(6,4),(7,2),(7,3),(8,6)],9)
=> ([(0,7),(2,8),(3,8),(4,5),(5,1),(6,4),(7,2),(7,3),(8,6)],9)
=> ?
=> ? = 7
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ([(0,7),(2,10),(3,9),(4,3),(4,8),(5,2),(5,8),(6,1),(7,4),(7,5),(8,9),(8,10),(9,11),(10,11),(11,6)],12)
=> ([(0,7),(2,10),(3,9),(4,3),(4,8),(5,2),(5,8),(6,1),(7,4),(7,5),(8,9),(8,10),(9,11),(10,11),(11,6)],12)
=> ?
=> ? = 5
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(0,7),(1,10),(3,8),(4,9),(5,4),(5,11),(6,5),(6,8),(7,3),(7,6),(8,11),(9,10),(10,2),(11,1),(11,9)],12)
=> ([(0,7),(1,10),(3,8),(4,9),(5,4),(5,11),(6,5),(6,8),(7,3),(7,6),(8,11),(9,10),(10,2),(11,1),(11,9)],12)
=> ?
=> ? = 6
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,7),(2,11),(3,10),(4,9),(5,6),(5,11),(6,4),(6,8),(7,2),(7,5),(8,9),(8,10),(9,12),(10,12),(11,3),(11,8),(12,1)],13)
=> ([(0,7),(2,11),(3,10),(4,9),(5,6),(5,11),(6,4),(6,8),(7,2),(7,5),(8,9),(8,10),(9,12),(10,12),(11,3),(11,8),(12,1)],13)
=> ?
=> ? = 6
Description
The rigidity index of a graph.
A base of a permutation group is a set $B$ such that the pointwise stabilizer of $B$ is trivial. For example, a base of the symmetric group on $n$ letters must contain all but one letter.
This statistic yields the minimal size of a base for the automorphism group of a graph.
The following 22 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000258The burning number of a graph. St000273The domination number of a graph. St000482The (zero)-forcing number of a graph. St000544The cop number of a graph. St000722The number of different neighbourhoods in a graph. St000774The maximal multiplicity of a Laplacian eigenvalue in a graph. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St000916The packing number of a graph. St001018Sum of projective dimension of the indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path. St001093The detour number of a graph. St001286The annihilation number of a graph. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St001322The size of a minimal independent dominating set in a graph. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001339The irredundance number of a graph. St001363The Euler characteristic of a graph according to Knill. St001373The logarithm of the number of winning configurations of the lights out game on a graph. St001463The number of distinct columns in the nullspace of a graph. St001829The common independence number of a graph. St000449The number of pairs of vertices of a graph with distance 4.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!