searching the database
Your data matches 12 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000311
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00160: Permutations —graph of inversions⟶ Graphs
St000311: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000311: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> 0
[1,2] => ([],2)
=> 0
[2,1] => ([(0,1)],2)
=> 2
[1,2,3] => ([],3)
=> 0
[1,3,2] => ([(1,2)],3)
=> 2
[2,1,3] => ([(1,2)],3)
=> 2
[2,3,1] => ([(0,2),(1,2)],3)
=> 2
[3,1,2] => ([(0,2),(1,2)],3)
=> 2
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[1,2,3,4] => ([],4)
=> 0
[1,2,4,3] => ([(2,3)],4)
=> 2
[1,3,2,4] => ([(2,3)],4)
=> 2
[1,3,4,2] => ([(1,3),(2,3)],4)
=> 2
[1,4,2,3] => ([(1,3),(2,3)],4)
=> 2
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 0
[2,1,3,4] => ([(2,3)],4)
=> 2
[2,1,4,3] => ([(0,3),(1,2)],4)
=> 4
[2,3,1,4] => ([(1,3),(2,3)],4)
=> 2
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 4
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 2
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[3,1,2,4] => ([(1,3),(2,3)],4)
=> 2
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 0
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 0
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 4
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,2,3,4,5] => ([],5)
=> 0
[1,2,3,5,4] => ([(3,4)],5)
=> 2
[1,2,4,3,5] => ([(3,4)],5)
=> 2
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> 2
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> 2
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 0
[1,3,2,4,5] => ([(3,4)],5)
=> 2
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 4
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> 2
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> 4
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> 2
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> 2
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> 2
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 0
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 0
Description
The number of vertices of odd degree in a graph.
Matching statistic: St001198
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00126: Permutations —cactus evacuation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001198: Dyck paths ⟶ ℤResult quality: 25% ●values known / values provided: 41%●distinct values known / distinct values provided: 25%
Mp00126: Permutations —cactus evacuation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001198: Dyck paths ⟶ ℤResult quality: 25% ●values known / values provided: 41%●distinct values known / distinct values provided: 25%
Values
[1] => [1] => [1] => [1,0]
=> ? = 0
[1,2] => [1,2] => [1,2] => [1,0,1,0]
=> 2
[2,1] => [2,1] => [2,1] => [1,1,0,0]
=> ? = 0
[1,2,3] => [1,3,2] => [3,1,2] => [1,1,1,0,0,0]
=> ? ∊ {0,0,2}
[1,3,2] => [1,3,2] => [3,1,2] => [1,1,1,0,0,0]
=> ? ∊ {0,0,2}
[2,1,3] => [2,1,3] => [2,3,1] => [1,1,0,1,0,0]
=> 2
[2,3,1] => [2,3,1] => [2,1,3] => [1,1,0,0,1,0]
=> 2
[3,1,2] => [3,1,2] => [1,3,2] => [1,0,1,1,0,0]
=> 2
[3,2,1] => [3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> ? ∊ {0,0,2}
[1,2,3,4] => [1,4,3,2] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[1,2,4,3] => [1,4,3,2] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[1,3,2,4] => [1,4,3,2] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[1,3,4,2] => [1,4,3,2] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[1,4,2,3] => [1,4,3,2] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[1,4,3,2] => [1,4,3,2] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[2,1,3,4] => [2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2
[2,3,1,4] => [2,4,1,3] => [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 2
[2,3,4,1] => [2,4,3,1] => [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[2,4,1,3] => [2,4,1,3] => [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 2
[2,4,3,1] => [2,4,3,1] => [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[3,1,2,4] => [3,1,4,2] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 2
[3,1,4,2] => [3,1,4,2] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 2
[3,2,1,4] => [3,2,1,4] => [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 2
[3,2,4,1] => [3,2,4,1] => [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 2
[3,4,1,2] => [3,4,1,2] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 2
[3,4,2,1] => [3,4,2,1] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 2
[4,1,2,3] => [4,1,3,2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[4,1,3,2] => [4,1,3,2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[4,2,1,3] => [4,2,1,3] => [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> 2
[4,2,3,1] => [4,2,3,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[4,3,1,2] => [4,3,1,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[1,2,3,4,5] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,3,5,4] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,4,3,5] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,4,5,3] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,5,3,4] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,5,4,3] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,2,4,5] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,2,5,4] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,4,2,5] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,4,5,2] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,5,2,4] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,5,4,2] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,2,3,5] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,2,5,3] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,3,2,5] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,3,5,2] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,5,2,3] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,5,3,2] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,2,3,4] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,2,4,3] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,3,2,4] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,3,4,2] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,4,2,3] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,4,3,2] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,3,4,5] => [2,1,5,4,3] => [5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,3,5,4] => [2,1,5,4,3] => [5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,4,3,5] => [2,1,5,4,3] => [5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,4,5,3] => [2,1,5,4,3] => [5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,5,3,4] => [2,1,5,4,3] => [5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,5,4,3] => [2,1,5,4,3] => [5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,1,4,5] => [2,5,1,4,3] => [5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,1,5,4] => [2,5,1,4,3] => [5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,4,1,5] => [2,5,4,1,3] => [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 2
[2,3,4,5,1] => [2,5,4,3,1] => [5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,5,1,4] => [2,5,4,1,3] => [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 2
[2,4,3,1,5] => [2,5,4,1,3] => [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 2
[2,4,5,1,3] => [2,5,4,1,3] => [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 2
[2,5,3,1,4] => [2,5,4,1,3] => [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 2
[2,5,4,1,3] => [2,5,4,1,3] => [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 2
[3,2,1,4,5] => [3,2,1,5,4] => [3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> 2
[3,2,1,5,4] => [3,2,1,5,4] => [3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> 2
[3,2,4,1,5] => [3,2,5,1,4] => [3,5,2,4,1] => [1,1,1,0,1,1,0,0,0,0]
=> 2
[3,2,4,5,1] => [3,2,5,4,1] => [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 2
[3,2,5,1,4] => [3,2,5,1,4] => [3,5,2,4,1] => [1,1,1,0,1,1,0,0,0,0]
=> 2
[3,2,5,4,1] => [3,2,5,4,1] => [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 2
[3,4,2,1,5] => [3,5,2,1,4] => [3,5,2,1,4] => [1,1,1,0,1,1,0,0,0,0]
=> 2
[3,4,2,5,1] => [3,5,2,4,1] => [3,2,5,1,4] => [1,1,1,0,0,1,1,0,0,0]
=> 2
[3,4,5,1,2] => [3,5,4,1,2] => [3,5,4,1,2] => [1,1,1,0,1,1,0,0,0,0]
=> 2
[3,5,2,1,4] => [3,5,2,1,4] => [3,5,2,1,4] => [1,1,1,0,1,1,0,0,0,0]
=> 2
[3,5,2,4,1] => [3,5,2,4,1] => [3,2,5,1,4] => [1,1,1,0,0,1,1,0,0,0]
=> 2
[3,5,4,1,2] => [3,5,4,1,2] => [3,5,4,1,2] => [1,1,1,0,1,1,0,0,0,0]
=> 2
[4,1,2,3,5] => [4,1,5,3,2] => [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 2
[4,1,2,5,3] => [4,1,5,3,2] => [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 2
[4,1,3,2,5] => [4,1,5,3,2] => [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 2
[4,1,3,5,2] => [4,1,5,3,2] => [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 2
[4,1,5,2,3] => [4,1,5,3,2] => [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 2
[4,1,5,3,2] => [4,1,5,3,2] => [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 2
[4,2,1,3,5] => [4,2,1,5,3] => [4,2,5,3,1] => [1,1,1,1,0,0,1,0,0,0]
=> 2
[4,2,1,5,3] => [4,2,1,5,3] => [4,2,5,3,1] => [1,1,1,1,0,0,1,0,0,0]
=> 2
[4,2,3,1,5] => [4,2,5,1,3] => [4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0]
=> 2
[4,2,3,5,1] => [4,2,5,3,1] => [4,2,1,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> 2
[4,2,5,1,3] => [4,2,5,1,3] => [4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0]
=> 2
[4,2,5,3,1] => [4,2,5,3,1] => [4,2,1,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> 2
[4,3,1,2,5] => [4,3,1,5,2] => [4,1,5,3,2] => [1,1,1,1,0,0,1,0,0,0]
=> 2
[4,3,1,5,2] => [4,3,1,5,2] => [4,1,5,3,2] => [1,1,1,1,0,0,1,0,0,0]
=> 2
[4,3,2,1,5] => [4,3,2,1,5] => [4,5,3,2,1] => [1,1,1,1,0,1,0,0,0,0]
=> 2
[4,3,2,5,1] => [4,3,2,5,1] => [4,3,5,2,1] => [1,1,1,1,0,0,1,0,0,0]
=> 2
Description
The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Matching statistic: St001206
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00126: Permutations —cactus evacuation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001206: Dyck paths ⟶ ℤResult quality: 25% ●values known / values provided: 41%●distinct values known / distinct values provided: 25%
Mp00126: Permutations —cactus evacuation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001206: Dyck paths ⟶ ℤResult quality: 25% ●values known / values provided: 41%●distinct values known / distinct values provided: 25%
Values
[1] => [1] => [1] => [1,0]
=> ? = 0
[1,2] => [1,2] => [1,2] => [1,0,1,0]
=> 2
[2,1] => [2,1] => [2,1] => [1,1,0,0]
=> ? = 0
[1,2,3] => [1,3,2] => [3,1,2] => [1,1,1,0,0,0]
=> ? ∊ {0,0,2}
[1,3,2] => [1,3,2] => [3,1,2] => [1,1,1,0,0,0]
=> ? ∊ {0,0,2}
[2,1,3] => [2,1,3] => [2,3,1] => [1,1,0,1,0,0]
=> 2
[2,3,1] => [2,3,1] => [2,1,3] => [1,1,0,0,1,0]
=> 2
[3,1,2] => [3,1,2] => [1,3,2] => [1,0,1,1,0,0]
=> 2
[3,2,1] => [3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> ? ∊ {0,0,2}
[1,2,3,4] => [1,4,3,2] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[1,2,4,3] => [1,4,3,2] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[1,3,2,4] => [1,4,3,2] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[1,3,4,2] => [1,4,3,2] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[1,4,2,3] => [1,4,3,2] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[1,4,3,2] => [1,4,3,2] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[2,1,3,4] => [2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2
[2,3,1,4] => [2,4,1,3] => [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 2
[2,3,4,1] => [2,4,3,1] => [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[2,4,1,3] => [2,4,1,3] => [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 2
[2,4,3,1] => [2,4,3,1] => [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[3,1,2,4] => [3,1,4,2] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 2
[3,1,4,2] => [3,1,4,2] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 2
[3,2,1,4] => [3,2,1,4] => [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 2
[3,2,4,1] => [3,2,4,1] => [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 2
[3,4,1,2] => [3,4,1,2] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 2
[3,4,2,1] => [3,4,2,1] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 2
[4,1,2,3] => [4,1,3,2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[4,1,3,2] => [4,1,3,2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[4,2,1,3] => [4,2,1,3] => [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> 2
[4,2,3,1] => [4,2,3,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[4,3,1,2] => [4,3,1,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[1,2,3,4,5] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,3,5,4] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,4,3,5] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,4,5,3] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,5,3,4] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,5,4,3] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,2,4,5] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,2,5,4] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,4,2,5] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,4,5,2] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,5,2,4] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,5,4,2] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,2,3,5] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,2,5,3] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,3,2,5] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,3,5,2] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,5,2,3] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,5,3,2] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,2,3,4] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,2,4,3] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,3,2,4] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,3,4,2] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,4,2,3] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,4,3,2] => [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,3,4,5] => [2,1,5,4,3] => [5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,3,5,4] => [2,1,5,4,3] => [5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,4,3,5] => [2,1,5,4,3] => [5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,4,5,3] => [2,1,5,4,3] => [5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,5,3,4] => [2,1,5,4,3] => [5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,5,4,3] => [2,1,5,4,3] => [5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,1,4,5] => [2,5,1,4,3] => [5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,1,5,4] => [2,5,1,4,3] => [5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,4,1,5] => [2,5,4,1,3] => [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 2
[2,3,4,5,1] => [2,5,4,3,1] => [5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,5,1,4] => [2,5,4,1,3] => [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 2
[2,4,3,1,5] => [2,5,4,1,3] => [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 2
[2,4,5,1,3] => [2,5,4,1,3] => [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 2
[2,5,3,1,4] => [2,5,4,1,3] => [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 2
[2,5,4,1,3] => [2,5,4,1,3] => [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 2
[3,2,1,4,5] => [3,2,1,5,4] => [3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> 2
[3,2,1,5,4] => [3,2,1,5,4] => [3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> 2
[3,2,4,1,5] => [3,2,5,1,4] => [3,5,2,4,1] => [1,1,1,0,1,1,0,0,0,0]
=> 2
[3,2,4,5,1] => [3,2,5,4,1] => [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 2
[3,2,5,1,4] => [3,2,5,1,4] => [3,5,2,4,1] => [1,1,1,0,1,1,0,0,0,0]
=> 2
[3,2,5,4,1] => [3,2,5,4,1] => [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 2
[3,4,2,1,5] => [3,5,2,1,4] => [3,5,2,1,4] => [1,1,1,0,1,1,0,0,0,0]
=> 2
[3,4,2,5,1] => [3,5,2,4,1] => [3,2,5,1,4] => [1,1,1,0,0,1,1,0,0,0]
=> 2
[3,4,5,1,2] => [3,5,4,1,2] => [3,5,4,1,2] => [1,1,1,0,1,1,0,0,0,0]
=> 2
[3,5,2,1,4] => [3,5,2,1,4] => [3,5,2,1,4] => [1,1,1,0,1,1,0,0,0,0]
=> 2
[3,5,2,4,1] => [3,5,2,4,1] => [3,2,5,1,4] => [1,1,1,0,0,1,1,0,0,0]
=> 2
[3,5,4,1,2] => [3,5,4,1,2] => [3,5,4,1,2] => [1,1,1,0,1,1,0,0,0,0]
=> 2
[4,1,2,3,5] => [4,1,5,3,2] => [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 2
[4,1,2,5,3] => [4,1,5,3,2] => [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 2
[4,1,3,2,5] => [4,1,5,3,2] => [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 2
[4,1,3,5,2] => [4,1,5,3,2] => [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 2
[4,1,5,2,3] => [4,1,5,3,2] => [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 2
[4,1,5,3,2] => [4,1,5,3,2] => [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 2
[4,2,1,3,5] => [4,2,1,5,3] => [4,2,5,3,1] => [1,1,1,1,0,0,1,0,0,0]
=> 2
[4,2,1,5,3] => [4,2,1,5,3] => [4,2,5,3,1] => [1,1,1,1,0,0,1,0,0,0]
=> 2
[4,2,3,1,5] => [4,2,5,1,3] => [4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0]
=> 2
[4,2,3,5,1] => [4,2,5,3,1] => [4,2,1,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> 2
[4,2,5,1,3] => [4,2,5,1,3] => [4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0]
=> 2
[4,2,5,3,1] => [4,2,5,3,1] => [4,2,1,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> 2
[4,3,1,2,5] => [4,3,1,5,2] => [4,1,5,3,2] => [1,1,1,1,0,0,1,0,0,0]
=> 2
[4,3,1,5,2] => [4,3,1,5,2] => [4,1,5,3,2] => [1,1,1,1,0,0,1,0,0,0]
=> 2
[4,3,2,1,5] => [4,3,2,1,5] => [4,5,3,2,1] => [1,1,1,1,0,1,0,0,0,0]
=> 2
[4,3,2,5,1] => [4,3,2,5,1] => [4,3,5,2,1] => [1,1,1,1,0,0,1,0,0,0]
=> 2
Description
The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$.
Matching statistic: St000264
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00064: Permutations —reverse⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 25% ●values known / values provided: 36%●distinct values known / distinct values provided: 25%
Mp00064: Permutations —reverse⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 25% ●values known / values provided: 36%●distinct values known / distinct values provided: 25%
Values
[1] => [1] => [1] => ([],1)
=> ? = 0
[1,2] => [1,2] => [2,1] => ([(0,1)],2)
=> ? ∊ {0,2}
[2,1] => [2,1] => [1,2] => ([],2)
=> ? ∊ {0,2}
[1,2,3] => [1,3,2] => [2,3,1] => ([(0,2),(1,2)],3)
=> ? ∊ {0,0,2,2,2,2}
[1,3,2] => [1,3,2] => [2,3,1] => ([(0,2),(1,2)],3)
=> ? ∊ {0,0,2,2,2,2}
[2,1,3] => [2,1,3] => [3,1,2] => ([(0,2),(1,2)],3)
=> ? ∊ {0,0,2,2,2,2}
[2,3,1] => [2,3,1] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {0,0,2,2,2,2}
[3,1,2] => [3,1,2] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {0,0,2,2,2,2}
[3,2,1] => [3,2,1] => [1,2,3] => ([],3)
=> ? ∊ {0,0,2,2,2,2}
[1,2,3,4] => [1,4,3,2] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,4,3] => [1,4,3,2] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,2,4] => [1,4,3,2] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,3,4,2] => [1,4,3,2] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,2,3] => [1,4,3,2] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,4,3,2] => [1,4,3,2] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[2,1,3,4] => [2,1,4,3] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[2,1,4,3] => [2,1,4,3] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[2,3,1,4] => [2,4,1,3] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[2,3,4,1] => [2,4,3,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[2,4,1,3] => [2,4,1,3] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[2,4,3,1] => [2,4,3,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[3,1,2,4] => [3,1,4,2] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[3,1,4,2] => [3,1,4,2] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[3,2,1,4] => [3,2,1,4] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[3,2,4,1] => [3,2,4,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[3,4,1,2] => [3,4,1,2] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[3,4,2,1] => [3,4,2,1] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[4,1,2,3] => [4,1,3,2] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[4,1,3,2] => [4,1,3,2] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[4,2,1,3] => [4,2,1,3] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[4,2,3,1] => [4,2,3,1] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[4,3,1,2] => [4,3,1,2] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[4,3,2,1] => [4,3,2,1] => [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4}
[1,2,3,4,5] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[1,2,3,5,4] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[1,2,4,3,5] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[1,2,4,5,3] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[1,2,5,3,4] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[1,2,5,4,3] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[1,3,2,4,5] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[1,3,2,5,4] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[1,3,4,2,5] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[1,3,4,5,2] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[1,3,5,2,4] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[1,3,5,4,2] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[1,4,2,3,5] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[1,4,2,5,3] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[1,4,3,2,5] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[1,4,3,5,2] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[1,4,5,2,3] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[1,4,5,3,2] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[1,5,2,3,4] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4}
[2,1,3,4,5] => [2,1,5,4,3] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[2,1,3,5,4] => [2,1,5,4,3] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[2,1,4,3,5] => [2,1,5,4,3] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[2,1,4,5,3] => [2,1,5,4,3] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[2,1,5,3,4] => [2,1,5,4,3] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[2,1,5,4,3] => [2,1,5,4,3] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[2,3,1,4,5] => [2,5,1,4,3] => [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[2,3,1,5,4] => [2,5,1,4,3] => [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[2,4,1,3,5] => [2,5,1,4,3] => [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[2,4,1,5,3] => [2,5,1,4,3] => [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[2,5,1,3,4] => [2,5,1,4,3] => [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[2,5,1,4,3] => [2,5,1,4,3] => [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[3,1,2,4,5] => [3,1,5,4,2] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[3,1,2,5,4] => [3,1,5,4,2] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[3,1,4,2,5] => [3,1,5,4,2] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[3,1,4,5,2] => [3,1,5,4,2] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[3,1,5,2,4] => [3,1,5,4,2] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[3,1,5,4,2] => [3,1,5,4,2] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[3,2,1,4,5] => [3,2,1,5,4] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[3,2,1,5,4] => [3,2,1,5,4] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[3,2,4,1,5] => [3,2,5,1,4] => [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[3,2,4,5,1] => [3,2,5,4,1] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[3,2,5,1,4] => [3,2,5,1,4] => [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[3,2,5,4,1] => [3,2,5,4,1] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[4,2,1,3,5] => [4,2,1,5,3] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[4,2,1,5,3] => [4,2,1,5,3] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[5,2,1,3,4] => [5,2,1,4,3] => [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[5,2,1,4,3] => [5,2,1,4,3] => [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[2,1,3,4,5,6] => [2,1,6,5,4,3] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[2,1,3,4,6,5] => [2,1,6,5,4,3] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[2,1,3,5,4,6] => [2,1,6,5,4,3] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[2,1,3,5,6,4] => [2,1,6,5,4,3] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[2,1,3,6,4,5] => [2,1,6,5,4,3] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[2,1,3,6,5,4] => [2,1,6,5,4,3] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[2,1,4,3,5,6] => [2,1,6,5,4,3] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[2,1,4,3,6,5] => [2,1,6,5,4,3] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[2,1,4,5,3,6] => [2,1,6,5,4,3] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[2,1,4,5,6,3] => [2,1,6,5,4,3] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[2,1,4,6,3,5] => [2,1,6,5,4,3] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[2,1,4,6,5,3] => [2,1,6,5,4,3] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[2,1,5,3,4,6] => [2,1,6,5,4,3] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[2,1,5,3,6,4] => [2,1,6,5,4,3] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[2,1,5,4,3,6] => [2,1,6,5,4,3] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[2,1,5,4,6,3] => [2,1,6,5,4,3] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[2,1,5,6,3,4] => [2,1,6,5,4,3] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[2,1,5,6,4,3] => [2,1,6,5,4,3] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[2,1,6,3,4,5] => [2,1,6,5,4,3] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[2,1,6,3,5,4] => [2,1,6,5,4,3] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
Description
The girth of a graph, which is not a tree.
This is the length of the shortest cycle in the graph.
Matching statistic: St001630
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Values
[1] => ([],1)
=> ([],1)
=> ([],1)
=> ? = 0
[1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,2}
[2,1] => ([],2)
=> ([],1)
=> ([],1)
=> ? ∊ {0,2}
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,2,2,2}
[2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,2,2,2}
[2,3,1] => ([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,2,2,2}
[3,1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,2,2,2}
[3,2,1] => ([],3)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,2,2,2}
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,4,3,1] => ([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,4,2,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[4,1,3,2] => ([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[4,2,3,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[4,3,1,2] => ([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[4,3,2,1] => ([],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,2,4,3] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,5,3,4,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,4,3,5] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,5,3,4] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,5,4,3] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,1,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,5,1,4] => ([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,4,1,3,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,4,1,5,3] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,4,3,1,5] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,4,5,1,3] => ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,4,5,3,1] => ([(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,5,1,3,4] => ([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,5,1,4,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,5,3,1,4] => ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,5,3,4,1] => ([(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,1,2,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,1,2,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,1,4,2,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,1,4,5,2] => ([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,1,5,2,4] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,1,5,4,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,2,1,5,4] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,2,5,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,4,2,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,4,5,2,1] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,5,2,1,4] => ([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,5,2,4,1] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,5,4,1,2] => ([(0,4),(1,2),(1,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[4,1,3,2,5] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
Description
The global dimension of the incidence algebra of the lattice over the rational numbers.
Matching statistic: St000259
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000259: Graphs ⟶ ℤResult quality: 33% ●values known / values provided: 33%●distinct values known / distinct values provided: 50%
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000259: Graphs ⟶ ℤResult quality: 33% ●values known / values provided: 33%●distinct values known / distinct values provided: 50%
Values
[1] => [1] => [1] => ([],1)
=> 0
[1,2] => [1,2] => [2] => ([],2)
=> ? ∊ {0,2}
[2,1] => [1,2] => [2] => ([],2)
=> ? ∊ {0,2}
[1,2,3] => [1,2,3] => [3] => ([],3)
=> ? ∊ {0,0,2,2}
[1,3,2] => [1,2,3] => [3] => ([],3)
=> ? ∊ {0,0,2,2}
[2,1,3] => [1,2,3] => [3] => ([],3)
=> ? ∊ {0,0,2,2}
[2,3,1] => [1,2,3] => [3] => ([],3)
=> ? ∊ {0,0,2,2}
[3,1,2] => [1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[3,2,1] => [1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[1,2,3,4] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4}
[1,2,4,3] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4}
[1,3,2,4] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4}
[1,3,4,2] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4}
[1,4,2,3] => [1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,4,3,2] => [1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[2,1,3,4] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4}
[2,1,4,3] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4}
[2,3,1,4] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4}
[2,3,4,1] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4}
[2,4,1,3] => [1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[2,4,3,1] => [1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[3,1,2,4] => [1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4}
[3,1,4,2] => [1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[3,2,1,4] => [1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4}
[3,2,4,1] => [1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[3,4,1,2] => [1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4}
[3,4,2,1] => [1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4}
[4,1,2,3] => [1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[4,1,3,2] => [1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4}
[4,2,1,3] => [1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[4,2,3,1] => [1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4}
[4,3,1,2] => [1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4}
[4,3,2,1] => [1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4}
[1,2,3,4,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,3,5,4] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,4,3,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,4,5,3] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,5,3,4] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,2,5,4,3] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,3,2,4,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,2,5,4] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,4,2,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,4,5,2] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,5,2,4] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,3,5,4,2] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,4,2,3,5] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,2,5,3] => [1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,4,3,2,5] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,3,5,2] => [1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,4,5,2,3] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,5,3,2] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,2,3,4] => [1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,5,2,4,3] => [1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,3,2,4] => [1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,5,3,4,2] => [1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,4,2,3] => [1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,4,3,2] => [1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,3,4,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,3,5,4] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,4,3,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,4,5,3] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,5,3,4] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[2,1,5,4,3] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[2,3,1,4,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,1,5,4] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,4,1,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,4,5,1] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,5,1,4] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[2,3,5,4,1] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[2,4,1,3,5] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,4,1,5,3] => [1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[2,4,3,1,5] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,4,3,5,1] => [1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[2,4,5,1,3] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,4,5,3,1] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,5,1,3,4] => [1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,5,3,1,4] => [1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,1,4,5,2] => [1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[3,1,5,2,4] => [1,3,5,4,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,2,4,5,1] => [1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[3,2,5,1,4] => [1,3,5,4,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,5,1,2,4] => [1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,5,1,4,2] => [1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,5,2,1,4] => [1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,5,2,4,1] => [1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[4,1,2,5,3] => [1,4,5,3,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[4,1,5,3,2] => [1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[4,2,1,5,3] => [1,4,5,3,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[4,2,5,3,1] => [1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[4,5,1,2,3] => [1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[4,5,2,1,3] => [1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[4,5,3,1,2] => [1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[4,5,3,2,1] => [1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[5,1,2,3,4] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[5,1,4,2,3] => [1,5,3,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[5,2,1,3,4] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[5,2,4,1,3] => [1,5,3,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[5,4,1,3,2] => [1,5,2,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[5,4,2,3,1] => [1,5,2,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[5,4,3,1,2] => [1,5,2,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
Description
The diameter of a connected graph.
This is the greatest distance between any pair of vertices.
Matching statistic: St000777
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000777: Graphs ⟶ ℤResult quality: 33% ●values known / values provided: 33%●distinct values known / distinct values provided: 75%
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000777: Graphs ⟶ ℤResult quality: 33% ●values known / values provided: 33%●distinct values known / distinct values provided: 75%
Values
[1] => [1] => [1] => ([],1)
=> 1 = 0 + 1
[1,2] => [1,2] => [2] => ([],2)
=> ? ∊ {0,2} + 1
[2,1] => [1,2] => [2] => ([],2)
=> ? ∊ {0,2} + 1
[1,2,3] => [1,2,3] => [3] => ([],3)
=> ? ∊ {0,0,2,2} + 1
[1,3,2] => [1,2,3] => [3] => ([],3)
=> ? ∊ {0,0,2,2} + 1
[2,1,3] => [1,2,3] => [3] => ([],3)
=> ? ∊ {0,0,2,2} + 1
[2,3,1] => [1,2,3] => [3] => ([],3)
=> ? ∊ {0,0,2,2} + 1
[3,1,2] => [1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[3,2,1] => [1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,2,3,4] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4} + 1
[1,2,4,3] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4} + 1
[1,3,2,4] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4} + 1
[1,3,4,2] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4} + 1
[1,4,2,3] => [1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,4,3,2] => [1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,1,3,4] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4} + 1
[2,1,4,3] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4} + 1
[2,3,1,4] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4} + 1
[2,3,4,1] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4} + 1
[2,4,1,3] => [1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,4,3,1] => [1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,1,2,4] => [1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4} + 1
[3,1,4,2] => [1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,2,1,4] => [1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4} + 1
[3,2,4,1] => [1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,4,1,2] => [1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4} + 1
[3,4,2,1] => [1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4} + 1
[4,1,2,3] => [1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[4,1,3,2] => [1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4} + 1
[4,2,1,3] => [1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[4,2,3,1] => [1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4} + 1
[4,3,1,2] => [1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4} + 1
[4,3,2,1] => [1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,4,4,4,4} + 1
[1,2,3,4,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,2,3,5,4] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,2,4,3,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,2,4,5,3] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,2,5,3,4] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,2,5,4,3] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,3,2,4,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,3,2,5,4] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,3,4,2,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,3,4,5,2] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,3,5,2,4] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,3,5,4,2] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,4,2,3,5] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,4,2,5,3] => [1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,4,3,2,5] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,4,3,5,2] => [1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,4,5,2,3] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,4,5,3,2] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,5,2,3,4] => [1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,5,2,4,3] => [1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,5,3,2,4] => [1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,5,3,4,2] => [1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,5,4,2,3] => [1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,5,4,3,2] => [1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,1,3,4,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,1,3,5,4] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,1,4,3,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,1,4,5,3] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,1,5,3,4] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,1,5,4,3] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,3,1,4,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,3,1,5,4] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,3,4,1,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,3,4,5,1] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,3,5,1,4] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,3,5,4,1] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,4,1,3,5] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,4,1,5,3] => [1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,4,3,1,5] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,4,3,5,1] => [1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,4,5,1,3] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,4,5,3,1] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,5,1,3,4] => [1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,5,3,1,4] => [1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[3,1,4,5,2] => [1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[3,1,5,2,4] => [1,3,5,4,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[3,2,4,5,1] => [1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[3,2,5,1,4] => [1,3,5,4,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[3,5,1,2,4] => [1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[3,5,1,4,2] => [1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[3,5,2,1,4] => [1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[3,5,2,4,1] => [1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[4,1,2,5,3] => [1,4,5,3,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[4,1,5,3,2] => [1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[4,2,1,5,3] => [1,4,5,3,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[4,2,5,3,1] => [1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[4,5,1,2,3] => [1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[4,5,2,1,3] => [1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[4,5,3,1,2] => [1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[4,5,3,2,1] => [1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[5,1,2,3,4] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[5,1,4,2,3] => [1,5,3,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[5,2,1,3,4] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[5,2,4,1,3] => [1,5,3,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[5,4,1,3,2] => [1,5,2,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[5,4,2,3,1] => [1,5,2,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[5,4,3,1,2] => [1,5,2,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Matching statistic: St001878
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Values
[1] => ([],1)
=> ([],1)
=> ([],1)
=> ? = 0
[1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,2}
[2,1] => ([],2)
=> ([],1)
=> ([],1)
=> ? ∊ {0,2}
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,2] => ([(0,1),(0,2)],3)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,2,2,2}
[2,1,3] => ([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,2,2,2}
[2,3,1] => ([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,2,2,2}
[3,1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,2,2,2}
[3,2,1] => ([],3)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,2,2,2}
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,4,3,1] => ([(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[3,2,4,1] => ([(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,4,2,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[4,1,3,2] => ([(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[4,2,1,3] => ([(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[4,2,3,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[4,3,1,2] => ([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[4,3,2,1] => ([],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,5,2,4,3] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,3,4,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,4,3,5] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,5,3,4] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,5,4,3] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,1,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,4,1,3,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,1,2,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,1,4,2,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,4,5,2,1] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,5,2,4,1] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[5,2,3,4,1] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[5,3,1,4,2] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[5,3,4,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[5,4,1,2,3] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,4,5,6,3] => ([(0,5),(3,4),(4,2),(5,1),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,4,6,3,5] => ([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,5,3,6,4] => ([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,5,6,3,4] => ([(0,5),(3,2),(4,1),(5,3),(5,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,6,3,4,5] => ([(0,5),(3,4),(4,2),(5,1),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,2,5,6,4] => ([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,2,6,4,5] => ([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,4,2,6,5] => ([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,4,5,2,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,5,2,4,6] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,2,3,6,5] => ([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,2,5,3,6] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,5,2,3,6] => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,5,6,3,2] => ([(0,2),(0,3),(0,5),(4,1),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,6,3,5,2] => ([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,5,2,3,4,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,5,3,6,4,2] => ([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,5,6,3,4,2] => ([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,5,6,4,2,3] => ([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,6,3,4,5,2] => ([(0,2),(0,3),(0,5),(4,1),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Matching statistic: St000422
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00064: Permutations —reverse⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000422: Graphs ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 100%
Mp00064: Permutations —reverse⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000422: Graphs ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1] => ([],1)
=> 0
[1,2] => [1,2] => [2,1] => ([(0,1)],2)
=> 2
[2,1] => [2,1] => [1,2] => ([],2)
=> 0
[1,2,3] => [1,3,2] => [2,3,1] => ([(0,2),(1,2)],3)
=> ? ∊ {0,2,2}
[1,3,2] => [1,3,2] => [2,3,1] => ([(0,2),(1,2)],3)
=> ? ∊ {0,2,2}
[2,1,3] => [2,1,3] => [3,1,2] => ([(0,2),(1,2)],3)
=> ? ∊ {0,2,2}
[2,3,1] => [2,3,1] => [1,3,2] => ([(1,2)],3)
=> 2
[3,1,2] => [3,1,2] => [2,1,3] => ([(1,2)],3)
=> 2
[3,2,1] => [3,2,1] => [1,2,3] => ([],3)
=> 0
[1,2,3,4] => [1,4,3,2] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,4}
[1,2,4,3] => [1,4,3,2] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,4}
[1,3,2,4] => [1,4,3,2] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,4}
[1,3,4,2] => [1,4,3,2] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,4}
[1,4,2,3] => [1,4,3,2] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,4}
[1,4,3,2] => [1,4,3,2] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,4}
[2,1,3,4] => [2,1,4,3] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[2,1,4,3] => [2,1,4,3] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[2,3,1,4] => [2,4,1,3] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,4}
[2,3,4,1] => [2,4,3,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,4}
[2,4,1,3] => [2,4,1,3] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,4}
[2,4,3,1] => [2,4,3,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,4}
[3,1,2,4] => [3,1,4,2] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,4}
[3,1,4,2] => [3,1,4,2] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,4}
[3,2,1,4] => [3,2,1,4] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,4}
[3,2,4,1] => [3,2,4,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,4}
[3,4,1,2] => [3,4,1,2] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> 4
[3,4,2,1] => [3,4,2,1] => [1,2,4,3] => ([(2,3)],4)
=> 2
[4,1,2,3] => [4,1,3,2] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,4}
[4,1,3,2] => [4,1,3,2] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,4}
[4,2,1,3] => [4,2,1,3] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,4}
[4,2,3,1] => [4,2,3,1] => [1,3,2,4] => ([(2,3)],4)
=> 2
[4,3,1,2] => [4,3,1,2] => [2,1,3,4] => ([(2,3)],4)
=> 2
[4,3,2,1] => [4,3,2,1] => [1,2,3,4] => ([],4)
=> 0
[1,2,3,4,5] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,2,3,5,4] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,2,4,3,5] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,2,4,5,3] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,2,5,3,4] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,2,5,4,3] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,3,2,4,5] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,3,2,5,4] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,3,4,2,5] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,3,4,5,2] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,3,5,2,4] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,3,5,4,2] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,4,2,3,5] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,4,2,5,3] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,4,3,2,5] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,4,3,5,2] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,4,5,2,3] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,4,5,3,2] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,5,2,3,4] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,5,2,4,3] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,5,3,2,4] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,5,3,4,2] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,5,4,2,3] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,5,4,3,2] => [1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[2,1,3,4,5] => [2,1,5,4,3] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[2,1,3,5,4] => [2,1,5,4,3] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[2,1,4,3,5] => [2,1,5,4,3] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[2,1,4,5,3] => [2,1,5,4,3] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[2,1,5,3,4] => [2,1,5,4,3] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[2,1,5,4,3] => [2,1,5,4,3] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[2,3,1,4,5] => [2,5,1,4,3] => [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[2,3,1,5,4] => [2,5,1,4,3] => [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[2,3,4,1,5] => [2,5,4,1,3] => [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[2,3,4,5,1] => [2,5,4,3,1] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[2,3,5,1,4] => [2,5,4,1,3] => [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[2,3,5,4,1] => [2,5,4,3,1] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[2,4,1,3,5] => [2,5,1,4,3] => [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[2,4,1,5,3] => [2,5,1,4,3] => [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[2,4,3,1,5] => [2,5,4,1,3] => [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[2,4,3,5,1] => [2,5,4,3,1] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[2,4,5,1,3] => [2,5,4,1,3] => [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[2,4,5,3,1] => [2,5,4,3,1] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[2,5,1,3,4] => [2,5,1,4,3] => [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[2,5,1,4,3] => [2,5,1,4,3] => [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[2,5,3,1,4] => [2,5,4,1,3] => [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[2,5,3,4,1] => [2,5,4,3,1] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[2,5,4,1,3] => [2,5,4,1,3] => [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[2,5,4,3,1] => [2,5,4,3,1] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[3,1,2,4,5] => [3,1,5,4,2] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[3,1,2,5,4] => [3,1,5,4,2] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[3,1,4,2,5] => [3,1,5,4,2] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[3,1,4,5,2] => [3,1,5,4,2] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[3,1,5,2,4] => [3,1,5,4,2] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[3,1,5,4,2] => [3,1,5,4,2] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4}
[3,2,4,5,1] => [3,2,5,4,1] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[3,2,5,4,1] => [3,2,5,4,1] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[4,3,2,1,5] => [4,3,2,1,5] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[4,5,2,3,1] => [4,5,2,3,1] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 4
[4,5,3,1,2] => [4,5,3,1,2] => [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> 4
[4,5,3,2,1] => [4,5,3,2,1] => [1,2,3,5,4] => ([(3,4)],5)
=> 2
[5,2,1,3,4] => [5,2,1,4,3] => [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[5,2,1,4,3] => [5,2,1,4,3] => [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[5,3,4,1,2] => [5,3,4,1,2] => [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> 4
[5,3,4,2,1] => [5,3,4,2,1] => [1,2,4,3,5] => ([(3,4)],5)
=> 2
[5,4,2,3,1] => [5,4,2,3,1] => [1,3,2,4,5] => ([(3,4)],5)
=> 2
[5,4,3,1,2] => [5,4,3,1,2] => [2,1,3,4,5] => ([(3,4)],5)
=> 2
[5,4,3,2,1] => [5,4,3,2,1] => [1,2,3,4,5] => ([],5)
=> 0
Description
The energy of a graph, if it is integral.
The energy of a graph is the sum of the absolute values of its eigenvalues. This statistic is only defined for graphs with integral energy. It is known, that the energy is never an odd integer [2]. In fact, it is never the square root of an odd integer [3].
The energy of a graph is the sum of the energies of the connected components of a graph. The energy of the complete graph $K_n$ equals $2n-2$. For this reason, we do not define the energy of the empty graph.
Matching statistic: St001200
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001200: Dyck paths ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 25%
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001200: Dyck paths ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 25%
Values
[1] => [1] => [1] => [1,0]
=> ? = 0
[1,2] => [1,2] => [1,2] => [1,0,1,0]
=> 2
[2,1] => [2,1] => [2,1] => [1,1,0,0]
=> ? = 0
[1,2,3] => [1,2,3] => [1,3,2] => [1,0,1,1,0,0]
=> 2
[1,3,2] => [1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> 2
[2,1,3] => [2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> 2
[2,3,1] => [3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> ? ∊ {0,0,2}
[3,1,2] => [3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> ? ∊ {0,0,2}
[3,2,1] => [3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> ? ∊ {0,0,2}
[1,2,3,4] => [1,2,3,4] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
[1,2,4,3] => [1,2,4,3] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
[1,3,2,4] => [1,3,2,4] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
[1,3,4,2] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
[1,4,2,3] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
[1,4,3,2] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
[2,1,3,4] => [2,1,3,4] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2
[2,3,1,4] => [3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 2
[2,3,4,1] => [4,2,3,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[2,4,1,3] => [3,4,1,2] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 2
[2,4,3,1] => [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[3,1,2,4] => [3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 2
[3,1,4,2] => [4,2,3,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[3,2,1,4] => [3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 2
[3,2,4,1] => [4,2,3,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[3,4,1,2] => [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[3,4,2,1] => [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[4,1,2,3] => [4,2,3,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[4,1,3,2] => [4,2,3,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[4,2,1,3] => [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[4,2,3,1] => [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[4,3,1,2] => [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,2,2,2,2,4,4,4,4}
[1,2,3,4,5] => [1,2,3,4,5] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,2,3,5,4] => [1,2,3,5,4] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,2,4,3,5] => [1,2,4,3,5] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,2,4,5,3] => [1,2,5,4,3] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,2,5,3,4] => [1,2,5,4,3] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,2,5,4,3] => [1,2,5,4,3] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,3,2,4,5] => [1,3,2,4,5] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,3,2,5,4] => [1,3,2,5,4] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,3,4,2,5] => [1,4,3,2,5] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,3,4,5,2] => [1,5,3,4,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,3,5,2,4] => [1,4,5,2,3] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,3,5,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,4,2,3,5] => [1,4,3,2,5] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,4,2,5,3] => [1,5,3,4,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,4,3,2,5] => [1,4,3,2,5] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,4,3,5,2] => [1,5,3,4,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,4,5,2,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,4,5,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,5,2,3,4] => [1,5,3,4,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,5,2,4,3] => [1,5,3,4,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,5,3,2,4] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,5,3,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,5,4,2,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,5,4,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[2,1,3,4,5] => [2,1,3,4,5] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[2,1,3,5,4] => [2,1,3,5,4] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[2,1,4,3,5] => [2,1,4,3,5] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[2,1,4,5,3] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[2,1,5,3,4] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[2,1,5,4,3] => [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[2,3,1,4,5] => [3,2,1,4,5] => [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 2
[2,3,1,5,4] => [3,2,1,5,4] => [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 2
[2,3,4,1,5] => [4,2,3,1,5] => [4,2,5,1,3] => [1,1,1,1,0,0,1,0,0,0]
=> 2
[2,3,4,5,1] => [5,2,3,4,1] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,5,1,4] => [4,2,5,1,3] => [4,2,5,1,3] => [1,1,1,1,0,0,1,0,0,0]
=> 2
[2,3,5,4,1] => [5,2,4,3,1] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,4,3,5,1] => [5,3,2,4,1] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,4,5,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,5,3,4,1] => [5,4,3,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,5,4,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,1,4,5,2] => [5,2,3,4,1] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,1,5,4,2] => [5,2,4,3,1] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,2,4,5,1] => [5,2,3,4,1] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,2,5,4,1] => [5,2,4,3,1] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,4,1,5,2] => [5,3,2,4,1] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,4,2,5,1] => [5,3,2,4,1] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,4,5,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,4,5,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,5,1,4,2] => [5,4,3,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,5,2,4,1] => [5,4,3,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,5,4,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,5,4,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,1,2,5,3] => [5,2,3,4,1] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,1,3,5,2] => [5,2,3,4,1] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,1,5,2,3] => [5,2,4,3,1] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,1,5,3,2] => [5,2,4,3,1] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,2,1,5,3] => [5,3,2,4,1] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,2,3,5,1] => [5,3,2,4,1] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,2,5,1,3] => [5,4,3,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,2,5,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,3,1,5,2] => [5,3,2,4,1] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,3,2,5,1] => [5,3,2,4,1] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,3,5,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,3,5,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,5,1,2,3] => [5,4,3,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,5,1,3,2] => [5,4,3,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,5,2,1,3] => [5,4,3,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
Description
The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
The following 2 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!