Your data matches 209 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000312: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 0
([],2)
=> 0
([(0,1)],2)
=> 2
([],3)
=> 0
([(1,2)],3)
=> 2
([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(1,2)],3)
=> 0
([],4)
=> 0
([(2,3)],4)
=> 2
([(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2)],4)
=> 4
([(0,3),(1,2),(2,3)],4)
=> 2
([(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([],5)
=> 0
([(3,4)],5)
=> 2
([(2,4),(3,4)],5)
=> 2
([(1,4),(2,4),(3,4)],5)
=> 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(1,4),(2,3)],5)
=> 4
([(1,4),(2,3),(3,4)],5)
=> 2
([(0,1),(2,4),(3,4)],5)
=> 4
([(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 0
Description
The number of leaves in a graph. That is, the number of vertices of a graph that have degree 1.
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St000319: Integer partitions ⟶ ℤResult quality: 53% values known / values provided: 53%distinct values known / distinct values provided: 57%
Values
([],1)
=> [1] => [[1],[]]
=> []
=> ? = 0
([],2)
=> [2] => [[2],[]]
=> []
=> ? ∊ {0,2}
([(0,1)],2)
=> [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,2}
([],3)
=> [3] => [[3],[]]
=> []
=> ? ∊ {0,2,2}
([(1,2)],3)
=> [1,2] => [[2,1],[]]
=> []
=> ? ∊ {0,2,2}
([(0,2),(1,2)],3)
=> [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,2,2}
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [[2,2],[1]]
=> [1]
=> 0
([],4)
=> [4] => [[4],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(2,3)],4)
=> [1,3] => [[3,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(1,3),(2,3)],4)
=> [1,1,2] => [[2,1,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 0
([(0,3),(1,2)],4)
=> [2,2] => [[3,2],[1]]
=> [1]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [[3,2],[1]]
=> [1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [[3,3],[2]]
=> [2]
=> 1
([],5)
=> [5] => [[5],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(3,4)],5)
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(2,4),(3,4)],5)
=> [1,1,3] => [[3,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 1
([(1,4),(2,3)],5)
=> [2,3] => [[4,2],[1]]
=> [1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [[4,2],[1]]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [[4,3],[2]]
=> [2]
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [[4,4],[3]]
=> [3]
=> 2
([],6)
=> [6] => [[6],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(4,5)],6)
=> [1,5] => [[5,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(3,5),(4,5)],6)
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 2
([(2,5),(3,4)],6)
=> [2,4] => [[5,2],[1]]
=> [1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [[5,2],[1]]
=> [1]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> 2
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [[5,3],[2]]
=> [2]
=> 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
Description
The spin of an integer partition. The Ferrers shape of an integer partition $\lambda$ can be decomposed into border strips. The spin is then defined to be the total number of crossings of border strips of $\lambda$ with the vertical lines in the Ferrers shape. The following example is taken from Appendix B in [1]: Let $\lambda = (5,5,4,4,2,1)$. Removing the border strips successively yields the sequence of partitions $$(5,5,4,4,2,1), (4,3,3,1), (2,2), (1), ().$$ The first strip $(5,5,4,4,2,1) \setminus (4,3,3,1)$ crosses $4$ times, the second strip $(4,3,3,1) \setminus (2,2)$ crosses $3$ times, the strip $(2,2) \setminus (1)$ crosses $1$ time, and the remaining strip $(1) \setminus ()$ does not cross. This yields the spin of $(5,5,4,4,2,1)$ to be $4+3+1 = 8$.
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St000320: Integer partitions ⟶ ℤResult quality: 53% values known / values provided: 53%distinct values known / distinct values provided: 57%
Values
([],1)
=> [1] => [[1],[]]
=> []
=> ? = 0
([],2)
=> [2] => [[2],[]]
=> []
=> ? ∊ {0,2}
([(0,1)],2)
=> [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,2}
([],3)
=> [3] => [[3],[]]
=> []
=> ? ∊ {0,2,2}
([(1,2)],3)
=> [1,2] => [[2,1],[]]
=> []
=> ? ∊ {0,2,2}
([(0,2),(1,2)],3)
=> [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,2,2}
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [[2,2],[1]]
=> [1]
=> 0
([],4)
=> [4] => [[4],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(2,3)],4)
=> [1,3] => [[3,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(1,3),(2,3)],4)
=> [1,1,2] => [[2,1,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 0
([(0,3),(1,2)],4)
=> [2,2] => [[3,2],[1]]
=> [1]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [[3,2],[1]]
=> [1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [[3,3],[2]]
=> [2]
=> 1
([],5)
=> [5] => [[5],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(3,4)],5)
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(2,4),(3,4)],5)
=> [1,1,3] => [[3,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 1
([(1,4),(2,3)],5)
=> [2,3] => [[4,2],[1]]
=> [1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [[4,2],[1]]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [[4,3],[2]]
=> [2]
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [[4,4],[3]]
=> [3]
=> 2
([],6)
=> [6] => [[6],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(4,5)],6)
=> [1,5] => [[5,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(3,5),(4,5)],6)
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 2
([(2,5),(3,4)],6)
=> [2,4] => [[5,2],[1]]
=> [1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [[5,2],[1]]
=> [1]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> 2
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [[5,3],[2]]
=> [2]
=> 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
Description
The dinv adjustment of an integer partition. The Ferrers shape of an integer partition $\lambda = (\lambda_1,\ldots,\lambda_k)$ can be decomposed into border strips. For $0 \leq j < \lambda_1$ let $n_j$ be the length of the border strip starting at $(\lambda_1-j,0)$. The dinv adjustment is then defined by $$\sum_{j:n_j > 0}(\lambda_1-1-j).$$ The following example is taken from Appendix B in [2]: Let $\lambda=(5,5,4,4,2,1)$. Removing the border strips successively yields the sequence of partitions $$(5,5,4,4,2,1),(4,3,3,1),(2,2),(1),(),$$ and we obtain $(n_0,\ldots,n_4) = (10,7,0,3,1)$. The dinv adjustment is thus $4+3+1+0 = 8$.
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St001280: Integer partitions ⟶ ℤResult quality: 53% values known / values provided: 53%distinct values known / distinct values provided: 57%
Values
([],1)
=> [1] => [[1],[]]
=> []
=> ? = 0
([],2)
=> [2] => [[2],[]]
=> []
=> ? ∊ {0,2}
([(0,1)],2)
=> [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,2}
([],3)
=> [3] => [[3],[]]
=> []
=> ? ∊ {0,2,2}
([(1,2)],3)
=> [1,2] => [[2,1],[]]
=> []
=> ? ∊ {0,2,2}
([(0,2),(1,2)],3)
=> [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,2,2}
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [[2,2],[1]]
=> [1]
=> 0
([],4)
=> [4] => [[4],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(2,3)],4)
=> [1,3] => [[3,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(1,3),(2,3)],4)
=> [1,1,2] => [[2,1,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 0
([(0,3),(1,2)],4)
=> [2,2] => [[3,2],[1]]
=> [1]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [[3,2],[1]]
=> [1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [[3,3],[2]]
=> [2]
=> 1
([],5)
=> [5] => [[5],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(3,4)],5)
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(2,4),(3,4)],5)
=> [1,1,3] => [[3,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 1
([(1,4),(2,3)],5)
=> [2,3] => [[4,2],[1]]
=> [1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [[4,2],[1]]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [[4,3],[2]]
=> [2]
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [[4,4],[3]]
=> [3]
=> 1
([],6)
=> [6] => [[6],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(4,5)],6)
=> [1,5] => [[5,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(3,5),(4,5)],6)
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 1
([(2,5),(3,4)],6)
=> [2,4] => [[5,2],[1]]
=> [1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [[5,2],[1]]
=> [1]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> 1
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [[5,3],[2]]
=> [2]
=> 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
Description
The number of parts of an integer partition that are at least two.
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St001392: Integer partitions ⟶ ℤResult quality: 53% values known / values provided: 53%distinct values known / distinct values provided: 57%
Values
([],1)
=> [1] => [[1],[]]
=> []
=> ? = 0
([],2)
=> [2] => [[2],[]]
=> []
=> ? ∊ {0,2}
([(0,1)],2)
=> [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,2}
([],3)
=> [3] => [[3],[]]
=> []
=> ? ∊ {0,2,2}
([(1,2)],3)
=> [1,2] => [[2,1],[]]
=> []
=> ? ∊ {0,2,2}
([(0,2),(1,2)],3)
=> [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,2,2}
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [[2,2],[1]]
=> [1]
=> 0
([],4)
=> [4] => [[4],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(2,3)],4)
=> [1,3] => [[3,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(1,3),(2,3)],4)
=> [1,1,2] => [[2,1,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 0
([(0,3),(1,2)],4)
=> [2,2] => [[3,2],[1]]
=> [1]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [[3,2],[1]]
=> [1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [[3,3],[2]]
=> [2]
=> 1
([],5)
=> [5] => [[5],[]]
=> []
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(3,4)],5)
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(2,4),(3,4)],5)
=> [1,1,3] => [[3,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 1
([(1,4),(2,3)],5)
=> [2,3] => [[4,2],[1]]
=> [1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [[4,2],[1]]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [[4,3],[2]]
=> [2]
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,1,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [[4,4],[3]]
=> [3]
=> 2
([],6)
=> [6] => [[6],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(4,5)],6)
=> [1,5] => [[5,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(3,5),(4,5)],6)
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 2
([(2,5),(3,4)],6)
=> [2,4] => [[5,2],[1]]
=> [1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [[5,2],[1]]
=> [1]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> 2
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [[5,3],[2]]
=> [2]
=> 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
Description
The largest nonnegative integer which is not a part and is smaller than the largest part of the partition.
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St001587: Integer partitions ⟶ ℤResult quality: 43% values known / values provided: 53%distinct values known / distinct values provided: 43%
Values
([],1)
=> [1] => [[1],[]]
=> []
=> ? = 0
([],2)
=> [2] => [[2],[]]
=> []
=> ? ∊ {0,2}
([(0,1)],2)
=> [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,2}
([],3)
=> [3] => [[3],[]]
=> []
=> ? ∊ {0,2,2}
([(1,2)],3)
=> [1,2] => [[2,1],[]]
=> []
=> ? ∊ {0,2,2}
([(0,2),(1,2)],3)
=> [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,2,2}
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [[2,2],[1]]
=> [1]
=> 0
([],4)
=> [4] => [[4],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(2,3)],4)
=> [1,3] => [[3,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(1,3),(2,3)],4)
=> [1,1,2] => [[2,1,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 0
([(0,3),(1,2)],4)
=> [2,2] => [[3,2],[1]]
=> [1]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [[3,2],[1]]
=> [1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [[3,3],[2]]
=> [2]
=> 1
([],5)
=> [5] => [[5],[]]
=> []
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,3,3,4,4,4}
([(3,4)],5)
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,3,3,4,4,4}
([(2,4),(3,4)],5)
=> [1,1,3] => [[3,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,3,3,4,4,4}
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 1
([(1,4),(2,3)],5)
=> [2,3] => [[4,2],[1]]
=> [1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,3,3,4,4,4}
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,3,3,4,4,4}
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [[4,2],[1]]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,3,3,4,4,4}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,3,3,4,4,4}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,3,3,4,4,4}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,3,3,4,4,4}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,3,3,4,4,4}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,3,3,4,4,4}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,3,3,4,4,4}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,3,3,4,4,4}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,3,3,4,4,4}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,3,3,4,4,4}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [[4,3],[2]]
=> [2]
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,2,2,2,2,2,2,2,3,3,4,4,4}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [[4,4],[3]]
=> [3]
=> 0
([],6)
=> [6] => [[6],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(4,5)],6)
=> [1,5] => [[5,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(3,5),(4,5)],6)
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 0
([(2,5),(3,4)],6)
=> [2,4] => [[5,2],[1]]
=> [1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [[5,2],[1]]
=> [1]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> 0
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [[5,3],[2]]
=> [2]
=> 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
Description
Half of the largest even part of an integer partition. The largest even part is recorded by [[St000995]].
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St001657: Integer partitions ⟶ ℤResult quality: 53% values known / values provided: 53%distinct values known / distinct values provided: 57%
Values
([],1)
=> [1] => [[1],[]]
=> []
=> ? = 0
([],2)
=> [2] => [[2],[]]
=> []
=> ? ∊ {0,2}
([(0,1)],2)
=> [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,2}
([],3)
=> [3] => [[3],[]]
=> []
=> ? ∊ {0,2,2}
([(1,2)],3)
=> [1,2] => [[2,1],[]]
=> []
=> ? ∊ {0,2,2}
([(0,2),(1,2)],3)
=> [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,2,2}
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [[2,2],[1]]
=> [1]
=> 0
([],4)
=> [4] => [[4],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(2,3)],4)
=> [1,3] => [[3,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(1,3),(2,3)],4)
=> [1,1,2] => [[2,1,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 0
([(0,3),(1,2)],4)
=> [2,2] => [[3,2],[1]]
=> [1]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [[3,2],[1]]
=> [1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [[3,3],[2]]
=> [2]
=> 1
([],5)
=> [5] => [[5],[]]
=> []
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,3,3,4,4,4}
([(3,4)],5)
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,3,3,4,4,4}
([(2,4),(3,4)],5)
=> [1,1,3] => [[3,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,3,3,4,4,4}
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 1
([(1,4),(2,3)],5)
=> [2,3] => [[4,2],[1]]
=> [1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,3,3,4,4,4}
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,3,3,4,4,4}
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [[4,2],[1]]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,3,3,4,4,4}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,3,3,4,4,4}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,3,3,4,4,4}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,3,3,4,4,4}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,3,3,4,4,4}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,3,3,4,4,4}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,3,3,4,4,4}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,3,3,4,4,4}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,3,3,4,4,4}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,3,3,4,4,4}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [[4,3],[2]]
=> [2]
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,3,3,4,4,4}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [[4,4],[3]]
=> [3]
=> 0
([],6)
=> [6] => [[6],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(4,5)],6)
=> [1,5] => [[5,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(3,5),(4,5)],6)
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 0
([(2,5),(3,4)],6)
=> [2,4] => [[5,2],[1]]
=> [1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [[5,2],[1]]
=> [1]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> 0
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [[5,3],[2]]
=> [2]
=> 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
Description
The number of twos in an integer partition. The total number of twos in all partitions of $n$ is equal to the total number of singletons [[St001484]] in all partitions of $n-1$, see [1].
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St001714: Integer partitions ⟶ ℤResult quality: 53% values known / values provided: 53%distinct values known / distinct values provided: 57%
Values
([],1)
=> [1] => [[1],[]]
=> []
=> ? = 0
([],2)
=> [2] => [[2],[]]
=> []
=> ? ∊ {0,2}
([(0,1)],2)
=> [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,2}
([],3)
=> [3] => [[3],[]]
=> []
=> ? ∊ {0,2,2}
([(1,2)],3)
=> [1,2] => [[2,1],[]]
=> []
=> ? ∊ {0,2,2}
([(0,2),(1,2)],3)
=> [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,2,2}
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [[2,2],[1]]
=> [1]
=> 0
([],4)
=> [4] => [[4],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(2,3)],4)
=> [1,3] => [[3,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(1,3),(2,3)],4)
=> [1,1,2] => [[2,1,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 0
([(0,3),(1,2)],4)
=> [2,2] => [[3,2],[1]]
=> [1]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [[3,2],[1]]
=> [1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [[3,3],[2]]
=> [2]
=> 0
([],5)
=> [5] => [[5],[]]
=> []
=> ? ∊ {0,0,0,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(3,4)],5)
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {0,0,0,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(2,4),(3,4)],5)
=> [1,1,3] => [[3,1,1],[]]
=> []
=> ? ∊ {0,0,0,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 0
([(1,4),(2,3)],5)
=> [2,3] => [[4,2],[1]]
=> [1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [[4,2],[1]]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [[4,3],[2]]
=> [2]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,1,1,2,2,2,2,2,2,3,3,4,4,4}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [[4,4],[3]]
=> [3]
=> 0
([],6)
=> [6] => [[6],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(4,5)],6)
=> [1,5] => [[5,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(3,5),(4,5)],6)
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 0
([(2,5),(3,4)],6)
=> [2,4] => [[5,2],[1]]
=> [1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [[5,2],[1]]
=> [1]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> 0
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [[5,3],[2]]
=> [2]
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
Description
The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. In particular, partitions with statistic $0$ are wide partitions.
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St001918: Integer partitions ⟶ ℤResult quality: 53% values known / values provided: 53%distinct values known / distinct values provided: 71%
Values
([],1)
=> [1] => [[1],[]]
=> []
=> ? = 0
([],2)
=> [2] => [[2],[]]
=> []
=> ? ∊ {0,2}
([(0,1)],2)
=> [1,1] => [[1,1],[]]
=> []
=> ? ∊ {0,2}
([],3)
=> [3] => [[3],[]]
=> []
=> ? ∊ {0,2,2}
([(1,2)],3)
=> [1,2] => [[2,1],[]]
=> []
=> ? ∊ {0,2,2}
([(0,2),(1,2)],3)
=> [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,2,2}
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [[2,2],[1]]
=> [1]
=> 0
([],4)
=> [4] => [[4],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(2,3)],4)
=> [1,3] => [[3,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(1,3),(2,3)],4)
=> [1,1,2] => [[2,1,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 0
([(0,3),(1,2)],4)
=> [2,2] => [[3,2],[1]]
=> [1]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [[3,2],[1]]
=> [1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {2,2,2,3,4}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [[3,3],[2]]
=> [2]
=> 1
([],5)
=> [5] => [[5],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(3,4)],5)
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(2,4),(3,4)],5)
=> [1,1,3] => [[3,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 1
([(1,4),(2,3)],5)
=> [2,3] => [[4,2],[1]]
=> [1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [[4,2],[1]]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [[4,3],[2]]
=> [2]
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,2,2,2,2,2,2,3,3,4,4,4}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [[4,4],[3]]
=> [3]
=> 2
([],6)
=> [6] => [[6],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6}
([(4,5)],6)
=> [1,5] => [[5,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6}
([(3,5),(4,5)],6)
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6}
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 2
([(2,5),(3,4)],6)
=> [2,4] => [[5,2],[1]]
=> [1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6}
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6}
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [[5,2],[1]]
=> [1]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6}
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> 2
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [[5,3],[2]]
=> [2]
=> 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6}
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6}
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6}
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,6}
Description
The degree of the cyclic sieving polynomial corresponding to an integer partition. Let $\lambda$ be an integer partition of $n$ and let $N$ be the least common multiple of the parts of $\lambda$. Fix an arbitrary permutation $\pi$ of cycle type $\lambda$. Then $\pi$ induces a cyclic action of order $N$ on $\{1,\dots,n\}$. The corresponding character can be identified with the cyclic sieving polynomial $C_\lambda(q)$ of this action, modulo $q^N-1$. Explicitly, it is $$ \sum_{p\in\lambda} [p]_{q^{N/p}}, $$ where $[p]_q = 1+\dots+q^{p-1}$ is the $q$-integer. This statistic records the degree of $C_\lambda(q)$. Equivalently, it equals $$ \left(1 - \frac{1}{\lambda_1}\right) N, $$ where $\lambda_1$ is the largest part of $\lambda$. The statistic is undefined for the empty partition.
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001912: Integer partitions ⟶ ℤResult quality: 43% values known / values provided: 52%distinct values known / distinct values provided: 43%
Values
([],1)
=> []
=> ?
=> ? = 0
([],2)
=> []
=> ?
=> ? ∊ {0,2}
([(0,1)],2)
=> [1]
=> []
=> ? ∊ {0,2}
([],3)
=> []
=> ?
=> ? ∊ {0,2,2}
([(1,2)],3)
=> [1]
=> []
=> ? ∊ {0,2,2}
([(0,2),(1,2)],3)
=> [1,1]
=> [1]
=> 0
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {0,2,2}
([],4)
=> []
=> ?
=> ? ∊ {1,2,2,2,3,4}
([(2,3)],4)
=> [1]
=> []
=> ? ∊ {1,2,2,2,3,4}
([(1,3),(2,3)],4)
=> [1,1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> 0
([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> ? ∊ {1,2,2,2,3,4}
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {1,2,2,2,3,4}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> ? ∊ {1,2,2,2,3,4}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> ? ∊ {1,2,2,2,3,4}
([],5)
=> []
=> ?
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,4}
([(3,4)],5)
=> [1]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,4}
([(2,4),(3,4)],5)
=> [1,1]
=> [1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 2
([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,4}
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,4}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,4}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,4}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,4}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [3]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,4}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,4}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,4}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,4}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,4}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,4}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,4}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,4}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> []
=> ? ∊ {0,0,1,1,1,1,1,2,2,2,2,3,3,4,4,4}
([],6)
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(4,5)],6)
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(3,5),(4,5)],6)
=> [1,1]
=> [1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 2
([(2,5),(3,4)],6)
=> [1,1]
=> [1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(3,4),(3,5),(4,5)],6)
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 2
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [8]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [8]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [9]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,6}
Description
The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. Bulgarian solitaire is the dynamical system where a move consists of removing the first column of the Ferrers diagram and inserting it as a row.
The following 199 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000944The 3-degree of an integer partition. St000259The diameter of a connected graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001570The minimal number of edges to add to make a graph Hamiltonian. St001651The Frankl number of a lattice. St000379The number of Hamiltonian cycles in a graph. St001645The pebbling number of a connected graph. St000455The second largest eigenvalue of a graph if it is integral. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000929The constant term of the character polynomial of an integer partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000699The toughness times the least common multiple of 1,. St001281The normalized isoperimetric number of a graph. St001592The maximal number of simple paths between any two different vertices of a graph. St000454The largest eigenvalue of a graph if it is integral. St000422The energy of a graph, if it is integral. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000225Difference between largest and smallest parts in a partition. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St001175The size of a partition minus the hook length of the base cell. St001248Sum of the even parts of a partition. St001279The sum of the parts of an integer partition that are at least two. St001541The Gini index of an integer partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St000016The number of attacking pairs of a standard tableau. St000017The number of inversions of a standard tableau. St000117The number of centered tunnels of a Dyck path. St000142The number of even parts of a partition. St000143The largest repeated part of a partition. St000149The number of cells of the partition whose leg is zero and arm is odd. St000150The floored half-sum of the multiplicities of a partition. St000185The weighted size of a partition. St000256The number of parts from which one can substract 2 and still get an integer partition. St000257The number of distinct parts of a partition that occur at least twice. St000290The major index of a binary word. St000291The number of descents of a binary word. St000292The number of ascents of a binary word. St000293The number of inversions of a binary word. St000295The length of the border of a binary word. St000296The length of the symmetric border of a binary word. St000347The inversion sum of a binary word. St000348The non-inversion sum of a binary word. St000377The dinv defect of an integer partition. St000380Half of the maximal perimeter of a rectangle fitting into the diagram of an integer partition. St000473The number of parts of a partition that are strictly bigger than the number of ones. St000480The number of lower covers of a partition in dominance order. St000481The number of upper covers of a partition in dominance order. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St000513The number of invariant subsets of size 2 when acting with a permutation of given cycle type. St000547The number of even non-empty partial sums of an integer partition. St000628The balance of a binary word. St000629The defect of a binary word. St000661The number of rises of length 3 of a Dyck path. St000682The Grundy value of Welter's game on a binary word. St000687The dimension of $Hom(I,P)$ for the LNakayama algebra of a Dyck path. St000688The global dimension minus the dominant dimension of the LNakayama algebra associated to a Dyck path. St000691The number of changes of a binary word. St000697The number of 3-rim hooks removed from an integer partition to obtain its associated 3-core. St000752The Grundy value for the game 'Couples are forever' on an integer partition. St000790The number of pairs of centered tunnels, one strictly containing the other, of a Dyck path. St000791The number of pairs of left tunnels, one strictly containing the other, of a Dyck path. St000875The semilength of the longest Dyck word in the Catalan factorisation of a binary word. St000877The depth of the binary word interpreted as a path. St000921The number of internal inversions of a binary word. St000931The number of occurrences of the pattern UUU in a Dyck path. St000946The sum of the skew hook positions in a Dyck path. St000966Number of peaks minus the global dimension of the corresponding LNakayama algebra. St000970Number of peaks minus the dominant dimension of the corresponding LNakayama algebra. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St000995The largest even part of an integer partition. St001021Sum of the differences between projective and codominant dimension of the non-projective indecomposable injective modules in the Nakayama algebra corresponding to the Dyck path. St001022Number of simple modules with projective dimension 3 in the Nakayama algebra corresponding to the Dyck path. St001025Number of simple modules with projective dimension 4 in the Nakayama algebra corresponding to the Dyck path. St001026The maximum of the projective dimensions of the indecomposable non-projective injective modules minus the minimum in the Nakayama algebra corresponding to the Dyck path. St001036The number of inner corners of the parallelogram polyomino associated with the Dyck path. St001037The number of inner corners of the upper path of the parallelogram polyomino associated with the Dyck path. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001091The number of parts in an integer partition whose next smaller part has the same size. St001092The number of distinct even parts of a partition. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St001113Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001125The number of simple modules that satisfy the 2-regular condition in the corresponding Nakayama algebra. St001137Number of simple modules that are 3-regular in the corresponding Nakayama algebra. St001140Number of indecomposable modules with projective and injective dimension at least two in the corresponding Nakayama algebra. St001141The number of occurrences of hills of size 3 in a Dyck path. St001163The number of simple modules with dominant dimension at least three in the corresponding Nakayama algebra. St001164Number of indecomposable injective modules whose socle has projective dimension at most g-1 (g the global dimension) minus the number of indecomposable projective-injective modules. St001167The number of simple modules that appear as the top of an indecomposable non-projective modules that is reflexive in the corresponding Nakayama algebra. St001172The number of 1-rises at odd height of a Dyck path. St001176The size of a partition minus its first part. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001186Number of simple modules with grade at least 3 in the corresponding Nakayama algebra. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001193The dimension of $Ext_A^1(A/AeA,A)$ in the corresponding Nakayama algebra $A$ such that $eA$ is a minimal faithful projective-injective module. St001214The aft of an integer partition. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001217The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1. St001219Number of simple modules S in the corresponding Nakayama algebra such that the Auslander-Reiten sequence ending at S has the property that all modules in the exact sequence are reflexive. St001221The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St001230The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001251The number of parts of a partition that are not congruent 1 modulo 3. St001252Half the sum of the even parts of a partition. St001253The number of non-projective indecomposable reflexive modules in the corresponding Nakayama algebra. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001266The largest vector space dimension of an indecomposable non-projective module that is reflexive in the corresponding Nakayama algebra. St001274The number of indecomposable injective modules with projective dimension equal to two. St001275The projective dimension of the second term in a minimal injective coresolution of the regular module. St001278The number of indecomposable modules that are fixed by $\tau \Omega^1$ composed with its inverse in the corresponding Nakayama algebra. St001292The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001371The length of the longest Yamanouchi prefix of a binary word. St001382The number of boxes in the diagram of a partition that do not lie in its Durfee square. St001414Half the length of the longest odd length palindromic prefix of a binary word. St001420Half the length of a longest factor which is its own reverse-complement of a binary word. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St001423The number of distinct cubes in a binary word. St001435The number of missing boxes in the first row. St001436The index of a given binary word in the lex-order among all its cyclic shifts. St001438The number of missing boxes of a skew partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001485The modular major index of a binary word. St001498The normalised height of a Nakayama algebra with magnitude 1. St001524The degree of symmetry of a binary word. St001584The area statistic between a Dyck path and its bounce path. St001588The number of distinct odd parts smaller than the largest even part in an integer partition. St001596The number of two-by-two squares inside a skew partition. St001695The natural comajor index of a standard Young tableau. St001698The comajor index of a standard tableau minus the weighted size of its shape. St001699The major index of a standard tableau minus the weighted size of its shape. St001712The number of natural descents of a standard Young tableau. St001721The degree of a binary word. St001730The number of times the path corresponding to a binary word crosses the base line. St001910The height of the middle non-run of a Dyck path. St001932The number of pairs of singleton blocks in the noncrossing set partition corresponding to a Dyck path, that can be merged to create another noncrossing set partition. St001961The sum of the greatest common divisors of all pairs of parts. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St000478Another weight of a partition according to Alladi. St000941The number of characters of the symmetric group whose value on the partition is even. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000928The sum of the coefficients of the character polynomial of an integer partition. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St000145The Dyson rank of a partition. St001177Twice the mean value of the major index among all standard Young tableaux of a partition. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001545The second Elser number of a connected graph. St001118The acyclic chromatic index of a graph. St000260The radius of a connected graph. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000934The 2-degree of an integer partition. St000993The multiplicity of the largest part of an integer partition. St001568The smallest positive integer that does not appear twice in the partition. St000369The dinv deficit of a Dyck path. St000376The bounce deficit of a Dyck path. St000444The length of the maximal rise of a Dyck path. St000567The sum of the products of all pairs of parts. St000668The least common multiple of the parts of the partition. St000674The number of hills of a Dyck path. St000675The number of centered multitunnels of a Dyck path. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000933The number of multipartitions of sizes given by an integer partition. St001032The number of horizontal steps in the bicoloured Motzkin path associated with the Dyck path. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001502The global dimension minus the dominant dimension of magnitude 1 Nakayama algebras. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001060The distinguishing index of a graph. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition.