Your data matches 55 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000351
St000351: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 0
([],2)
=> 0
([(0,1)],2)
=> -1
([],3)
=> 0
([(1,2)],3)
=> 0
([(0,2),(1,2)],3)
=> 0
([(0,1),(0,2),(1,2)],3)
=> 2
([],4)
=> 0
([(2,3)],4)
=> 0
([(1,3),(2,3)],4)
=> 0
([(0,3),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> 1
([(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -3
([],5)
=> 0
([(3,4)],5)
=> 0
([(2,4),(3,4)],5)
=> 0
([(1,4),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(1,4),(2,3)],5)
=> 0
([(1,4),(2,3),(3,4)],5)
=> 0
([(0,1),(2,4),(3,4)],5)
=> 0
([(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> -2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> -2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> -4
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> -2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> -2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 0
Description
The determinant of the adjacency matrix of a graph. For a labelled graph $G$ with vertices $\{1,\ldots,n\}$, the adjacency matrix is the matrix $(a_{ij})$ with $a_{ij} = 1$ if the vertices $i$ and $j$ are joined by an edge in $G$. Since the determinant is invariant under simultaneous row and column permutations, the determinant of the adjacency is well-defined for an unlabelled graph. According to [2], Equation 8, this determinant can be computed as follows: let $s(G)$ be the number of connected components of $G$ that are cycles and $r(G)$ the number of connected components that equal $K_2$. Then $$\det(A) = \sum_{H} (-1)^{r(H)} 2^{s(H)}$$ where the sum is over all spanning subgraphs $H$ of $G$ that have as connected components only $K_2$'s and cycles.
Matching statistic: St001491
Mp00154: Graphs coreGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00317: Integer partitions odd partsBinary words
St001491: Binary words ⟶ ℤResult quality: 9% values known / values provided: 56%distinct values known / distinct values provided: 9%
Values
([],1)
=> ([],1)
=> [1]
=> 1 => 1 = 0 + 1
([],2)
=> ([],1)
=> [1]
=> 1 => 1 = 0 + 1
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0 => ? = -1 + 1
([],3)
=> ([],1)
=> [1]
=> 1 => 1 = 0 + 1
([(1,2)],3)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {0,2} + 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {0,2} + 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([],4)
=> ([],1)
=> [1]
=> 1 => 1 = 0 + 1
([(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-3,0,0,0,1,1,1} + 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-3,0,0,0,1,1,1} + 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-3,0,0,0,1,1,1} + 1
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-3,0,0,0,1,1,1} + 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-3,0,0,0,1,1,1} + 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-3,0,0,0,1,1,1} + 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 0 => ? ∊ {-3,0,0,0,1,1,1} + 1
([],5)
=> ([],1)
=> [1]
=> 1 => 1 = 0 + 1
([(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4} + 1
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4} + 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4} + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4} + 1
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4} + 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4} + 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4} + 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4} + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4} + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4} + 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4} + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4} + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> 1 => 1 = 0 + 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 0 => ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4} + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 0 => ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4} + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 0 => ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4} + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 0 => ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4} + 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1 => 1 = 0 + 1
([],6)
=> ([],1)
=> [1]
=> 1 => 1 = 0 + 1
([(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7} + 1
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7} + 1
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7} + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7} + 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7} + 1
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7} + 1
([(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7} + 1
([(1,2),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7} + 1
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7} + 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7} + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7} + 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7} + 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7} + 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7} + 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7} + 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7} + 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7} + 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7} + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7} + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7} + 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7} + 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7} + 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7} + 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> 0 => ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7} + 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> 1 => 1 = 0 + 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> 1 => 1 = 0 + 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 => 1 = 0 + 1
Description
The number of indecomposable projective-injective modules in the algebra corresponding to a subset. Let $A_n=K[x]/(x^n)$. We associate to a nonempty subset S of an (n-1)-set the module $M_S$, which is the direct sum of $A_n$-modules with indecomposable non-projective direct summands of dimension $i$ when $i$ is in $S$ (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of $M_S$. We decode the subset as a binary word so that for example the subset $S=\{1,3 \} $ of $\{1,2,3 \}$ is decoded as 101.
Mp00117: Graphs Ore closureGraphs
Mp00111: Graphs complementGraphs
Mp00154: Graphs coreGraphs
St001570: Graphs ⟶ ℤResult quality: 9% values known / values provided: 53%distinct values known / distinct values provided: 9%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 0
([],2)
=> ([],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {-1,0}
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ([],1)
=> ? ∊ {-1,0}
([],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,2}
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,2}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],1)
=> ? ∊ {0,0,2}
([],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {-3,0,0,0,1,1,1}
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {-3,0,0,0,1,1,1}
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {-3,0,0,0,1,1,1}
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {-3,0,0,0,1,1,1}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],1)
=> ? ∊ {-3,0,0,0,1,1,1}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],1)
=> ? ∊ {-3,0,0,0,1,1,1}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],1)
=> ? ∊ {-3,0,0,0,1,1,1}
([],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(3,4)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,2,4}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,2,4}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,2,4}
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,2,4}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,2,4}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ([],1)
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,2,4}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ([],1)
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,2,4}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,2,4}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,2,4}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,2,4}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ([],1)
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,2,4}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ([],1)
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,2,4}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ([],1)
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,2,4}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ([],1)
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,2,4}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ([],1)
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,2,4}
([],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(4,5)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ([],1)
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ([],1)
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ([],1)
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ([],1)
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ([],1)
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ([],1)
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ([],1)
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
Description
The minimal number of edges to add to make a graph Hamiltonian. A graph is Hamiltonian if it contains a cycle as a subgraph, which contains all vertices.
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000205: Integer partitions ⟶ ℤResult quality: 9% values known / values provided: 52%distinct values known / distinct values provided: 9%
Values
([],1)
=> []
=> ?
=> ? = 0
([],2)
=> []
=> ?
=> ? ∊ {-1,0}
([(0,1)],2)
=> [1]
=> []
=> ? ∊ {-1,0}
([],3)
=> []
=> ?
=> ? ∊ {0,0,2}
([(1,2)],3)
=> [1]
=> []
=> ? ∊ {0,0,2}
([(0,2),(1,2)],3)
=> [1,1]
=> [1]
=> 0
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {0,0,2}
([],4)
=> []
=> ?
=> ? ∊ {-3,0,0,1,1,1}
([(2,3)],4)
=> [1]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([(1,3),(2,3)],4)
=> [1,1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> 0
([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([],5)
=> []
=> ?
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(3,4)],5)
=> [1]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(2,4),(3,4)],5)
=> [1,1]
=> [1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [3]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([],6)
=> []
=> ?
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(4,5)],6)
=> [1]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(3,5),(4,5)],6)
=> [1,1]
=> [1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(2,5),(3,4)],6)
=> [1,1]
=> [1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(3,4),(3,5),(4,5)],6)
=> [3]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [9]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
Description
Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. Given $\lambda$ count how many ''integer partitions'' $w$ (weight) there are, such that $P_{\lambda,w}$ is non-integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has at least one non-integral vertex.
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000206: Integer partitions ⟶ ℤResult quality: 9% values known / values provided: 52%distinct values known / distinct values provided: 9%
Values
([],1)
=> []
=> ?
=> ? = 0
([],2)
=> []
=> ?
=> ? ∊ {-1,0}
([(0,1)],2)
=> [1]
=> []
=> ? ∊ {-1,0}
([],3)
=> []
=> ?
=> ? ∊ {0,0,2}
([(1,2)],3)
=> [1]
=> []
=> ? ∊ {0,0,2}
([(0,2),(1,2)],3)
=> [1,1]
=> [1]
=> 0
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {0,0,2}
([],4)
=> []
=> ?
=> ? ∊ {-3,0,0,1,1,1}
([(2,3)],4)
=> [1]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([(1,3),(2,3)],4)
=> [1,1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> 0
([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([],5)
=> []
=> ?
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(3,4)],5)
=> [1]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(2,4),(3,4)],5)
=> [1,1]
=> [1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [3]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([],6)
=> []
=> ?
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(4,5)],6)
=> [1]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(3,5),(4,5)],6)
=> [1,1]
=> [1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(2,5),(3,4)],6)
=> [1,1]
=> [1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(3,4),(3,5),(4,5)],6)
=> [3]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [9]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
Description
Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. Given $\lambda$ count how many ''integer compositions'' $w$ (weight) there are, such that $P_{\lambda,w}$ is non-integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has at least one non-integral vertex. See also [[St000205]]. Each value in this statistic is greater than or equal to corresponding value in [[St000205]].
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000749: Integer partitions ⟶ ℤResult quality: 9% values known / values provided: 52%distinct values known / distinct values provided: 9%
Values
([],1)
=> []
=> ?
=> ? = 0
([],2)
=> []
=> ?
=> ? ∊ {-1,0}
([(0,1)],2)
=> [1]
=> []
=> ? ∊ {-1,0}
([],3)
=> []
=> ?
=> ? ∊ {0,0,2}
([(1,2)],3)
=> [1]
=> []
=> ? ∊ {0,0,2}
([(0,2),(1,2)],3)
=> [1,1]
=> [1]
=> 0
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {0,0,2}
([],4)
=> []
=> ?
=> ? ∊ {-3,0,0,1,1,1}
([(2,3)],4)
=> [1]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([(1,3),(2,3)],4)
=> [1,1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> 0
([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([],5)
=> []
=> ?
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(3,4)],5)
=> [1]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(2,4),(3,4)],5)
=> [1,1]
=> [1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [3]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([],6)
=> []
=> ?
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(4,5)],6)
=> [1]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(3,5),(4,5)],6)
=> [1,1]
=> [1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(2,5),(3,4)],6)
=> [1,1]
=> [1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(3,4),(3,5),(4,5)],6)
=> [3]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [9]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
Description
The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. For example, restricting $S_{(6,3)}$ to $\mathfrak S_8$ yields $$S_{(5,3)}\oplus S_{(6,2)}$$ of degrees (number of standard Young tableaux) 28 and 20, none of which are odd. Restricting to $\mathfrak S_7$ yields $$S_{(4,3)}\oplus 2S_{(5,2)}\oplus S_{(6,1)}$$ of degrees 14, 14 and 6. However, restricting to $\mathfrak S_6$ yields $$S_{(3,3)}\oplus 3S_{(4,2)}\oplus 3S_{(5,1)}\oplus S_6$$ of degrees 5,9,5 and 1. Therefore, the statistic on the partition $(6,3)$ gives 3. This is related to $2$-saturations of Welter's game, see [1, Corollary 1.2].
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001175: Integer partitions ⟶ ℤResult quality: 9% values known / values provided: 52%distinct values known / distinct values provided: 9%
Values
([],1)
=> []
=> ?
=> ? = 0
([],2)
=> []
=> ?
=> ? ∊ {-1,0}
([(0,1)],2)
=> [1]
=> []
=> ? ∊ {-1,0}
([],3)
=> []
=> ?
=> ? ∊ {0,0,2}
([(1,2)],3)
=> [1]
=> []
=> ? ∊ {0,0,2}
([(0,2),(1,2)],3)
=> [1,1]
=> [1]
=> 0
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {0,0,2}
([],4)
=> []
=> ?
=> ? ∊ {-3,0,0,1,1,1}
([(2,3)],4)
=> [1]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([(1,3),(2,3)],4)
=> [1,1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> 0
([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([],5)
=> []
=> ?
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(3,4)],5)
=> [1]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(2,4),(3,4)],5)
=> [1,1]
=> [1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [3]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([],6)
=> []
=> ?
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(4,5)],6)
=> [1]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(3,5),(4,5)],6)
=> [1,1]
=> [1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(2,5),(3,4)],6)
=> [1,1]
=> [1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(3,4),(3,5),(4,5)],6)
=> [3]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [9]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
Description
The size of a partition minus the hook length of the base cell. This is, the number of boxes in the diagram of a partition that are neither in the first row nor in the first column.
Matching statistic: St001248
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001248: Integer partitions ⟶ ℤResult quality: 9% values known / values provided: 52%distinct values known / distinct values provided: 9%
Values
([],1)
=> []
=> ?
=> ? = 0
([],2)
=> []
=> ?
=> ? ∊ {-1,0}
([(0,1)],2)
=> [1]
=> []
=> ? ∊ {-1,0}
([],3)
=> []
=> ?
=> ? ∊ {0,0,2}
([(1,2)],3)
=> [1]
=> []
=> ? ∊ {0,0,2}
([(0,2),(1,2)],3)
=> [1,1]
=> [1]
=> 0
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {0,0,2}
([],4)
=> []
=> ?
=> ? ∊ {-3,0,0,1,1,1}
([(2,3)],4)
=> [1]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([(1,3),(2,3)],4)
=> [1,1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> 0
([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([],5)
=> []
=> ?
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(3,4)],5)
=> [1]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(2,4),(3,4)],5)
=> [1,1]
=> [1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [3]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([],6)
=> []
=> ?
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(4,5)],6)
=> [1]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(3,5),(4,5)],6)
=> [1,1]
=> [1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(2,5),(3,4)],6)
=> [1,1]
=> [1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(3,4),(3,5),(4,5)],6)
=> [3]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [9]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
Description
Sum of the even parts of a partition.
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001586: Integer partitions ⟶ ℤResult quality: 9% values known / values provided: 52%distinct values known / distinct values provided: 9%
Values
([],1)
=> []
=> ?
=> ? = 0
([],2)
=> []
=> ?
=> ? ∊ {-1,0}
([(0,1)],2)
=> [1]
=> []
=> ? ∊ {-1,0}
([],3)
=> []
=> ?
=> ? ∊ {0,0,2}
([(1,2)],3)
=> [1]
=> []
=> ? ∊ {0,0,2}
([(0,2),(1,2)],3)
=> [1,1]
=> [1]
=> 0
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {0,0,2}
([],4)
=> []
=> ?
=> ? ∊ {-3,0,0,1,1,1}
([(2,3)],4)
=> [1]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([(1,3),(2,3)],4)
=> [1,1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> 0
([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([],5)
=> []
=> ?
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(3,4)],5)
=> [1]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(2,4),(3,4)],5)
=> [1,1]
=> [1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [3]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([],6)
=> []
=> ?
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(4,5)],6)
=> [1]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(3,5),(4,5)],6)
=> [1,1]
=> [1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(2,5),(3,4)],6)
=> [1,1]
=> [1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(3,4),(3,5),(4,5)],6)
=> [3]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [9]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
Description
The number of odd parts smaller than the largest even part in an integer partition.
Matching statistic: St001587
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001587: Integer partitions ⟶ ℤResult quality: 9% values known / values provided: 52%distinct values known / distinct values provided: 9%
Values
([],1)
=> []
=> ?
=> ? = 0
([],2)
=> []
=> ?
=> ? ∊ {-1,0}
([(0,1)],2)
=> [1]
=> []
=> ? ∊ {-1,0}
([],3)
=> []
=> ?
=> ? ∊ {0,0,2}
([(1,2)],3)
=> [1]
=> []
=> ? ∊ {0,0,2}
([(0,2),(1,2)],3)
=> [1,1]
=> [1]
=> 0
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {0,0,2}
([],4)
=> []
=> ?
=> ? ∊ {-3,0,0,1,1,1}
([(2,3)],4)
=> [1]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([(1,3),(2,3)],4)
=> [1,1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> 0
([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> ? ∊ {-3,0,0,1,1,1}
([],5)
=> []
=> ?
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(3,4)],5)
=> [1]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(2,4),(3,4)],5)
=> [1,1]
=> [1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [3]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> []
=> ? ∊ {-4,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,2,4}
([],6)
=> []
=> ?
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(4,5)],6)
=> [1]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(3,5),(4,5)],6)
=> [1,1]
=> [1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(2,5),(3,4)],6)
=> [1,1]
=> [1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,1]
=> 0
([(3,4),(3,5),(4,5)],6)
=> [3]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1]
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [9]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [7]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8]
=> []
=> ? ∊ {-5,-5,-5,-4,-4,-4,-4,-4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,7,7}
Description
Half of the largest even part of an integer partition. The largest even part is recorded by [[St000995]].
The following 45 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001657The number of twos in an integer partition. St000379The number of Hamiltonian cycles in a graph. St000699The toughness times the least common multiple of 1,. St001281The normalized isoperimetric number of a graph. St001592The maximal number of simple paths between any two different vertices of a graph. St000552The number of cut vertices of a graph. St000455The second largest eigenvalue of a graph if it is integral. St000290The major index of a binary word. St000291The number of descents of a binary word. St000293The number of inversions of a binary word. St000296The length of the symmetric border of a binary word. St000347The inversion sum of a binary word. St000629The defect of a binary word. St000687The dimension of $Hom(I,P)$ for the LNakayama algebra of a Dyck path. St000752The Grundy value for the game 'Couples are forever' on an integer partition. St000790The number of pairs of centered tunnels, one strictly containing the other, of a Dyck path. St000875The semilength of the longest Dyck word in the Catalan factorisation of a binary word. St000921The number of internal inversions of a binary word. St000966Number of peaks minus the global dimension of the corresponding LNakayama algebra. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St001025Number of simple modules with projective dimension 4 in the Nakayama algebra corresponding to the Dyck path. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St001140Number of indecomposable modules with projective and injective dimension at least two in the corresponding Nakayama algebra. St001193The dimension of $Ext_A^1(A/AeA,A)$ in the corresponding Nakayama algebra $A$ such that $eA$ is a minimal faithful projective-injective module. St001214The aft of an integer partition. St001221The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module. St001292The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001371The length of the longest Yamanouchi prefix of a binary word. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St001435The number of missing boxes in the first row. St001436The index of a given binary word in the lex-order among all its cyclic shifts. St001438The number of missing boxes of a skew partition. St001485The modular major index of a binary word. St001588The number of distinct odd parts smaller than the largest even part in an integer partition. St001695The natural comajor index of a standard Young tableau. St001698The comajor index of a standard tableau minus the weighted size of its shape. St001699The major index of a standard tableau minus the weighted size of its shape. St001712The number of natural descents of a standard Young tableau. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St000791The number of pairs of left tunnels, one strictly containing the other, of a Dyck path. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000225Difference between largest and smallest parts in a partition. St000944The 3-degree of an integer partition. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition.