searching the database
Your data matches 45 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000423
St000423: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 0
[1,2] => 0
[2,1] => 0
[1,2,3] => 1
[1,3,2] => 1
[2,1,3] => 0
[2,3,1] => 0
[3,1,2] => 0
[3,2,1] => 0
[1,2,3,4] => 4
[1,2,4,3] => 4
[1,3,2,4] => 3
[1,3,4,2] => 3
[1,4,2,3] => 3
[1,4,3,2] => 3
[2,1,3,4] => 2
[2,1,4,3] => 2
[2,3,1,4] => 1
[2,3,4,1] => 1
[2,4,1,3] => 1
[2,4,3,1] => 1
[3,1,2,4] => 1
[3,1,4,2] => 1
[3,2,1,4] => 0
[3,2,4,1] => 0
[3,4,1,2] => 0
[3,4,2,1] => 0
[4,1,2,3] => 1
[4,1,3,2] => 1
[4,2,1,3] => 0
[4,2,3,1] => 0
[4,3,1,2] => 0
[4,3,2,1] => 0
[1,2,3,4,5] => 10
[1,2,3,5,4] => 10
[1,2,4,3,5] => 9
[1,2,4,5,3] => 9
[1,2,5,3,4] => 9
[1,2,5,4,3] => 9
[1,3,2,4,5] => 8
[1,3,2,5,4] => 8
[1,3,4,2,5] => 7
[1,3,4,5,2] => 7
[1,3,5,2,4] => 7
[1,3,5,4,2] => 7
[1,4,2,3,5] => 7
[1,4,2,5,3] => 7
[1,4,3,2,5] => 6
[1,4,3,5,2] => 6
[1,4,5,2,3] => 6
Description
The number of occurrences of the pattern 123 or of the pattern 132 in a permutation.
Matching statistic: St000428
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
St000428: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 0
[1,2] => 0
[2,1] => 0
[1,2,3] => 1
[1,3,2] => 0
[2,1,3] => 1
[2,3,1] => 0
[3,1,2] => 0
[3,2,1] => 0
[1,2,3,4] => 4
[1,2,4,3] => 2
[1,3,2,4] => 3
[1,3,4,2] => 1
[1,4,2,3] => 1
[1,4,3,2] => 0
[2,1,3,4] => 4
[2,1,4,3] => 2
[2,3,1,4] => 3
[2,3,4,1] => 1
[2,4,1,3] => 1
[2,4,3,1] => 0
[3,1,2,4] => 3
[3,1,4,2] => 1
[3,2,1,4] => 3
[3,2,4,1] => 1
[3,4,1,2] => 0
[3,4,2,1] => 0
[4,1,2,3] => 1
[4,1,3,2] => 0
[4,2,1,3] => 1
[4,2,3,1] => 0
[4,3,1,2] => 0
[4,3,2,1] => 0
[1,2,3,4,5] => 10
[1,2,3,5,4] => 7
[1,2,4,3,5] => 8
[1,2,4,5,3] => 5
[1,2,5,3,4] => 5
[1,2,5,4,3] => 3
[1,3,2,4,5] => 9
[1,3,2,5,4] => 6
[1,3,4,2,5] => 7
[1,3,4,5,2] => 4
[1,3,5,2,4] => 4
[1,3,5,4,2] => 2
[1,4,2,3,5] => 7
[1,4,2,5,3] => 4
[1,4,3,2,5] => 6
[1,4,3,5,2] => 3
[1,4,5,2,3] => 2
Description
The number of occurrences of the pattern 123 or of the pattern 213 in a permutation.
Matching statistic: St000436
St000436: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => ? = 0
[1,2] => 0
[2,1] => 0
[1,2,3] => 0
[1,3,2] => 0
[2,1,3] => 0
[2,3,1] => 1
[3,1,2] => 0
[3,2,1] => 1
[1,2,3,4] => 0
[1,2,4,3] => 0
[1,3,2,4] => 0
[1,3,4,2] => 1
[1,4,2,3] => 0
[1,4,3,2] => 1
[2,1,3,4] => 0
[2,1,4,3] => 0
[2,3,1,4] => 1
[2,3,4,1] => 3
[2,4,1,3] => 1
[2,4,3,1] => 3
[3,1,2,4] => 0
[3,1,4,2] => 1
[3,2,1,4] => 1
[3,2,4,1] => 3
[3,4,1,2] => 2
[3,4,2,1] => 4
[4,1,2,3] => 0
[4,1,3,2] => 1
[4,2,1,3] => 1
[4,2,3,1] => 3
[4,3,1,2] => 2
[4,3,2,1] => 4
[1,2,3,4,5] => 0
[1,2,3,5,4] => 0
[1,2,4,3,5] => 0
[1,2,4,5,3] => 1
[1,2,5,3,4] => 0
[1,2,5,4,3] => 1
[1,3,2,4,5] => 0
[1,3,2,5,4] => 0
[1,3,4,2,5] => 1
[1,3,4,5,2] => 3
[1,3,5,2,4] => 1
[1,3,5,4,2] => 3
[1,4,2,3,5] => 0
[1,4,2,5,3] => 1
[1,4,3,2,5] => 1
[1,4,3,5,2] => 3
[1,4,5,2,3] => 2
[1,4,5,3,2] => 4
Description
The number of occurrences of the pattern 231 or of the pattern 321 in a permutation.
Matching statistic: St000437
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
St000437: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => ? = 0
[1,2] => 0
[2,1] => 0
[1,2,3] => 0
[1,3,2] => 0
[2,1,3] => 0
[2,3,1] => 0
[3,1,2] => 1
[3,2,1] => 1
[1,2,3,4] => 0
[1,2,4,3] => 0
[1,3,2,4] => 0
[1,3,4,2] => 0
[1,4,2,3] => 1
[1,4,3,2] => 1
[2,1,3,4] => 0
[2,1,4,3] => 0
[2,3,1,4] => 0
[2,3,4,1] => 0
[2,4,1,3] => 1
[2,4,3,1] => 1
[3,1,2,4] => 1
[3,1,4,2] => 1
[3,2,1,4] => 1
[3,2,4,1] => 1
[3,4,1,2] => 2
[3,4,2,1] => 2
[4,1,2,3] => 3
[4,1,3,2] => 3
[4,2,1,3] => 3
[4,2,3,1] => 3
[4,3,1,2] => 4
[4,3,2,1] => 4
[1,2,3,4,5] => 0
[1,2,3,5,4] => 0
[1,2,4,3,5] => 0
[1,2,4,5,3] => 0
[1,2,5,3,4] => 1
[1,2,5,4,3] => 1
[1,3,2,4,5] => 0
[1,3,2,5,4] => 0
[1,3,4,2,5] => 0
[1,3,4,5,2] => 0
[1,3,5,2,4] => 1
[1,3,5,4,2] => 1
[1,4,2,3,5] => 1
[1,4,2,5,3] => 1
[1,4,3,2,5] => 1
[1,4,3,5,2] => 1
[1,4,5,2,3] => 2
[1,4,5,3,2] => 2
Description
The number of occurrences of the pattern 312 or of the pattern 321 in a permutation.
Matching statistic: St000456
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00248: Permutations —DEX composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000456: Graphs ⟶ ℤResult quality: 32% ●values known / values provided: 32%●distinct values known / distinct values provided: 43%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000456: Graphs ⟶ ℤResult quality: 32% ●values known / values provided: 32%●distinct values known / distinct values provided: 43%
Values
[1] => [1] => ([],1)
=> ? = 0
[1,2] => [2] => ([],2)
=> ? ∊ {0,0}
[2,1] => [2] => ([],2)
=> ? ∊ {0,0}
[1,2,3] => [3] => ([],3)
=> ? ∊ {0,0,0,0,1}
[1,3,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,1}
[2,1,3] => [3] => ([],3)
=> ? ∊ {0,0,0,0,1}
[2,3,1] => [3] => ([],3)
=> ? ∊ {0,0,0,0,1}
[3,1,2] => [3] => ([],3)
=> ? ∊ {0,0,0,0,1}
[3,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,3,3,3,3,4,4}
[1,2,4,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,3,3,3,3,4,4}
[1,3,2,4] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,3,3,3,3,4,4}
[1,3,4,2] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,3,3,3,3,4,4}
[1,4,2,3] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,3,3,3,3,4,4}
[1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[2,1,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,3,3,3,3,4,4}
[2,1,4,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,3,3,3,3,4,4}
[2,3,1,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,3,3,3,3,4,4}
[2,3,4,1] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,3,3,3,3,4,4}
[2,4,1,3] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,3,3,3,3,4,4}
[2,4,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[3,1,2,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,3,3,3,3,4,4}
[3,1,4,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,3,3,3,3,4,4}
[3,2,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,3,3,3,3,4,4}
[3,2,4,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,3,3,3,3,4,4}
[3,4,1,2] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,3,3,3,3,4,4}
[3,4,2,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[4,1,2,3] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,3,3,3,3,4,4}
[4,1,3,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[4,2,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,3,3,3,3,4,4}
[4,2,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[4,3,1,2] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,3,3,3,3,4,4}
[4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,2,3,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,2,4,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,2,4,5,3] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,2,5,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,3,2,4,5] => [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,3,2,5,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,3,4,2,5] => [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,3,4,5,2] => [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,3,5,2,4] => [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,3,5,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,4,2,3,5] => [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,4,2,5,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,4,3,2,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,4,3,5,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,4,5,2,3] => [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,4,5,3,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,5,2,3,4] => [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,5,2,4,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,5,3,2,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,5,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,5,4,2,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,5,4,3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[2,1,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,1,3,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,1,4,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,1,4,5,3] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,1,5,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,1,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,3,1,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,3,5,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,4,5,3,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,5,1,4,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,5,3,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,5,4,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,1,5,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,2,5,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,4,5,2,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[3,5,1,4,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[3,5,2,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[3,5,4,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,1,5,3,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,2,5,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,3,5,2,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[4,5,1,3,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[4,5,2,3,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[4,5,3,2,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[5,1,2,4,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[5,1,3,4,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[5,1,4,3,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,2,1,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,2,3,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[5,2,4,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,3,1,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[5,3,2,4,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[5,3,4,2,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[5,4,1,3,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[5,4,2,3,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[5,4,3,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[1,2,3,6,5,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,2,4,6,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,2,5,6,4,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,2,6,3,5,4] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,2,6,4,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,2,6,5,4,3] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,3,2,6,5,4] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
Description
The monochromatic index of a connected graph.
This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path.
For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.
Matching statistic: St000422
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000422: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 24%●distinct values known / distinct values provided: 14%
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000422: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 24%●distinct values known / distinct values provided: 14%
Values
[1] => [1] => [1] => ([],1)
=> 0
[1,2] => [1,2] => [2] => ([],2)
=> 0
[2,1] => [1,2] => [2] => ([],2)
=> 0
[1,2,3] => [1,2,3] => [3] => ([],3)
=> 0
[1,3,2] => [1,2,3] => [3] => ([],3)
=> 0
[2,1,3] => [1,2,3] => [3] => ([],3)
=> 0
[2,3,1] => [1,2,3] => [3] => ([],3)
=> 0
[3,1,2] => [1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> ? ∊ {1,1}
[3,2,1] => [1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> ? ∊ {1,1}
[1,2,3,4] => [1,2,3,4] => [4] => ([],4)
=> 0
[1,2,4,3] => [1,2,3,4] => [4] => ([],4)
=> 0
[1,3,2,4] => [1,2,3,4] => [4] => ([],4)
=> 0
[1,3,4,2] => [1,2,3,4] => [4] => ([],4)
=> 0
[1,4,2,3] => [1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,4,4}
[1,4,3,2] => [1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,4,4}
[2,1,3,4] => [1,2,3,4] => [4] => ([],4)
=> 0
[2,1,4,3] => [1,2,3,4] => [4] => ([],4)
=> 0
[2,3,1,4] => [1,2,3,4] => [4] => ([],4)
=> 0
[2,3,4,1] => [1,2,3,4] => [4] => ([],4)
=> 0
[2,4,1,3] => [1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,4,4}
[2,4,3,1] => [1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,4,4}
[3,1,2,4] => [1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,4,4}
[3,1,4,2] => [1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,4,4}
[3,2,1,4] => [1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,4,4}
[3,2,4,1] => [1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,4,4}
[3,4,1,2] => [1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,4,4}
[3,4,2,1] => [1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,4,4}
[4,1,2,3] => [1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,4,4}
[4,1,3,2] => [1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,4,4}
[4,2,1,3] => [1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,4,4}
[4,2,3,1] => [1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,4,4}
[4,3,1,2] => [1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,4,4}
[4,3,2,1] => [1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,4,4}
[1,2,3,4,5] => [1,2,3,4,5] => [5] => ([],5)
=> 0
[1,2,3,5,4] => [1,2,3,4,5] => [5] => ([],5)
=> 0
[1,2,4,3,5] => [1,2,3,4,5] => [5] => ([],5)
=> 0
[1,2,4,5,3] => [1,2,3,4,5] => [5] => ([],5)
=> 0
[1,2,5,3,4] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,2,5,4,3] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,3,2,4,5] => [1,2,3,4,5] => [5] => ([],5)
=> 0
[1,3,2,5,4] => [1,2,3,4,5] => [5] => ([],5)
=> 0
[1,3,4,2,5] => [1,2,3,4,5] => [5] => ([],5)
=> 0
[1,3,4,5,2] => [1,2,3,4,5] => [5] => ([],5)
=> 0
[1,3,5,2,4] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,3,5,4,2] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,4,2,3,5] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,4,2,5,3] => [1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,4,3,2,5] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,4,3,5,2] => [1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,4,5,2,3] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,4,5,3,2] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,5,2,3,4] => [1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[1,5,2,4,3] => [1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,5,3,2,4] => [1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[1,5,3,4,2] => [1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,5,4,2,3] => [1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,5,4,3,2] => [1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,1,3,4,5] => [1,2,3,4,5] => [5] => ([],5)
=> 0
[2,1,3,5,4] => [1,2,3,4,5] => [5] => ([],5)
=> 0
[2,1,4,3,5] => [1,2,3,4,5] => [5] => ([],5)
=> 0
[2,1,4,5,3] => [1,2,3,4,5] => [5] => ([],5)
=> 0
[2,1,5,3,4] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[2,1,5,4,3] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[2,3,1,4,5] => [1,2,3,4,5] => [5] => ([],5)
=> 0
[2,3,1,5,4] => [1,2,3,4,5] => [5] => ([],5)
=> 0
[2,3,4,1,5] => [1,2,3,4,5] => [5] => ([],5)
=> 0
[2,3,4,5,1] => [1,2,3,4,5] => [5] => ([],5)
=> 0
[2,3,5,1,4] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[2,3,5,4,1] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[2,4,1,3,5] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,4,1,5,3] => [1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[2,4,3,1,5] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,4,3,5,1] => [1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[2,4,5,1,3] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,4,5,3,1] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,5,1,3,4] => [1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[2,5,1,4,3] => [1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,5,3,1,4] => [1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[2,5,3,4,1] => [1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,5,4,1,3] => [1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,5,4,3,1] => [1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,1,2,4,5] => [1,3,2,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,1,2,5,4] => [1,3,2,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,1,4,2,5] => [1,3,4,2,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,1,4,5,2] => [1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[3,1,5,2,4] => [1,3,5,4,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[3,1,5,4,2] => [1,3,5,2,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,2,1,4,5] => [1,3,2,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,2,1,5,4] => [1,3,2,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,2,4,1,5] => [1,3,4,2,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,2,4,5,1] => [1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[3,2,5,4,1] => [1,3,5,2,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,4,1,2,5] => [1,3,2,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,4,1,5,2] => [1,3,2,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,4,2,1,5] => [1,3,2,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,4,2,5,1] => [1,3,2,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,4,5,1,2] => [1,3,5,2,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,4,5,2,1] => [1,3,5,2,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,5,1,2,4] => [1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,5,1,4,2] => [1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
Description
The energy of a graph, if it is integral.
The energy of a graph is the sum of the absolute values of its eigenvalues. This statistic is only defined for graphs with integral energy. It is known, that the energy is never an odd integer [2]. In fact, it is never the square root of an odd integer [3].
The energy of a graph is the sum of the energies of the connected components of a graph. The energy of the complete graph $K_n$ equals $2n-2$. For this reason, we do not define the energy of the empty graph.
Matching statistic: St000454
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00073: Permutations —major-index to inversion-number bijection⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 19% ●values known / values provided: 23%●distinct values known / distinct values provided: 19%
Mp00073: Permutations —major-index to inversion-number bijection⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 19% ●values known / values provided: 23%●distinct values known / distinct values provided: 19%
Values
[1] => [1] => [1] => ([],1)
=> 0
[1,2] => [1,2] => [1,2] => ([],2)
=> 0
[2,1] => [1,2] => [1,2] => ([],2)
=> 0
[1,2,3] => [1,2,3] => [1,2,3] => ([],3)
=> 0
[1,3,2] => [1,2,3] => [1,2,3] => ([],3)
=> 0
[2,1,3] => [1,2,3] => [1,2,3] => ([],3)
=> 0
[2,3,1] => [1,2,3] => [1,2,3] => ([],3)
=> 0
[3,1,2] => [1,3,2] => [2,3,1] => ([(0,2),(1,2)],3)
=> ? ∊ {1,1}
[3,2,1] => [1,3,2] => [2,3,1] => ([(0,2),(1,2)],3)
=> ? ∊ {1,1}
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[1,2,4,3] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[1,3,2,4] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[1,3,4,2] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[1,4,2,3] => [1,2,4,3] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,3,3,3,3,4,4}
[1,4,3,2] => [1,2,4,3] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,3,3,3,3,4,4}
[2,1,3,4] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[2,1,4,3] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[2,3,1,4] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[2,3,4,1] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[2,4,1,3] => [1,2,4,3] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,3,3,3,3,4,4}
[2,4,3,1] => [1,2,4,3] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,3,3,3,3,4,4}
[3,1,2,4] => [1,3,2,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,3,3,3,3,4,4}
[3,1,4,2] => [1,3,4,2] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,3,3,3,3,4,4}
[3,2,1,4] => [1,3,2,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,3,3,3,3,4,4}
[3,2,4,1] => [1,3,4,2] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,3,3,3,3,4,4}
[3,4,1,2] => [1,3,2,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,3,3,3,3,4,4}
[3,4,2,1] => [1,3,2,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,3,3,3,3,4,4}
[4,1,2,3] => [1,4,3,2] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,3,3,3,3,4,4}
[4,1,3,2] => [1,4,2,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> 1
[4,2,1,3] => [1,4,3,2] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,3,3,3,3,4,4}
[4,2,3,1] => [1,4,2,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> 1
[4,3,1,2] => [1,4,2,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> 1
[4,3,2,1] => [1,4,2,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,2,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,2,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,2,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,2,5,3,4] => [1,2,3,5,4] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,2,5,4,3] => [1,2,3,5,4] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,3,2,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,3,2,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,3,4,2,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,3,4,5,2] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,3,5,2,4] => [1,2,3,5,4] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,3,5,4,2] => [1,2,3,5,4] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,4,2,3,5] => [1,2,4,3,5] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,4,2,5,3] => [1,2,4,5,3] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,4,3,2,5] => [1,2,4,3,5] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,4,3,5,2] => [1,2,4,5,3] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,4,5,2,3] => [1,2,4,3,5] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,4,5,3,2] => [1,2,4,3,5] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,5,2,3,4] => [1,2,5,4,3] => [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,5,2,4,3] => [1,2,5,3,4] => [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,5,3,2,4] => [1,2,5,4,3] => [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,5,3,4,2] => [1,2,5,3,4] => [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,5,4,2,3] => [1,2,5,3,4] => [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,5,4,3,2] => [1,2,5,3,4] => [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,1,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[2,1,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[2,1,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[2,1,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[2,1,5,3,4] => [1,2,3,5,4] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[2,1,5,4,3] => [1,2,3,5,4] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[2,3,1,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[2,3,1,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[2,3,4,1,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[2,3,5,1,4] => [1,2,3,5,4] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[2,3,5,4,1] => [1,2,3,5,4] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[2,4,1,3,5] => [1,2,4,3,5] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,4,1,5,3] => [1,2,4,5,3] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,4,3,1,5] => [1,2,4,3,5] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,4,3,5,1] => [1,2,4,5,3] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,4,5,1,3] => [1,2,4,3,5] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,4,5,3,1] => [1,2,4,3,5] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,5,1,3,4] => [1,2,5,4,3] => [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,5,1,4,3] => [1,2,5,3,4] => [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,5,3,1,4] => [1,2,5,4,3] => [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,5,3,4,1] => [1,2,5,3,4] => [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,5,4,1,3] => [1,2,5,3,4] => [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,5,4,3,1] => [1,2,5,3,4] => [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,1,2,4,5] => [1,3,2,4,5] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,1,2,5,4] => [1,3,2,4,5] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,1,4,2,5] => [1,3,4,2,5] => [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,1,4,5,2] => [1,3,4,5,2] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,1,5,2,4] => [1,3,5,4,2] => [3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,1,5,4,2] => [1,3,5,2,4] => [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,2,1,4,5] => [1,3,2,4,5] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,2,1,5,4] => [1,3,2,4,5] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,2,4,1,5] => [1,3,4,2,5] => [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,2,4,5,1] => [1,3,4,5,2] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,2,5,1,4] => [1,3,5,4,2] => [3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,2,5,4,1] => [1,3,5,2,4] => [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,4,1,2,5] => [1,3,2,4,5] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,4,1,5,2] => [1,3,2,4,5] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,4,2,1,5] => [1,3,2,4,5] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,4,2,5,1] => [1,3,2,4,5] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[4,1,3,2,5] => [1,4,2,3,5] => [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> 1
[4,1,5,2,3] => [1,4,2,3,5] => [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> 1
[4,2,3,1,5] => [1,4,2,3,5] => [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> 1
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St000714
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000714: Integer partitions ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 24%
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000714: Integer partitions ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 24%
Values
[1] => ([],1)
=> [1]
=> []
=> ? = 0
[1,2] => ([],2)
=> [1,1]
=> [1]
=> ? ∊ {0,0}
[2,1] => ([(0,1)],2)
=> [2]
=> []
=> ? ∊ {0,0}
[1,2,3] => ([],3)
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2] => ([(1,2)],3)
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,1}
[2,1,3] => ([(1,2)],3)
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,1}
[2,3,1] => ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {0,0,0,0,1}
[3,1,2] => ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {0,0,0,0,1}
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {0,0,0,0,1}
[1,2,3,4] => ([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 0
[1,2,4,3] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
[1,3,2,4] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
[1,3,4,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,3,3,3,4,4}
[1,4,2,3] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,3,3,3,4,4}
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,3,3,3,4,4}
[2,1,3,4] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
[2,1,4,3] => ([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 3
[2,3,1,4] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,3,3,3,4,4}
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,3,3,3,4,4}
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,3,3,3,4,4}
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,3,3,3,4,4}
[3,1,2,4] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,3,3,3,4,4}
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,3,3,3,4,4}
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,3,3,3,4,4}
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,3,3,3,4,4}
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,3,3,3,4,4}
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,3,3,3,4,4}
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,3,3,3,4,4}
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,3,3,3,4,4}
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,3,3,3,4,4}
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,3,3,3,4,4}
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,3,3,3,4,4}
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,3,3,3,4,4}
[1,2,3,4,5] => ([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,2,3,5,4] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 0
[1,2,4,3,5] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 0
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 0
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 2
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,1,3,4,5] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 0
[2,1,3,5,4] => ([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 2
[2,1,4,3,5] => ([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 2
[2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 3
[2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 3
[2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 3
[2,3,1,4,5] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 3
[2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,1,2,4,5] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 3
[3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 3
[1,2,3,4,5,6] => ([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[1,2,3,4,6,5] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,2,3,5,4,6] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,2,3,5,6,4] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
[1,2,3,6,4,5] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
[1,2,3,6,5,4] => ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
[1,2,4,3,5,6] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,2,4,3,6,5] => ([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 0
[1,2,4,5,3,6] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
[1,2,4,5,6,3] => ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,4,6,3,5] => ([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,4,6,5,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,5,3,4,6] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
[1,2,5,3,6,4] => ([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,5,4,3,6] => ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
[1,2,5,4,6,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,5,6,3,4] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,5,6,4,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,6,3,4,5] => ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,6,3,5,4] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,6,4,3,5] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
Description
The number of semistandard Young tableau of given shape, with entries at most 2.
This is also the dimension of the corresponding irreducible representation of $GL_2$.
Matching statistic: St000770
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000770: Integer partitions ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 24%
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000770: Integer partitions ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 24%
Values
[1] => ([],1)
=> [1]
=> []
=> ? = 0
[1,2] => ([],2)
=> [1,1]
=> [1]
=> ? ∊ {0,0}
[2,1] => ([(0,1)],2)
=> [2]
=> []
=> ? ∊ {0,0}
[1,2,3] => ([],3)
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2] => ([(1,2)],3)
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,1}
[2,1,3] => ([(1,2)],3)
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,1}
[2,3,1] => ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {0,0,0,0,1}
[3,1,2] => ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {0,0,0,0,1}
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {0,0,0,0,1}
[1,2,3,4] => ([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
[1,3,2,4] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
[1,3,4,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[1,4,2,3] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[2,1,3,4] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
[2,1,4,3] => ([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 2
[2,3,1,4] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[3,1,2,4] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[1,2,3,4,5] => ([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,2,3,5,4] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,5] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 4
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,1,3,4,5] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
[2,1,3,5,4] => ([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 4
[2,1,4,3,5] => ([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 4
[2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
[2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
[2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
[2,3,1,4,5] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
[2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,1,2,4,5] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
[3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
[1,2,3,4,5,6] => ([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[1,2,3,4,6,5] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,2,3,5,4,6] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,2,3,5,6,4] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,6,4,5] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,6,5,4] => ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,5,6] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,2,4,3,6,5] => ([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 5
[1,2,4,5,3,6] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,5,6,3] => ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,4,6,3,5] => ([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,4,6,5,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,5,3,4,6] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[1,2,5,3,6,4] => ([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,5,4,3,6] => ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[1,2,5,4,6,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,5,6,3,4] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,5,6,4,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,6,3,4,5] => ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,6,3,5,4] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,6,4,3,5] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
Description
The major index of an integer partition when read from bottom to top.
This is the sum of the positions of the corners of the shape of an integer partition when reading from bottom to top.
For example, the partition $\lambda = (8,6,6,4,3,3)$ has corners at positions 3,6,9, and 13, giving a major index of 31.
Matching statistic: St000815
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000815: Integer partitions ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 19%
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000815: Integer partitions ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 19%
Values
[1] => ([],1)
=> [1]
=> []
=> ? = 0
[1,2] => ([],2)
=> [1,1]
=> [1]
=> ? ∊ {0,0}
[2,1] => ([(0,1)],2)
=> [2]
=> []
=> ? ∊ {0,0}
[1,2,3] => ([],3)
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2] => ([(1,2)],3)
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,1}
[2,1,3] => ([(1,2)],3)
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,1}
[2,3,1] => ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {0,0,0,0,1}
[3,1,2] => ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {0,0,0,0,1}
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {0,0,0,0,1}
[1,2,3,4] => ([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
[1,3,2,4] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
[1,3,4,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[1,4,2,3] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[2,1,3,4] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
[2,1,4,3] => ([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 2
[2,3,1,4] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[3,1,2,4] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,2,3,3,3,3,4,4}
[1,2,3,4,5] => ([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,2,3,5,4] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,5] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 3
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,1,3,4,5] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
[2,1,3,5,4] => ([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 3
[2,1,4,3,5] => ([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 3
[2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
[2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
[2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
[2,3,1,4,5] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
[2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,8,8,9,9,9,9,10,10}
[3,1,2,4,5] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
[3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
[1,2,3,4,5,6] => ([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[1,2,3,4,6,5] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,2,3,5,4,6] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,2,3,5,6,4] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,6,4,5] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,6,5,4] => ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,5,6] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,2,4,3,6,5] => ([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 4
[1,2,4,5,3,6] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,5,6,3] => ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,4,6,3,5] => ([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,4,6,5,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,5,3,4,6] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[1,2,5,3,6,4] => ([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,5,4,3,6] => ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[1,2,5,4,6,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,5,6,3,4] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,5,6,4,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,6,3,4,5] => ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,6,3,5,4] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,6,4,3,5] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
Description
The number of semistandard Young tableaux of partition weight of given shape.
The weight of a semistandard Young tableaux is the sequence $(m_1, m_2,\dots)$, where $m_i$ is the number of occurrences of the number $i$ in the tableau. This statistic counts those tableaux whose weight is a weakly decreasing sequence.
Alternatively, this is the sum of the entries in the column specified by the partition of the change of basis matrix from Schur functions to monomial symmetric functions.
The following 35 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000937The number of positive values of the symmetric group character corresponding to the partition. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St000264The girth of a graph, which is not a tree. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000307The number of rowmotion orbits of a poset. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000632The jump number of the poset. St000298The order dimension or Dushnik-Miller dimension of a poset. St000640The rank of the largest boolean interval in a poset. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001645The pebbling number of a connected graph. St001330The hat guessing number of a graph. St001875The number of simple modules with projective dimension at most 1. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000850The number of 1/2-balanced pairs in a poset. St001095The number of non-isomorphic posets with precisely one further covering relation. St001171The vector space dimension of $Ext_A^1(I_o,A)$ when $I_o$ is the tilting module corresponding to the permutation $o$ in the Auslander algebra $A$ of $K[x]/(x^n)$. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000408The number of occurrences of the pattern 4231 in a permutation. St000440The number of occurrences of the pattern 4132 or of the pattern 4231 in a permutation. St000036The evaluation at 1 of the Kazhdan-Lusztig polynomial with parameters given by the identity and the permutation. St001570The minimal number of edges to add to make a graph Hamiltonian.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!