searching the database
Your data matches 7 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000479
Values
([],1)
=> 1
([],2)
=> 2
([(0,1)],2)
=> 2
([],3)
=> 3
([(1,2)],3)
=> 3
([(0,2),(1,2)],3)
=> 3
([(0,1),(0,2),(1,2)],3)
=> 6
([],4)
=> 4
([(2,3)],4)
=> 4
([(1,3),(2,3)],4)
=> 4
([(0,3),(1,3),(2,3)],4)
=> 6
([(0,3),(1,2)],4)
=> 5
([(0,3),(1,2),(2,3)],4)
=> 5
([(1,2),(1,3),(2,3)],4)
=> 6
([(0,3),(1,2),(1,3),(2,3)],4)
=> 7
([(0,2),(0,3),(1,2),(1,3)],4)
=> 6
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 10
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 18
Description
The Ramsey number of a graph.
This is the smallest integer $n$ such that every two-colouring of the edges of the complete graph $K_n$ contains a (not necessarily induced) monochromatic copy of the given graph. [1]
Thus, the Ramsey number of the complete graph $K_n$ is the ordinary Ramsey number $R(n,n)$. Very few of these numbers are known, in particular, it is only known that $43\leq R(5,5)\leq 48$. [2,3,4,5]
Matching statistic: St001880
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 22% ●values known / values provided: 28%●distinct values known / distinct values provided: 22%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 22% ●values known / values provided: 28%●distinct values known / distinct values provided: 22%
Values
([],1)
=> [1] => [[1],[]]
=> ([],1)
=> ? = 1
([],2)
=> [2] => [[2],[]]
=> ([(0,1)],2)
=> ? ∊ {2,2}
([(0,1)],2)
=> [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {2,2}
([],3)
=> [3] => [[3],[]]
=> ([(0,2),(2,1)],3)
=> 3
([(1,2)],3)
=> [1,2] => [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ? ∊ {3,6}
([(0,2),(1,2)],3)
=> [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {3,6}
([],4)
=> [4] => [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(2,3)],4)
=> [1,3] => [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {5,5,6,6,6,7,10,18}
([(1,3),(2,3)],4)
=> [1,1,2] => [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {5,5,6,6,6,7,10,18}
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {5,5,6,6,6,7,10,18}
([(0,3),(1,2)],4)
=> [2,2] => [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {5,5,6,6,6,7,10,18}
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {5,5,6,6,6,7,10,18}
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {5,5,6,6,6,7,10,18}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {5,5,6,6,6,7,10,18}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {5,5,6,6,6,7,10,18}
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Matching statistic: St001545
Values
([],1)
=> ([],1)
=> ([],0)
=> ? = 1
([],2)
=> ([],1)
=> ([],0)
=> ? ∊ {2,2}
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {2,2}
([],3)
=> ([],1)
=> ([],0)
=> ? ∊ {3,3,3}
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {3,3,3}
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {3,3,3}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 6
([],4)
=> ([],1)
=> ([],0)
=> ? ∊ {4,4,4,5,5,7,10,18}
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {4,4,4,5,5,7,10,18}
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {4,4,4,5,5,7,10,18}
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {4,4,4,5,5,7,10,18}
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {4,4,4,5,5,7,10,18}
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {4,4,4,5,5,7,10,18}
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 6
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 6
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {4,4,4,5,5,7,10,18}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 6
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {4,4,4,5,5,7,10,18}
Description
The second Elser number of a connected graph.
For a connected graph $G$ the $k$-th Elser number is
$$
els_k(G) = (-1)^{|V(G)|+1} \sum_N (-1)^{|E(N)|} |V(N)|^k
$$
where the sum is over all nuclei of $G$, that is, the connected subgraphs of $G$ whose vertex set is a vertex cover of $G$.
It is clear that this number is even. It was shown in [1] that it is non-negative.
Matching statistic: St001330
Values
([],1)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 1 + 2
([],2)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 + 2
([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 2 + 2
([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,6} + 2
([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,6} + 2
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,6} + 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 3 + 2
([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,5,5,6,6,6,7,10,18} + 2
([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,5,5,6,6,6,7,10,18} + 2
([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,5,5,6,6,6,7,10,18} + 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,5,5,6,6,6,7,10,18} + 2
([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,5,5,6,6,6,7,10,18} + 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,5,5,6,6,6,7,10,18} + 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,5,5,6,6,6,7,10,18} + 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,5,5,6,6,6,7,10,18} + 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,5,5,6,6,6,7,10,18} + 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,5,5,6,6,6,7,10,18} + 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 4 + 2
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St001582
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St001582: Permutations ⟶ ℤResult quality: 22% ●values known / values provided: 22%●distinct values known / distinct values provided: 33%
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St001582: Permutations ⟶ ℤResult quality: 22% ●values known / values provided: 22%●distinct values known / distinct values provided: 33%
Values
([],1)
=> [1]
=> [1,0,1,0]
=> [3,1,2] => 1
([],2)
=> [1,1]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => 2
([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> [2,4,1,3] => 2
([],3)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => ? ∊ {3,3,6}
([(1,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 3
([(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => ? ∊ {3,3,6}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => ? ∊ {3,3,6}
([],4)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ? ∊ {4,4,4,5,5,6,6,6,7,10,18}
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => ? ∊ {4,4,4,5,5,6,6,6,7,10,18}
([(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => ? ∊ {4,4,4,5,5,6,6,6,7,10,18}
([(0,3),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => ? ∊ {4,4,4,5,5,6,6,6,7,10,18}
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => ? ∊ {4,4,4,5,5,6,6,6,7,10,18}
([(0,3),(1,2),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => ? ∊ {4,4,4,5,5,6,6,6,7,10,18}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => ? ∊ {4,4,4,5,5,6,6,6,7,10,18}
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => ? ∊ {4,4,4,5,5,6,6,6,7,10,18}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => ? ∊ {4,4,4,5,5,6,6,6,7,10,18}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => ? ∊ {4,4,4,5,5,6,6,6,7,10,18}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => ? ∊ {4,4,4,5,5,6,6,6,7,10,18}
Description
The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order.
Matching statistic: St001645
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00038: Integer compositions —reverse⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 22% ●values known / values provided: 22%●distinct values known / distinct values provided: 44%
Mp00038: Integer compositions —reverse⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 22% ●values known / values provided: 22%●distinct values known / distinct values provided: 44%
Values
([],1)
=> [1] => [1] => ([],1)
=> 1
([],2)
=> [2] => [2] => ([],2)
=> ? = 2
([(0,1)],2)
=> [1,1] => [1,1] => ([(0,1)],2)
=> 2
([],3)
=> [3] => [3] => ([],3)
=> ? ∊ {3,3,6}
([(1,2)],3)
=> [2,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {3,3,6}
([(0,2),(1,2)],3)
=> [2,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {3,3,6}
([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([],4)
=> [4] => [4] => ([],4)
=> ? ∊ {4,4,5,5,6,6,6,7,10,18}
([(2,3)],4)
=> [3,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {4,4,5,5,6,6,6,7,10,18}
([(1,3),(2,3)],4)
=> [3,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {4,4,5,5,6,6,6,7,10,18}
([(0,3),(1,3),(2,3)],4)
=> [3,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {4,4,5,5,6,6,6,7,10,18}
([(0,3),(1,2)],4)
=> [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {4,4,5,5,6,6,6,7,10,18}
([(0,3),(1,2),(2,3)],4)
=> [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {4,4,5,5,6,6,6,7,10,18}
([(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {4,4,5,5,6,6,6,7,10,18}
([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {4,4,5,5,6,6,6,7,10,18}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {4,4,5,5,6,6,6,7,10,18}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {4,4,5,5,6,6,6,7,10,18}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
Description
The pebbling number of a connected graph.
Matching statistic: St001624
Values
([],1)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([],2)
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {3,3,3,6}
([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? ∊ {3,3,3,6}
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? ∊ {3,3,3,6}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? ∊ {3,3,3,6}
([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? ∊ {4,4,4,5,5,6,6,6,7,10,18}
([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? ∊ {4,4,4,5,5,6,6,6,7,10,18}
([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
=> ? ∊ {4,4,4,5,5,6,6,6,7,10,18}
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,28),(1,29),(1,30),(2,9),(2,13),(2,18),(2,19),(2,30),(3,8),(3,12),(3,16),(3,17),(3,30),(4,11),(4,15),(4,17),(4,19),(4,29),(5,10),(5,14),(5,16),(5,18),(5,29),(6,12),(6,13),(6,14),(6,15),(6,28),(7,8),(7,9),(7,10),(7,11),(7,28),(8,20),(8,21),(8,32),(9,22),(9,23),(9,32),(10,20),(10,22),(10,33),(11,21),(11,23),(11,33),(12,24),(12,25),(12,32),(13,26),(13,27),(13,32),(14,24),(14,26),(14,33),(15,25),(15,27),(15,33),(16,20),(16,24),(16,31),(17,21),(17,25),(17,31),(18,22),(18,26),(18,31),(19,23),(19,27),(19,31),(20,34),(21,34),(22,34),(23,34),(24,34),(25,34),(26,34),(27,34),(28,32),(28,33),(29,31),(29,33),(30,31),(30,32),(31,34),(32,34),(33,34)],35)
=> ? ∊ {4,4,4,5,5,6,6,6,7,10,18}
([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(1,14),(1,15),(1,17),(2,10),(2,11),(2,12),(2,17),(3,7),(3,8),(3,9),(3,17),(4,9),(4,12),(4,15),(4,16),(5,8),(5,11),(5,14),(5,16),(6,7),(6,10),(6,13),(6,16),(7,18),(7,21),(8,19),(8,21),(9,20),(9,21),(10,18),(10,22),(11,19),(11,22),(12,20),(12,22),(13,18),(13,23),(14,19),(14,23),(15,20),(15,23),(16,21),(16,22),(16,23),(17,18),(17,19),(17,20),(18,24),(19,24),(20,24),(21,24),(22,24),(23,24)],25)
=> ? ∊ {4,4,4,5,5,6,6,6,7,10,18}
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,10),(1,11),(1,24),(1,26),(2,8),(2,9),(2,24),(2,25),(3,16),(3,17),(3,18),(3,19),(3,24),(4,9),(4,14),(4,15),(4,17),(4,26),(5,8),(5,12),(5,13),(5,16),(5,26),(6,11),(6,13),(6,15),(6,19),(6,25),(7,10),(7,12),(7,14),(7,18),(7,25),(8,27),(8,31),(9,28),(9,31),(10,29),(10,32),(11,30),(11,32),(12,20),(12,27),(12,29),(13,21),(13,27),(13,30),(14,22),(14,28),(14,29),(15,23),(15,28),(15,30),(16,20),(16,21),(16,31),(17,22),(17,23),(17,31),(18,20),(18,22),(18,32),(19,21),(19,23),(19,32),(20,33),(21,33),(22,33),(23,33),(24,31),(24,32),(25,27),(25,28),(25,32),(26,29),(26,30),(26,31),(27,33),(28,33),(29,33),(30,33),(31,33),(32,33)],34)
=> ? ∊ {4,4,4,5,5,6,6,6,7,10,18}
([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(1,16),(1,21),(1,23),(2,8),(2,16),(2,20),(2,22),(3,10),(3,15),(3,20),(3,23),(4,11),(4,15),(4,21),(4,22),(5,13),(5,14),(5,22),(5,23),(6,12),(6,14),(6,20),(6,21),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(8,17),(8,24),(8,26),(9,17),(9,25),(9,27),(10,18),(10,24),(10,27),(11,18),(11,25),(11,26),(12,19),(12,24),(12,25),(13,19),(13,26),(13,27),(14,19),(14,28),(15,18),(15,28),(16,17),(16,28),(17,29),(18,29),(19,29),(20,24),(20,28),(21,25),(21,28),(22,26),(22,28),(23,27),(23,28),(24,29),(25,29),(26,29),(27,29),(28,29)],30)
=> ? ∊ {4,4,4,5,5,6,6,6,7,10,18}
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,9),(1,26),(1,27),(1,28),(2,9),(2,10),(2,11),(2,29),(2,30),(3,13),(3,17),(3,21),(3,28),(3,30),(4,12),(4,16),(4,21),(4,27),(4,29),(5,15),(5,18),(5,20),(5,27),(5,30),(6,14),(6,19),(6,20),(6,28),(6,29),(7,11),(7,16),(7,17),(7,18),(7,19),(7,26),(8,10),(8,12),(8,13),(8,14),(8,15),(8,26),(9,35),(9,38),(10,31),(10,32),(10,35),(11,33),(11,34),(11,35),(12,22),(12,31),(12,36),(13,22),(13,32),(13,37),(14,23),(14,31),(14,37),(15,23),(15,32),(15,36),(16,24),(16,33),(16,36),(17,24),(17,34),(17,37),(18,25),(18,34),(18,36),(19,25),(19,33),(19,37),(20,23),(20,25),(20,38),(21,22),(21,24),(21,38),(22,39),(23,39),(24,39),(25,39),(26,35),(26,36),(26,37),(27,36),(27,38),(28,37),(28,38),(29,31),(29,33),(29,38),(30,32),(30,34),(30,38),(31,39),(32,39),(33,39),(34,39),(35,39),(36,39),(37,39),(38,39)],40)
=> ? ∊ {4,4,4,5,5,6,6,6,7,10,18}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,16),(1,20),(1,24),(1,30),(1,32),(2,15),(2,19),(2,23),(2,30),(2,31),(3,17),(3,21),(3,23),(3,29),(3,32),(4,18),(4,22),(4,24),(4,29),(4,31),(5,10),(5,13),(5,14),(5,17),(5,18),(5,30),(6,10),(6,11),(6,12),(6,15),(6,16),(6,29),(7,9),(7,11),(7,13),(7,19),(7,22),(7,32),(8,9),(8,12),(8,14),(8,20),(8,21),(8,31),(9,35),(9,36),(9,41),(10,33),(10,34),(10,41),(11,25),(11,38),(11,41),(12,26),(12,37),(12,41),(13,28),(13,39),(13,41),(14,27),(14,40),(14,41),(15,25),(15,33),(15,37),(16,26),(16,33),(16,38),(17,27),(17,34),(17,39),(18,28),(18,34),(18,40),(19,25),(19,35),(19,39),(20,26),(20,36),(20,40),(21,27),(21,36),(21,37),(22,28),(22,35),(22,38),(23,37),(23,39),(24,38),(24,40),(25,42),(26,42),(27,42),(28,42),(29,34),(29,37),(29,38),(30,33),(30,39),(30,40),(31,35),(31,37),(31,40),(32,36),(32,38),(32,39),(33,42),(34,42),(35,42),(36,42),(37,42),(38,42),(39,42),(40,42),(41,42)],43)
=> ? ∊ {4,4,4,5,5,6,6,6,7,10,18}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,12),(1,15),(1,28),(1,31),(1,34),(2,11),(2,14),(2,28),(2,30),(2,33),(3,10),(3,13),(3,28),(3,29),(3,32),(4,10),(4,16),(4,19),(4,21),(4,30),(4,31),(5,11),(5,17),(5,20),(5,22),(5,29),(5,31),(6,12),(6,18),(6,23),(6,24),(6,29),(6,30),(7,13),(7,16),(7,20),(7,23),(7,33),(7,34),(8,14),(8,17),(8,19),(8,24),(8,32),(8,34),(9,15),(9,18),(9,21),(9,22),(9,32),(9,33),(10,25),(10,35),(10,45),(11,26),(11,36),(11,45),(12,27),(12,37),(12,45),(13,25),(13,38),(13,44),(14,26),(14,39),(14,44),(15,27),(15,40),(15,44),(16,25),(16,42),(16,43),(17,26),(17,41),(17,43),(18,27),(18,41),(18,42),(19,35),(19,39),(19,43),(20,36),(20,38),(20,43),(21,35),(21,40),(21,42),(22,36),(22,40),(22,41),(23,37),(23,38),(23,42),(24,37),(24,39),(24,41),(25,46),(26,46),(27,46),(28,44),(28,45),(29,38),(29,41),(29,45),(30,39),(30,42),(30,45),(31,40),(31,43),(31,45),(32,35),(32,41),(32,44),(33,36),(33,42),(33,44),(34,37),(34,43),(34,44),(35,46),(36,46),(37,46),(38,46),(39,46),(40,46),(41,46),(42,46),(43,46),(44,46),(45,46)],47)
=> ? ∊ {4,4,4,5,5,6,6,6,7,10,18}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,13),(1,14),(1,20),(1,28),(1,29),(1,31),(2,11),(2,12),(2,19),(2,26),(2,27),(2,31),(3,16),(3,18),(3,22),(3,27),(3,29),(3,30),(4,15),(4,17),(4,21),(4,26),(4,28),(4,30),(5,11),(5,15),(5,24),(5,29),(5,32),(5,34),(6,12),(6,16),(6,25),(6,28),(6,32),(6,35),(7,13),(7,17),(7,25),(7,27),(7,33),(7,34),(8,14),(8,18),(8,24),(8,26),(8,33),(8,35),(9,21),(9,22),(9,23),(9,31),(9,34),(9,35),(10,19),(10,20),(10,23),(10,30),(10,32),(10,33),(11,36),(11,40),(11,50),(12,36),(12,41),(12,49),(13,37),(13,42),(13,50),(14,37),(14,43),(14,49),(15,38),(15,40),(15,48),(16,39),(16,41),(16,48),(17,38),(17,42),(17,47),(18,39),(18,43),(18,47),(19,36),(19,44),(19,47),(20,37),(20,44),(20,48),(21,38),(21,45),(21,49),(22,39),(22,45),(22,50),(23,44),(23,45),(23,46),(24,40),(24,43),(24,46),(25,41),(25,42),(25,46),(26,40),(26,47),(26,49),(27,41),(27,47),(27,50),(28,42),(28,48),(28,49),(29,43),(29,48),(29,50),(30,45),(30,47),(30,48),(31,44),(31,49),(31,50),(32,36),(32,46),(32,48),(33,37),(33,46),(33,47),(34,38),(34,46),(34,50),(35,39),(35,46),(35,49),(36,51),(37,51),(38,51),(39,51),(40,51),(41,51),(42,51),(43,51),(44,51),(45,51),(46,51),(47,51),(48,51),(49,51),(50,51)],52)
=> ? ∊ {4,4,4,5,5,6,6,6,7,10,18}
Description
The breadth of a lattice.
The '''breadth''' of a lattice is the least integer $b$ such that any join $x_1\vee x_2\vee\cdots\vee x_n$, with $n > b$, can be expressed as a join over a proper subset of $\{x_1,x_2,\ldots,x_n\}$.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!