Processing math: 100%

Your data matches 14 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000510: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[2]
=> 1
[1,1]
=> 1
[3]
=> 2
[2,1]
=> 0
[1,1,1]
=> 2
[4]
=> 2
[3,1]
=> 0
[2,2]
=> 2
[2,1,1]
=> 0
[1,1,1,1]
=> 6
[5]
=> 4
[4,1]
=> 0
[3,2]
=> 0
[3,1,1]
=> 0
[2,2,1]
=> 0
[2,1,1,1]
=> 0
[1,1,1,1,1]
=> 24
[6]
=> 2
[5,1]
=> 0
[4,2]
=> 0
[4,1,1]
=> 0
[3,3]
=> 6
[3,2,1]
=> 0
[3,1,1,1]
=> 0
[2,2,2]
=> 8
[2,2,1,1]
=> 0
[2,1,1,1,1]
=> 0
[1,1,1,1,1,1]
=> 120
[7]
=> 6
[6,1]
=> 0
[5,2]
=> 0
[5,1,1]
=> 0
[4,3]
=> 0
[4,2,1]
=> 0
[4,1,1,1]
=> 0
[3,3,1]
=> 0
[3,2,2]
=> 0
[3,2,1,1]
=> 0
[3,1,1,1,1]
=> 0
[2,2,2,1]
=> 0
[2,2,1,1,1]
=> 0
[2,1,1,1,1,1]
=> 0
[1,1,1,1,1,1,1]
=> 720
[8]
=> 4
[7,1]
=> 0
[6,2]
=> 0
[6,1,1]
=> 0
[5,3]
=> 0
[5,2,1]
=> 0
[5,1,1,1]
=> 0
Description
The number of invariant oriented cycles when acting with a permutation of given cycle type.
Matching statistic: St000296
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00095: Integer partitions to binary wordBinary words
St000296: Binary words ⟶ ℤResult quality: 4% values known / values provided: 83%distinct values known / distinct values provided: 4%
Values
[2]
=> []
=> ?
=> ? => ? ∊ {1,1}
[1,1]
=> [1]
=> []
=> => ? ∊ {1,1}
[3]
=> []
=> ?
=> ? => ? ∊ {2,2}
[2,1]
=> [1]
=> []
=> => ? ∊ {2,2}
[1,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[4]
=> []
=> ?
=> ? => ? ∊ {2,2,6}
[3,1]
=> [1]
=> []
=> => ? ∊ {2,2,6}
[2,2]
=> [2]
=> []
=> => ? ∊ {2,2,6}
[2,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[5]
=> []
=> ?
=> ? => ? ∊ {0,4,24}
[4,1]
=> [1]
=> []
=> => ? ∊ {0,4,24}
[3,2]
=> [2]
=> []
=> => ? ∊ {0,4,24}
[3,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[2,2,1]
=> [2,1]
=> [1]
=> 10 => 0
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 0
[6]
=> []
=> ?
=> ? => ? ∊ {2,6,8,120}
[5,1]
=> [1]
=> []
=> => ? ∊ {2,6,8,120}
[4,2]
=> [2]
=> []
=> => ? ∊ {2,6,8,120}
[4,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[3,3]
=> [3]
=> []
=> => ? ∊ {2,6,8,120}
[3,2,1]
=> [2,1]
=> [1]
=> 10 => 0
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[2,2,2]
=> [2,2]
=> [2]
=> 100 => 0
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 110 => 0
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 0
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 0
[7]
=> []
=> ?
=> ? => ? ∊ {0,0,6,720}
[6,1]
=> [1]
=> []
=> => ? ∊ {0,0,6,720}
[5,2]
=> [2]
=> []
=> => ? ∊ {0,0,6,720}
[5,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[4,3]
=> [3]
=> []
=> => ? ∊ {0,0,6,720}
[4,2,1]
=> [2,1]
=> [1]
=> 10 => 0
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[3,3,1]
=> [3,1]
=> [1]
=> 10 => 0
[3,2,2]
=> [2,2]
=> [2]
=> 100 => 0
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 110 => 0
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 0
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1010 => 0
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1110 => 0
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 0
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 111110 => 0
[8]
=> []
=> ?
=> ? => ? ∊ {0,4,8,48,5040}
[7,1]
=> [1]
=> []
=> => ? ∊ {0,4,8,48,5040}
[6,2]
=> [2]
=> []
=> => ? ∊ {0,4,8,48,5040}
[6,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[5,3]
=> [3]
=> []
=> => ? ∊ {0,4,8,48,5040}
[5,2,1]
=> [2,1]
=> [1]
=> 10 => 0
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[4,4]
=> [4]
=> []
=> => ? ∊ {0,4,8,48,5040}
[4,3,1]
=> [3,1]
=> [1]
=> 10 => 0
[4,2,2]
=> [2,2]
=> [2]
=> 100 => 0
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> 110 => 0
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 0
[3,3,2]
=> [3,2]
=> [2]
=> 100 => 0
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> 110 => 0
[3,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1010 => 0
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1110 => 0
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 0
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 1100 => 0
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 10110 => 0
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 0
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 111110 => 0
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 1111110 => 0
[9]
=> []
=> ?
=> ? => ? ∊ {0,0,6,36,40320}
[8,1]
=> [1]
=> []
=> => ? ∊ {0,0,6,36,40320}
[7,2]
=> [2]
=> []
=> => ? ∊ {0,0,6,36,40320}
[7,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[6,3]
=> [3]
=> []
=> => ? ∊ {0,0,6,36,40320}
[6,2,1]
=> [2,1]
=> [1]
=> 10 => 0
[6,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[5,4]
=> [4]
=> []
=> => ? ∊ {0,0,6,36,40320}
[5,3,1]
=> [3,1]
=> [1]
=> 10 => 0
[5,2,2]
=> [2,2]
=> [2]
=> 100 => 0
[5,2,1,1]
=> [2,1,1]
=> [1,1]
=> 110 => 0
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 0
[4,4,1]
=> [4,1]
=> [1]
=> 10 => 0
[10]
=> []
=> ?
=> ? => ? ∊ {0,0,4,20,384,362880}
[9,1]
=> [1]
=> []
=> => ? ∊ {0,0,4,20,384,362880}
[8,2]
=> [2]
=> []
=> => ? ∊ {0,0,4,20,384,362880}
[7,3]
=> [3]
=> []
=> => ? ∊ {0,0,4,20,384,362880}
[6,4]
=> [4]
=> []
=> => ? ∊ {0,0,4,20,384,362880}
[5,5]
=> [5]
=> []
=> => ? ∊ {0,0,4,20,384,362880}
[11]
=> []
=> ?
=> ? => ? ∊ {0,0,0,0,10,3628800}
[10,1]
=> [1]
=> []
=> => ? ∊ {0,0,0,0,10,3628800}
[9,2]
=> [2]
=> []
=> => ? ∊ {0,0,0,0,10,3628800}
[8,3]
=> [3]
=> []
=> => ? ∊ {0,0,0,0,10,3628800}
[7,4]
=> [4]
=> []
=> => ? ∊ {0,0,0,0,10,3628800}
[6,5]
=> [5]
=> []
=> => ? ∊ {0,0,0,0,10,3628800}
[12]
=> []
=> ?
=> ? => ? ∊ {0,4,12,64,324,3840,39916800}
[11,1]
=> [1]
=> []
=> => ? ∊ {0,4,12,64,324,3840,39916800}
[10,2]
=> [2]
=> []
=> => ? ∊ {0,4,12,64,324,3840,39916800}
[9,3]
=> [3]
=> []
=> => ? ∊ {0,4,12,64,324,3840,39916800}
[8,4]
=> [4]
=> []
=> => ? ∊ {0,4,12,64,324,3840,39916800}
[7,5]
=> [5]
=> []
=> => ? ∊ {0,4,12,64,324,3840,39916800}
[6,6]
=> [6]
=> []
=> => ? ∊ {0,4,12,64,324,3840,39916800}
Description
The length of the symmetric border of a binary word. The symmetric border of a word is the longest word which is a prefix and its reverse is a suffix. The statistic value is equal to the length of the word if and only if the word is [[https://en.wikipedia.org/wiki/Palindrome|palindromic]].
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00095: Integer partitions to binary wordBinary words
St000629: Binary words ⟶ ℤResult quality: 4% values known / values provided: 83%distinct values known / distinct values provided: 4%
Values
[2]
=> []
=> ?
=> ? => ? ∊ {1,1}
[1,1]
=> [1]
=> []
=> => ? ∊ {1,1}
[3]
=> []
=> ?
=> ? => ? ∊ {2,2}
[2,1]
=> [1]
=> []
=> => ? ∊ {2,2}
[1,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[4]
=> []
=> ?
=> ? => ? ∊ {2,2,6}
[3,1]
=> [1]
=> []
=> => ? ∊ {2,2,6}
[2,2]
=> [2]
=> []
=> => ? ∊ {2,2,6}
[2,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[5]
=> []
=> ?
=> ? => ? ∊ {0,4,24}
[4,1]
=> [1]
=> []
=> => ? ∊ {0,4,24}
[3,2]
=> [2]
=> []
=> => ? ∊ {0,4,24}
[3,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[2,2,1]
=> [2,1]
=> [1]
=> 10 => 0
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 0
[6]
=> []
=> ?
=> ? => ? ∊ {2,6,8,120}
[5,1]
=> [1]
=> []
=> => ? ∊ {2,6,8,120}
[4,2]
=> [2]
=> []
=> => ? ∊ {2,6,8,120}
[4,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[3,3]
=> [3]
=> []
=> => ? ∊ {2,6,8,120}
[3,2,1]
=> [2,1]
=> [1]
=> 10 => 0
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[2,2,2]
=> [2,2]
=> [2]
=> 100 => 0
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 110 => 0
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 0
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 0
[7]
=> []
=> ?
=> ? => ? ∊ {0,0,6,720}
[6,1]
=> [1]
=> []
=> => ? ∊ {0,0,6,720}
[5,2]
=> [2]
=> []
=> => ? ∊ {0,0,6,720}
[5,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[4,3]
=> [3]
=> []
=> => ? ∊ {0,0,6,720}
[4,2,1]
=> [2,1]
=> [1]
=> 10 => 0
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[3,3,1]
=> [3,1]
=> [1]
=> 10 => 0
[3,2,2]
=> [2,2]
=> [2]
=> 100 => 0
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 110 => 0
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 0
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1010 => 0
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1110 => 0
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 0
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 111110 => 0
[8]
=> []
=> ?
=> ? => ? ∊ {0,4,8,48,5040}
[7,1]
=> [1]
=> []
=> => ? ∊ {0,4,8,48,5040}
[6,2]
=> [2]
=> []
=> => ? ∊ {0,4,8,48,5040}
[6,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[5,3]
=> [3]
=> []
=> => ? ∊ {0,4,8,48,5040}
[5,2,1]
=> [2,1]
=> [1]
=> 10 => 0
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[4,4]
=> [4]
=> []
=> => ? ∊ {0,4,8,48,5040}
[4,3,1]
=> [3,1]
=> [1]
=> 10 => 0
[4,2,2]
=> [2,2]
=> [2]
=> 100 => 0
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> 110 => 0
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 0
[3,3,2]
=> [3,2]
=> [2]
=> 100 => 0
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> 110 => 0
[3,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1010 => 0
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1110 => 0
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 0
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 1100 => 0
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 10110 => 0
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 0
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 111110 => 0
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 1111110 => 0
[9]
=> []
=> ?
=> ? => ? ∊ {0,0,6,36,40320}
[8,1]
=> [1]
=> []
=> => ? ∊ {0,0,6,36,40320}
[7,2]
=> [2]
=> []
=> => ? ∊ {0,0,6,36,40320}
[7,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[6,3]
=> [3]
=> []
=> => ? ∊ {0,0,6,36,40320}
[6,2,1]
=> [2,1]
=> [1]
=> 10 => 0
[6,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[5,4]
=> [4]
=> []
=> => ? ∊ {0,0,6,36,40320}
[5,3,1]
=> [3,1]
=> [1]
=> 10 => 0
[5,2,2]
=> [2,2]
=> [2]
=> 100 => 0
[5,2,1,1]
=> [2,1,1]
=> [1,1]
=> 110 => 0
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 0
[4,4,1]
=> [4,1]
=> [1]
=> 10 => 0
[10]
=> []
=> ?
=> ? => ? ∊ {0,0,4,20,384,362880}
[9,1]
=> [1]
=> []
=> => ? ∊ {0,0,4,20,384,362880}
[8,2]
=> [2]
=> []
=> => ? ∊ {0,0,4,20,384,362880}
[7,3]
=> [3]
=> []
=> => ? ∊ {0,0,4,20,384,362880}
[6,4]
=> [4]
=> []
=> => ? ∊ {0,0,4,20,384,362880}
[5,5]
=> [5]
=> []
=> => ? ∊ {0,0,4,20,384,362880}
[11]
=> []
=> ?
=> ? => ? ∊ {0,0,0,0,10,3628800}
[10,1]
=> [1]
=> []
=> => ? ∊ {0,0,0,0,10,3628800}
[9,2]
=> [2]
=> []
=> => ? ∊ {0,0,0,0,10,3628800}
[8,3]
=> [3]
=> []
=> => ? ∊ {0,0,0,0,10,3628800}
[7,4]
=> [4]
=> []
=> => ? ∊ {0,0,0,0,10,3628800}
[6,5]
=> [5]
=> []
=> => ? ∊ {0,0,0,0,10,3628800}
[12]
=> []
=> ?
=> ? => ? ∊ {0,4,12,64,324,3840,39916800}
[11,1]
=> [1]
=> []
=> => ? ∊ {0,4,12,64,324,3840,39916800}
[10,2]
=> [2]
=> []
=> => ? ∊ {0,4,12,64,324,3840,39916800}
[9,3]
=> [3]
=> []
=> => ? ∊ {0,4,12,64,324,3840,39916800}
[8,4]
=> [4]
=> []
=> => ? ∊ {0,4,12,64,324,3840,39916800}
[7,5]
=> [5]
=> []
=> => ? ∊ {0,4,12,64,324,3840,39916800}
[6,6]
=> [6]
=> []
=> => ? ∊ {0,4,12,64,324,3840,39916800}
Description
The defect of a binary word. The defect of a finite word w is given by the difference between the maximum possible number and the actual number of palindromic factors contained in w. The maximum possible number of palindromic factors in a word w is |w|+1.
Matching statistic: St000921
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00317: Integer partitions odd partsBinary words
St000921: Binary words ⟶ ℤResult quality: 4% values known / values provided: 82%distinct values known / distinct values provided: 4%
Values
[2]
=> []
=> ?
=> ? => ? ∊ {1,1}
[1,1]
=> [1]
=> []
=> ? => ? ∊ {1,1}
[3]
=> []
=> ?
=> ? => ? ∊ {2,2}
[2,1]
=> [1]
=> []
=> ? => ? ∊ {2,2}
[1,1,1]
=> [1,1]
=> [1]
=> 1 => 0
[4]
=> []
=> ?
=> ? => ? ∊ {2,2,6}
[3,1]
=> [1]
=> []
=> ? => ? ∊ {2,2,6}
[2,2]
=> [2]
=> []
=> ? => ? ∊ {2,2,6}
[2,1,1]
=> [1,1]
=> [1]
=> 1 => 0
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 11 => 0
[5]
=> []
=> ?
=> ? => ? ∊ {0,4,24}
[4,1]
=> [1]
=> []
=> ? => ? ∊ {0,4,24}
[3,2]
=> [2]
=> []
=> ? => ? ∊ {0,4,24}
[3,1,1]
=> [1,1]
=> [1]
=> 1 => 0
[2,2,1]
=> [2,1]
=> [1]
=> 1 => 0
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 11 => 0
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 111 => 0
[6]
=> []
=> ?
=> ? => ? ∊ {2,6,8,120}
[5,1]
=> [1]
=> []
=> ? => ? ∊ {2,6,8,120}
[4,2]
=> [2]
=> []
=> ? => ? ∊ {2,6,8,120}
[4,1,1]
=> [1,1]
=> [1]
=> 1 => 0
[3,3]
=> [3]
=> []
=> ? => ? ∊ {2,6,8,120}
[3,2,1]
=> [2,1]
=> [1]
=> 1 => 0
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 11 => 0
[2,2,2]
=> [2,2]
=> [2]
=> 0 => 0
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 11 => 0
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 111 => 0
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1111 => 0
[7]
=> []
=> ?
=> ? => ? ∊ {0,0,6,720}
[6,1]
=> [1]
=> []
=> ? => ? ∊ {0,0,6,720}
[5,2]
=> [2]
=> []
=> ? => ? ∊ {0,0,6,720}
[5,1,1]
=> [1,1]
=> [1]
=> 1 => 0
[4,3]
=> [3]
=> []
=> ? => ? ∊ {0,0,6,720}
[4,2,1]
=> [2,1]
=> [1]
=> 1 => 0
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 11 => 0
[3,3,1]
=> [3,1]
=> [1]
=> 1 => 0
[3,2,2]
=> [2,2]
=> [2]
=> 0 => 0
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 11 => 0
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 111 => 0
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 01 => 0
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 111 => 0
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1111 => 0
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 11111 => 0
[8]
=> []
=> ?
=> ? => ? ∊ {0,4,8,48,5040}
[7,1]
=> [1]
=> []
=> ? => ? ∊ {0,4,8,48,5040}
[6,2]
=> [2]
=> []
=> ? => ? ∊ {0,4,8,48,5040}
[6,1,1]
=> [1,1]
=> [1]
=> 1 => 0
[5,3]
=> [3]
=> []
=> ? => ? ∊ {0,4,8,48,5040}
[5,2,1]
=> [2,1]
=> [1]
=> 1 => 0
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> 11 => 0
[4,4]
=> [4]
=> []
=> ? => ? ∊ {0,4,8,48,5040}
[4,3,1]
=> [3,1]
=> [1]
=> 1 => 0
[4,2,2]
=> [2,2]
=> [2]
=> 0 => 0
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> 11 => 0
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 111 => 0
[3,3,2]
=> [3,2]
=> [2]
=> 0 => 0
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> 11 => 0
[3,2,2,1]
=> [2,2,1]
=> [2,1]
=> 01 => 0
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 111 => 0
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1111 => 0
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 00 => 0
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 011 => 0
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1111 => 0
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 11111 => 0
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 111111 => 0
[9]
=> []
=> ?
=> ? => ? ∊ {0,0,6,36,40320}
[8,1]
=> [1]
=> []
=> ? => ? ∊ {0,0,6,36,40320}
[7,2]
=> [2]
=> []
=> ? => ? ∊ {0,0,6,36,40320}
[7,1,1]
=> [1,1]
=> [1]
=> 1 => 0
[6,3]
=> [3]
=> []
=> ? => ? ∊ {0,0,6,36,40320}
[6,2,1]
=> [2,1]
=> [1]
=> 1 => 0
[6,1,1,1]
=> [1,1,1]
=> [1,1]
=> 11 => 0
[5,4]
=> [4]
=> []
=> ? => ? ∊ {0,0,6,36,40320}
[5,3,1]
=> [3,1]
=> [1]
=> 1 => 0
[5,2,2]
=> [2,2]
=> [2]
=> 0 => 0
[5,2,1,1]
=> [2,1,1]
=> [1,1]
=> 11 => 0
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 111 => 0
[4,4,1]
=> [4,1]
=> [1]
=> 1 => 0
[10]
=> []
=> ?
=> ? => ? ∊ {0,0,4,20,384,362880}
[9,1]
=> [1]
=> []
=> ? => ? ∊ {0,0,4,20,384,362880}
[8,2]
=> [2]
=> []
=> ? => ? ∊ {0,0,4,20,384,362880}
[7,3]
=> [3]
=> []
=> ? => ? ∊ {0,0,4,20,384,362880}
[6,4]
=> [4]
=> []
=> ? => ? ∊ {0,0,4,20,384,362880}
[5,5]
=> [5]
=> []
=> ? => ? ∊ {0,0,4,20,384,362880}
[11]
=> []
=> ?
=> ? => ? ∊ {0,0,0,0,10,3628800}
[10,1]
=> [1]
=> []
=> ? => ? ∊ {0,0,0,0,10,3628800}
[9,2]
=> [2]
=> []
=> ? => ? ∊ {0,0,0,0,10,3628800}
[8,3]
=> [3]
=> []
=> ? => ? ∊ {0,0,0,0,10,3628800}
[7,4]
=> [4]
=> []
=> ? => ? ∊ {0,0,0,0,10,3628800}
[6,5]
=> [5]
=> []
=> ? => ? ∊ {0,0,0,0,10,3628800}
[12]
=> []
=> ?
=> ? => ? ∊ {0,0,4,12,64,324,3840,39916800}
[11,1]
=> [1]
=> []
=> ? => ? ∊ {0,0,4,12,64,324,3840,39916800}
[10,2]
=> [2]
=> []
=> ? => ? ∊ {0,0,4,12,64,324,3840,39916800}
[9,3]
=> [3]
=> []
=> ? => ? ∊ {0,0,4,12,64,324,3840,39916800}
[8,4]
=> [4]
=> []
=> ? => ? ∊ {0,0,4,12,64,324,3840,39916800}
[7,5]
=> [5]
=> []
=> ? => ? ∊ {0,0,4,12,64,324,3840,39916800}
[6,6]
=> [6]
=> []
=> ? => ? ∊ {0,0,4,12,64,324,3840,39916800}
[1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> 1111111111 => ? ∊ {0,0,4,12,64,324,3840,39916800}
Description
The number of internal inversions of a binary word. Let ˉw be the non-decreasing rearrangement of w, that is, ˉw is sorted. An internal inversion is a pair i<j such that wi>wj and ˉwi=ˉwj. For example, the word 110 has two inversions, but only the second is internal.
Matching statistic: St001371
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00095: Integer partitions to binary wordBinary words
St001371: Binary words ⟶ ℤResult quality: 4% values known / values provided: 81%distinct values known / distinct values provided: 4%
Values
[2]
=> []
=> ?
=> ? => ? ∊ {1,1}
[1,1]
=> [1]
=> []
=> => ? ∊ {1,1}
[3]
=> []
=> ?
=> ? => ? ∊ {2,2}
[2,1]
=> [1]
=> []
=> => ? ∊ {2,2}
[1,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[4]
=> []
=> ?
=> ? => ? ∊ {2,2,6}
[3,1]
=> [1]
=> []
=> => ? ∊ {2,2,6}
[2,2]
=> [2]
=> []
=> => ? ∊ {2,2,6}
[2,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[5]
=> []
=> ?
=> ? => ? ∊ {0,4,24}
[4,1]
=> [1]
=> []
=> => ? ∊ {0,4,24}
[3,2]
=> [2]
=> []
=> => ? ∊ {0,4,24}
[3,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[2,2,1]
=> [2,1]
=> [1]
=> 10 => 0
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 0
[6]
=> []
=> ?
=> ? => ? ∊ {2,6,8,120}
[5,1]
=> [1]
=> []
=> => ? ∊ {2,6,8,120}
[4,2]
=> [2]
=> []
=> => ? ∊ {2,6,8,120}
[4,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[3,3]
=> [3]
=> []
=> => ? ∊ {2,6,8,120}
[3,2,1]
=> [2,1]
=> [1]
=> 10 => 0
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[2,2,2]
=> [2,2]
=> [2]
=> 100 => 0
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 110 => 0
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 0
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 0
[7]
=> []
=> ?
=> ? => ? ∊ {0,0,6,720}
[6,1]
=> [1]
=> []
=> => ? ∊ {0,0,6,720}
[5,2]
=> [2]
=> []
=> => ? ∊ {0,0,6,720}
[5,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[4,3]
=> [3]
=> []
=> => ? ∊ {0,0,6,720}
[4,2,1]
=> [2,1]
=> [1]
=> 10 => 0
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[3,3,1]
=> [3,1]
=> [1]
=> 10 => 0
[3,2,2]
=> [2,2]
=> [2]
=> 100 => 0
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 110 => 0
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 0
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1010 => 0
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1110 => 0
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 0
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 111110 => 0
[8]
=> []
=> ?
=> ? => ? ∊ {0,4,8,48,5040}
[7,1]
=> [1]
=> []
=> => ? ∊ {0,4,8,48,5040}
[6,2]
=> [2]
=> []
=> => ? ∊ {0,4,8,48,5040}
[6,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[5,3]
=> [3]
=> []
=> => ? ∊ {0,4,8,48,5040}
[5,2,1]
=> [2,1]
=> [1]
=> 10 => 0
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[4,4]
=> [4]
=> []
=> => ? ∊ {0,4,8,48,5040}
[4,3,1]
=> [3,1]
=> [1]
=> 10 => 0
[4,2,2]
=> [2,2]
=> [2]
=> 100 => 0
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> 110 => 0
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 0
[3,3,2]
=> [3,2]
=> [2]
=> 100 => 0
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> 110 => 0
[3,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1010 => 0
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1110 => 0
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 0
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 1100 => 0
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 10110 => 0
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 0
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 111110 => 0
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 1111110 => 0
[9]
=> []
=> ?
=> ? => ? ∊ {0,0,6,36,40320}
[8,1]
=> [1]
=> []
=> => ? ∊ {0,0,6,36,40320}
[7,2]
=> [2]
=> []
=> => ? ∊ {0,0,6,36,40320}
[7,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[6,3]
=> [3]
=> []
=> => ? ∊ {0,0,6,36,40320}
[6,2,1]
=> [2,1]
=> [1]
=> 10 => 0
[6,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[5,4]
=> [4]
=> []
=> => ? ∊ {0,0,6,36,40320}
[5,3,1]
=> [3,1]
=> [1]
=> 10 => 0
[5,2,2]
=> [2,2]
=> [2]
=> 100 => 0
[5,2,1,1]
=> [2,1,1]
=> [1,1]
=> 110 => 0
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 0
[4,4,1]
=> [4,1]
=> [1]
=> 10 => 0
[10]
=> []
=> ?
=> ? => ? ∊ {0,0,4,20,384,362880}
[9,1]
=> [1]
=> []
=> => ? ∊ {0,0,4,20,384,362880}
[8,2]
=> [2]
=> []
=> => ? ∊ {0,0,4,20,384,362880}
[7,3]
=> [3]
=> []
=> => ? ∊ {0,0,4,20,384,362880}
[6,4]
=> [4]
=> []
=> => ? ∊ {0,0,4,20,384,362880}
[5,5]
=> [5]
=> []
=> => ? ∊ {0,0,4,20,384,362880}
[11]
=> []
=> ?
=> ? => ? ∊ {0,0,0,0,0,10,3628800}
[10,1]
=> [1]
=> []
=> => ? ∊ {0,0,0,0,0,10,3628800}
[9,2]
=> [2]
=> []
=> => ? ∊ {0,0,0,0,0,10,3628800}
[8,3]
=> [3]
=> []
=> => ? ∊ {0,0,0,0,0,10,3628800}
[7,4]
=> [4]
=> []
=> => ? ∊ {0,0,0,0,0,10,3628800}
[6,5]
=> [5]
=> []
=> => ? ∊ {0,0,0,0,0,10,3628800}
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> 1111111110 => ? ∊ {0,0,0,0,0,10,3628800}
[12]
=> []
=> ?
=> ? => ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[11,1]
=> [1]
=> []
=> => ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[10,2]
=> [2]
=> []
=> => ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[9,3]
=> [3]
=> []
=> => ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[8,4]
=> [4]
=> []
=> => ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[7,5]
=> [5]
=> []
=> => ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[6,6]
=> [6]
=> []
=> => ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[2,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> 1111111110 => ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> 11111111110 => ? ∊ {0,0,0,4,12,64,324,3840,39916800}
Description
The length of the longest Yamanouchi prefix of a binary word. This is the largest index i such that in each of the prefixes w1, w1w2, w1w2wi the number of zeros is greater than or equal to the number of ones.
Matching statistic: St001695
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
St001695: Standard tableaux ⟶ ℤResult quality: 4% values known / values provided: 81%distinct values known / distinct values provided: 4%
Values
[2]
=> []
=> ?
=> ?
=> ? ∊ {1,1}
[1,1]
=> [1]
=> []
=> []
=> ? ∊ {1,1}
[3]
=> []
=> ?
=> ?
=> ? ∊ {2,2}
[2,1]
=> [1]
=> []
=> []
=> ? ∊ {2,2}
[1,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[4]
=> []
=> ?
=> ?
=> ? ∊ {2,2,6}
[3,1]
=> [1]
=> []
=> []
=> ? ∊ {2,2,6}
[2,2]
=> [2]
=> []
=> []
=> ? ∊ {2,2,6}
[2,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[5]
=> []
=> ?
=> ?
=> ? ∊ {0,4,24}
[4,1]
=> [1]
=> []
=> []
=> ? ∊ {0,4,24}
[3,2]
=> [2]
=> []
=> []
=> ? ∊ {0,4,24}
[3,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[2,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[6]
=> []
=> ?
=> ?
=> ? ∊ {2,6,8,120}
[5,1]
=> [1]
=> []
=> []
=> ? ∊ {2,6,8,120}
[4,2]
=> [2]
=> []
=> []
=> ? ∊ {2,6,8,120}
[4,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[3,3]
=> [3]
=> []
=> []
=> ? ∊ {2,6,8,120}
[3,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[2,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[7]
=> []
=> ?
=> ?
=> ? ∊ {0,0,6,720}
[6,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,6,720}
[5,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,6,720}
[5,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[4,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,6,720}
[4,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[3,3,1]
=> [3,1]
=> [1]
=> [[1]]
=> 0
[3,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> [[1,2],[3]]
=> 0
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 0
[8]
=> []
=> ?
=> ?
=> ? ∊ {0,4,8,48,5040}
[7,1]
=> [1]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[6,2]
=> [2]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[6,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[5,3]
=> [3]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[5,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[4,4]
=> [4]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[4,3,1]
=> [3,1]
=> [1]
=> [[1]]
=> 0
[4,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[3,3,2]
=> [3,2]
=> [2]
=> [[1,2]]
=> 0
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[3,2,2,1]
=> [2,2,1]
=> [2,1]
=> [[1,2],[3]]
=> 0
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 0
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 0
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 0
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 0
[9]
=> []
=> ?
=> ?
=> ? ∊ {0,0,6,36,40320}
[8,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[7,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[7,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[6,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[6,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[6,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[5,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[5,3,1]
=> [3,1]
=> [1]
=> [[1]]
=> 0
[5,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[5,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[4,4,1]
=> [4,1]
=> [1]
=> [[1]]
=> 0
[10]
=> []
=> ?
=> ?
=> ? ∊ {0,0,4,20,384,362880}
[9,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[8,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[7,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[6,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[5,5]
=> [5]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[11]
=> []
=> ?
=> ?
=> ? ∊ {0,0,0,0,0,10,3628800}
[10,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[9,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[8,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[7,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[6,5]
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? ∊ {0,0,0,0,0,10,3628800}
[12]
=> []
=> ?
=> ?
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[11,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[10,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[9,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[8,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[7,5]
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[6,6]
=> [6]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[2,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
Description
The natural comajor index of a standard Young tableau. A natural descent of a standard tableau T is an entry i such that i+1 appears in a higher row than i in English notation. The natural comajor index of a tableau of size n with natural descent set D is then dDnd.
Matching statistic: St001698
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
St001698: Standard tableaux ⟶ ℤResult quality: 4% values known / values provided: 81%distinct values known / distinct values provided: 4%
Values
[2]
=> []
=> ?
=> ?
=> ? ∊ {1,1}
[1,1]
=> [1]
=> []
=> []
=> ? ∊ {1,1}
[3]
=> []
=> ?
=> ?
=> ? ∊ {2,2}
[2,1]
=> [1]
=> []
=> []
=> ? ∊ {2,2}
[1,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[4]
=> []
=> ?
=> ?
=> ? ∊ {2,2,6}
[3,1]
=> [1]
=> []
=> []
=> ? ∊ {2,2,6}
[2,2]
=> [2]
=> []
=> []
=> ? ∊ {2,2,6}
[2,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[5]
=> []
=> ?
=> ?
=> ? ∊ {0,4,24}
[4,1]
=> [1]
=> []
=> []
=> ? ∊ {0,4,24}
[3,2]
=> [2]
=> []
=> []
=> ? ∊ {0,4,24}
[3,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[2,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[6]
=> []
=> ?
=> ?
=> ? ∊ {2,6,8,120}
[5,1]
=> [1]
=> []
=> []
=> ? ∊ {2,6,8,120}
[4,2]
=> [2]
=> []
=> []
=> ? ∊ {2,6,8,120}
[4,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[3,3]
=> [3]
=> []
=> []
=> ? ∊ {2,6,8,120}
[3,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[2,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[7]
=> []
=> ?
=> ?
=> ? ∊ {0,0,6,720}
[6,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,6,720}
[5,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,6,720}
[5,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[4,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,6,720}
[4,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[3,3,1]
=> [3,1]
=> [1]
=> [[1]]
=> 0
[3,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> [[1,2],[3]]
=> 0
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 0
[8]
=> []
=> ?
=> ?
=> ? ∊ {0,4,8,48,5040}
[7,1]
=> [1]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[6,2]
=> [2]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[6,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[5,3]
=> [3]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[5,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[4,4]
=> [4]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[4,3,1]
=> [3,1]
=> [1]
=> [[1]]
=> 0
[4,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[3,3,2]
=> [3,2]
=> [2]
=> [[1,2]]
=> 0
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[3,2,2,1]
=> [2,2,1]
=> [2,1]
=> [[1,2],[3]]
=> 0
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 0
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 0
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 0
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 0
[9]
=> []
=> ?
=> ?
=> ? ∊ {0,0,6,36,40320}
[8,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[7,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[7,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[6,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[6,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[6,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[5,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[5,3,1]
=> [3,1]
=> [1]
=> [[1]]
=> 0
[5,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[5,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[4,4,1]
=> [4,1]
=> [1]
=> [[1]]
=> 0
[10]
=> []
=> ?
=> ?
=> ? ∊ {0,0,4,20,384,362880}
[9,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[8,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[7,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[6,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[5,5]
=> [5]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[11]
=> []
=> ?
=> ?
=> ? ∊ {0,0,0,0,0,10,3628800}
[10,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[9,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[8,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[7,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[6,5]
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? ∊ {0,0,0,0,0,10,3628800}
[12]
=> []
=> ?
=> ?
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[11,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[10,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[9,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[8,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[7,5]
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[6,6]
=> [6]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[2,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
Description
The comajor index of a standard tableau minus the weighted size of its shape.
Matching statistic: St001699
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
St001699: Standard tableaux ⟶ ℤResult quality: 4% values known / values provided: 81%distinct values known / distinct values provided: 4%
Values
[2]
=> []
=> ?
=> ?
=> ? ∊ {1,1}
[1,1]
=> [1]
=> []
=> []
=> ? ∊ {1,1}
[3]
=> []
=> ?
=> ?
=> ? ∊ {2,2}
[2,1]
=> [1]
=> []
=> []
=> ? ∊ {2,2}
[1,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[4]
=> []
=> ?
=> ?
=> ? ∊ {2,2,6}
[3,1]
=> [1]
=> []
=> []
=> ? ∊ {2,2,6}
[2,2]
=> [2]
=> []
=> []
=> ? ∊ {2,2,6}
[2,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[5]
=> []
=> ?
=> ?
=> ? ∊ {0,4,24}
[4,1]
=> [1]
=> []
=> []
=> ? ∊ {0,4,24}
[3,2]
=> [2]
=> []
=> []
=> ? ∊ {0,4,24}
[3,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[2,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[6]
=> []
=> ?
=> ?
=> ? ∊ {2,6,8,120}
[5,1]
=> [1]
=> []
=> []
=> ? ∊ {2,6,8,120}
[4,2]
=> [2]
=> []
=> []
=> ? ∊ {2,6,8,120}
[4,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[3,3]
=> [3]
=> []
=> []
=> ? ∊ {2,6,8,120}
[3,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[2,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[7]
=> []
=> ?
=> ?
=> ? ∊ {0,0,6,720}
[6,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,6,720}
[5,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,6,720}
[5,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[4,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,6,720}
[4,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[3,3,1]
=> [3,1]
=> [1]
=> [[1]]
=> 0
[3,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> [[1,3],[2]]
=> 0
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 0
[8]
=> []
=> ?
=> ?
=> ? ∊ {0,4,8,48,5040}
[7,1]
=> [1]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[6,2]
=> [2]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[6,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[5,3]
=> [3]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[5,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[4,4]
=> [4]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[4,3,1]
=> [3,1]
=> [1]
=> [[1]]
=> 0
[4,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[3,3,2]
=> [3,2]
=> [2]
=> [[1,2]]
=> 0
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[3,2,2,1]
=> [2,2,1]
=> [2,1]
=> [[1,3],[2]]
=> 0
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 0
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [[1,4],[2],[3]]
=> 0
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 0
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 0
[9]
=> []
=> ?
=> ?
=> ? ∊ {0,0,6,36,40320}
[8,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[7,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[7,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[6,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[6,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[6,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[5,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[5,3,1]
=> [3,1]
=> [1]
=> [[1]]
=> 0
[5,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[5,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[4,4,1]
=> [4,1]
=> [1]
=> [[1]]
=> 0
[10]
=> []
=> ?
=> ?
=> ? ∊ {0,0,4,20,384,362880}
[9,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[8,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[7,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[6,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[5,5]
=> [5]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[11]
=> []
=> ?
=> ?
=> ? ∊ {0,0,0,0,0,10,3628800}
[10,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[9,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[8,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[7,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[6,5]
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? ∊ {0,0,0,0,0,10,3628800}
[12]
=> []
=> ?
=> ?
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[11,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[10,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[9,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[8,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[7,5]
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[6,6]
=> [6]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[2,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
Description
The major index of a standard tableau minus the weighted size of its shape.
Matching statistic: St001712
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
St001712: Standard tableaux ⟶ ℤResult quality: 4% values known / values provided: 81%distinct values known / distinct values provided: 4%
Values
[2]
=> []
=> ?
=> ?
=> ? ∊ {1,1}
[1,1]
=> [1]
=> []
=> []
=> ? ∊ {1,1}
[3]
=> []
=> ?
=> ?
=> ? ∊ {2,2}
[2,1]
=> [1]
=> []
=> []
=> ? ∊ {2,2}
[1,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[4]
=> []
=> ?
=> ?
=> ? ∊ {2,2,6}
[3,1]
=> [1]
=> []
=> []
=> ? ∊ {2,2,6}
[2,2]
=> [2]
=> []
=> []
=> ? ∊ {2,2,6}
[2,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[5]
=> []
=> ?
=> ?
=> ? ∊ {0,4,24}
[4,1]
=> [1]
=> []
=> []
=> ? ∊ {0,4,24}
[3,2]
=> [2]
=> []
=> []
=> ? ∊ {0,4,24}
[3,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[2,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[6]
=> []
=> ?
=> ?
=> ? ∊ {2,6,8,120}
[5,1]
=> [1]
=> []
=> []
=> ? ∊ {2,6,8,120}
[4,2]
=> [2]
=> []
=> []
=> ? ∊ {2,6,8,120}
[4,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[3,3]
=> [3]
=> []
=> []
=> ? ∊ {2,6,8,120}
[3,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[2,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[7]
=> []
=> ?
=> ?
=> ? ∊ {0,0,6,720}
[6,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,6,720}
[5,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,6,720}
[5,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[4,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,6,720}
[4,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[3,3,1]
=> [3,1]
=> [1]
=> [[1]]
=> 0
[3,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> [[1,2],[3]]
=> 0
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 0
[8]
=> []
=> ?
=> ?
=> ? ∊ {0,4,8,48,5040}
[7,1]
=> [1]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[6,2]
=> [2]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[6,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[5,3]
=> [3]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[5,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[4,4]
=> [4]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[4,3,1]
=> [3,1]
=> [1]
=> [[1]]
=> 0
[4,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[3,3,2]
=> [3,2]
=> [2]
=> [[1,2]]
=> 0
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[3,2,2,1]
=> [2,2,1]
=> [2,1]
=> [[1,2],[3]]
=> 0
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 0
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 0
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 0
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 0
[9]
=> []
=> ?
=> ?
=> ? ∊ {0,0,6,36,40320}
[8,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[7,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[7,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[6,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[6,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[6,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[5,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[5,3,1]
=> [3,1]
=> [1]
=> [[1]]
=> 0
[5,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[5,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[4,4,1]
=> [4,1]
=> [1]
=> [[1]]
=> 0
[10]
=> []
=> ?
=> ?
=> ? ∊ {0,0,4,20,384,362880}
[9,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[8,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[7,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[6,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[5,5]
=> [5]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[11]
=> []
=> ?
=> ?
=> ? ∊ {0,0,0,0,0,10,3628800}
[10,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[9,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[8,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[7,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[6,5]
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? ∊ {0,0,0,0,0,10,3628800}
[12]
=> []
=> ?
=> ?
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[11,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[10,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[9,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[8,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[7,5]
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[6,6]
=> [6]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[2,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
Description
The number of natural descents of a standard Young tableau. A natural descent of a standard tableau T is an entry i such that i+1 appears in a higher row than i in English notation.
Matching statistic: St001107
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St001107: Dyck paths ⟶ ℤResult quality: 4% values known / values provided: 80%distinct values known / distinct values provided: 4%
Values
[2]
=> []
=> ?
=> ?
=> ? ∊ {1,1}
[1,1]
=> [1]
=> []
=> []
=> ? ∊ {1,1}
[3]
=> []
=> ?
=> ?
=> ? ∊ {2,2}
[2,1]
=> [1]
=> []
=> []
=> ? ∊ {2,2}
[1,1,1]
=> [1,1]
=> [1]
=> [1,0,1,0]
=> 0
[4]
=> []
=> ?
=> ?
=> ? ∊ {2,2,6}
[3,1]
=> [1]
=> []
=> []
=> ? ∊ {2,2,6}
[2,2]
=> [2]
=> []
=> []
=> ? ∊ {2,2,6}
[2,1,1]
=> [1,1]
=> [1]
=> [1,0,1,0]
=> 0
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[5]
=> []
=> ?
=> ?
=> ? ∊ {0,4,24}
[4,1]
=> [1]
=> []
=> []
=> ? ∊ {0,4,24}
[3,2]
=> [2]
=> []
=> []
=> ? ∊ {0,4,24}
[3,1,1]
=> [1,1]
=> [1]
=> [1,0,1,0]
=> 0
[2,2,1]
=> [2,1]
=> [1]
=> [1,0,1,0]
=> 0
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 0
[6]
=> []
=> ?
=> ?
=> ? ∊ {2,6,8,120}
[5,1]
=> [1]
=> []
=> []
=> ? ∊ {2,6,8,120}
[4,2]
=> [2]
=> []
=> []
=> ? ∊ {2,6,8,120}
[4,1,1]
=> [1,1]
=> [1]
=> [1,0,1,0]
=> 0
[3,3]
=> [3]
=> []
=> []
=> ? ∊ {2,6,8,120}
[3,2,1]
=> [2,1]
=> [1]
=> [1,0,1,0]
=> 0
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[2,2,2]
=> [2,2]
=> [2]
=> [1,1,0,0,1,0]
=> 0
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[7]
=> []
=> ?
=> ?
=> ? ∊ {0,0,6,720}
[6,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,6,720}
[5,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,6,720}
[5,1,1]
=> [1,1]
=> [1]
=> [1,0,1,0]
=> 0
[4,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,6,720}
[4,2,1]
=> [2,1]
=> [1]
=> [1,0,1,0]
=> 0
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[3,3,1]
=> [3,1]
=> [1]
=> [1,0,1,0]
=> 0
[3,2,2]
=> [2,2]
=> [2]
=> [1,1,0,0,1,0]
=> 0
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 0
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 0
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 0
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0
[8]
=> []
=> ?
=> ?
=> ? ∊ {0,4,8,48,5040}
[7,1]
=> [1]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[6,2]
=> [2]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[6,1,1]
=> [1,1]
=> [1]
=> [1,0,1,0]
=> 0
[5,3]
=> [3]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[5,2,1]
=> [2,1]
=> [1]
=> [1,0,1,0]
=> 0
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[4,4]
=> [4]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[4,3,1]
=> [3,1]
=> [1]
=> [1,0,1,0]
=> 0
[4,2,2]
=> [2,2]
=> [2]
=> [1,1,0,0,1,0]
=> 0
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 0
[3,3,2]
=> [3,2]
=> [2]
=> [1,1,0,0,1,0]
=> 0
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[3,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 0
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 0
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 0
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 0
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[9]
=> []
=> ?
=> ?
=> ? ∊ {0,0,6,36,40320}
[8,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[7,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[7,1,1]
=> [1,1]
=> [1]
=> [1,0,1,0]
=> 0
[6,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[6,2,1]
=> [2,1]
=> [1]
=> [1,0,1,0]
=> 0
[6,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[5,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[5,3,1]
=> [3,1]
=> [1]
=> [1,0,1,0]
=> 0
[5,2,2]
=> [2,2]
=> [2]
=> [1,1,0,0,1,0]
=> 0
[5,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 0
[4,4,1]
=> [4,1]
=> [1]
=> [1,0,1,0]
=> 0
[10]
=> []
=> ?
=> ?
=> ? ∊ {0,0,0,4,20,384,362880}
[9,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,0,4,20,384,362880}
[8,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,0,4,20,384,362880}
[7,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,0,4,20,384,362880}
[6,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,4,20,384,362880}
[5,5]
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,4,20,384,362880}
[1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,4,20,384,362880}
[11]
=> []
=> ?
=> ?
=> ? ∊ {0,0,0,0,0,0,10,3628800}
[10,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,10,3628800}
[9,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,10,3628800}
[8,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,10,3628800}
[7,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,10,3628800}
[6,5]
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,10,3628800}
[2,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,10,3628800}
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,10,3628800}
[12]
=> []
=> ?
=> ?
=> ? ∊ {0,0,0,0,0,4,12,64,324,3840,39916800}
[11,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,0,0,0,4,12,64,324,3840,39916800}
[10,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,0,0,0,4,12,64,324,3840,39916800}
[9,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,0,0,0,4,12,64,324,3840,39916800}
[8,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,4,12,64,324,3840,39916800}
[7,5]
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,4,12,64,324,3840,39916800}
[6,6]
=> [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,4,12,64,324,3840,39916800}
Description
The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. In other words, this is the lowest height of a valley of a Dyck path, or its semilength in case of the unique path without valleys.
The following 4 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000687The dimension of Hom(I,P) for the LNakayama algebra of a Dyck path. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St001498The normalised height of a Nakayama algebra with magnitude 1.