searching the database
Your data matches 14 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000510
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
St000510: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[2]
=> 1
[1,1]
=> 1
[3]
=> 2
[2,1]
=> 0
[1,1,1]
=> 2
[4]
=> 2
[3,1]
=> 0
[2,2]
=> 2
[2,1,1]
=> 0
[1,1,1,1]
=> 6
[5]
=> 4
[4,1]
=> 0
[3,2]
=> 0
[3,1,1]
=> 0
[2,2,1]
=> 0
[2,1,1,1]
=> 0
[1,1,1,1,1]
=> 24
[6]
=> 2
[5,1]
=> 0
[4,2]
=> 0
[4,1,1]
=> 0
[3,3]
=> 6
[3,2,1]
=> 0
[3,1,1,1]
=> 0
[2,2,2]
=> 8
[2,2,1,1]
=> 0
[2,1,1,1,1]
=> 0
[1,1,1,1,1,1]
=> 120
[7]
=> 6
[6,1]
=> 0
[5,2]
=> 0
[5,1,1]
=> 0
[4,3]
=> 0
[4,2,1]
=> 0
[4,1,1,1]
=> 0
[3,3,1]
=> 0
[3,2,2]
=> 0
[3,2,1,1]
=> 0
[3,1,1,1,1]
=> 0
[2,2,2,1]
=> 0
[2,2,1,1,1]
=> 0
[2,1,1,1,1,1]
=> 0
[1,1,1,1,1,1,1]
=> 720
[8]
=> 4
[7,1]
=> 0
[6,2]
=> 0
[6,1,1]
=> 0
[5,3]
=> 0
[5,2,1]
=> 0
[5,1,1,1]
=> 0
Description
The number of invariant oriented cycles when acting with a permutation of given cycle type.
Matching statistic: St000296
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St000296: Binary words ⟶ ℤResult quality: 4% ●values known / values provided: 83%●distinct values known / distinct values provided: 4%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St000296: Binary words ⟶ ℤResult quality: 4% ●values known / values provided: 83%●distinct values known / distinct values provided: 4%
Values
[2]
=> []
=> ?
=> ? => ? ∊ {1,1}
[1,1]
=> [1]
=> []
=> => ? ∊ {1,1}
[3]
=> []
=> ?
=> ? => ? ∊ {2,2}
[2,1]
=> [1]
=> []
=> => ? ∊ {2,2}
[1,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[4]
=> []
=> ?
=> ? => ? ∊ {2,2,6}
[3,1]
=> [1]
=> []
=> => ? ∊ {2,2,6}
[2,2]
=> [2]
=> []
=> => ? ∊ {2,2,6}
[2,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[5]
=> []
=> ?
=> ? => ? ∊ {0,4,24}
[4,1]
=> [1]
=> []
=> => ? ∊ {0,4,24}
[3,2]
=> [2]
=> []
=> => ? ∊ {0,4,24}
[3,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[2,2,1]
=> [2,1]
=> [1]
=> 10 => 0
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 0
[6]
=> []
=> ?
=> ? => ? ∊ {2,6,8,120}
[5,1]
=> [1]
=> []
=> => ? ∊ {2,6,8,120}
[4,2]
=> [2]
=> []
=> => ? ∊ {2,6,8,120}
[4,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[3,3]
=> [3]
=> []
=> => ? ∊ {2,6,8,120}
[3,2,1]
=> [2,1]
=> [1]
=> 10 => 0
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[2,2,2]
=> [2,2]
=> [2]
=> 100 => 0
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 110 => 0
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 0
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 0
[7]
=> []
=> ?
=> ? => ? ∊ {0,0,6,720}
[6,1]
=> [1]
=> []
=> => ? ∊ {0,0,6,720}
[5,2]
=> [2]
=> []
=> => ? ∊ {0,0,6,720}
[5,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[4,3]
=> [3]
=> []
=> => ? ∊ {0,0,6,720}
[4,2,1]
=> [2,1]
=> [1]
=> 10 => 0
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[3,3,1]
=> [3,1]
=> [1]
=> 10 => 0
[3,2,2]
=> [2,2]
=> [2]
=> 100 => 0
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 110 => 0
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 0
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1010 => 0
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1110 => 0
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 0
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 111110 => 0
[8]
=> []
=> ?
=> ? => ? ∊ {0,4,8,48,5040}
[7,1]
=> [1]
=> []
=> => ? ∊ {0,4,8,48,5040}
[6,2]
=> [2]
=> []
=> => ? ∊ {0,4,8,48,5040}
[6,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[5,3]
=> [3]
=> []
=> => ? ∊ {0,4,8,48,5040}
[5,2,1]
=> [2,1]
=> [1]
=> 10 => 0
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[4,4]
=> [4]
=> []
=> => ? ∊ {0,4,8,48,5040}
[4,3,1]
=> [3,1]
=> [1]
=> 10 => 0
[4,2,2]
=> [2,2]
=> [2]
=> 100 => 0
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> 110 => 0
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 0
[3,3,2]
=> [3,2]
=> [2]
=> 100 => 0
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> 110 => 0
[3,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1010 => 0
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1110 => 0
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 0
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 1100 => 0
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 10110 => 0
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 0
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 111110 => 0
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 1111110 => 0
[9]
=> []
=> ?
=> ? => ? ∊ {0,0,6,36,40320}
[8,1]
=> [1]
=> []
=> => ? ∊ {0,0,6,36,40320}
[7,2]
=> [2]
=> []
=> => ? ∊ {0,0,6,36,40320}
[7,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[6,3]
=> [3]
=> []
=> => ? ∊ {0,0,6,36,40320}
[6,2,1]
=> [2,1]
=> [1]
=> 10 => 0
[6,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[5,4]
=> [4]
=> []
=> => ? ∊ {0,0,6,36,40320}
[5,3,1]
=> [3,1]
=> [1]
=> 10 => 0
[5,2,2]
=> [2,2]
=> [2]
=> 100 => 0
[5,2,1,1]
=> [2,1,1]
=> [1,1]
=> 110 => 0
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 0
[4,4,1]
=> [4,1]
=> [1]
=> 10 => 0
[10]
=> []
=> ?
=> ? => ? ∊ {0,0,4,20,384,362880}
[9,1]
=> [1]
=> []
=> => ? ∊ {0,0,4,20,384,362880}
[8,2]
=> [2]
=> []
=> => ? ∊ {0,0,4,20,384,362880}
[7,3]
=> [3]
=> []
=> => ? ∊ {0,0,4,20,384,362880}
[6,4]
=> [4]
=> []
=> => ? ∊ {0,0,4,20,384,362880}
[5,5]
=> [5]
=> []
=> => ? ∊ {0,0,4,20,384,362880}
[11]
=> []
=> ?
=> ? => ? ∊ {0,0,0,0,10,3628800}
[10,1]
=> [1]
=> []
=> => ? ∊ {0,0,0,0,10,3628800}
[9,2]
=> [2]
=> []
=> => ? ∊ {0,0,0,0,10,3628800}
[8,3]
=> [3]
=> []
=> => ? ∊ {0,0,0,0,10,3628800}
[7,4]
=> [4]
=> []
=> => ? ∊ {0,0,0,0,10,3628800}
[6,5]
=> [5]
=> []
=> => ? ∊ {0,0,0,0,10,3628800}
[12]
=> []
=> ?
=> ? => ? ∊ {0,4,12,64,324,3840,39916800}
[11,1]
=> [1]
=> []
=> => ? ∊ {0,4,12,64,324,3840,39916800}
[10,2]
=> [2]
=> []
=> => ? ∊ {0,4,12,64,324,3840,39916800}
[9,3]
=> [3]
=> []
=> => ? ∊ {0,4,12,64,324,3840,39916800}
[8,4]
=> [4]
=> []
=> => ? ∊ {0,4,12,64,324,3840,39916800}
[7,5]
=> [5]
=> []
=> => ? ∊ {0,4,12,64,324,3840,39916800}
[6,6]
=> [6]
=> []
=> => ? ∊ {0,4,12,64,324,3840,39916800}
Description
The length of the symmetric border of a binary word.
The symmetric border of a word is the longest word which is a prefix and its reverse is a suffix.
The statistic value is equal to the length of the word if and only if the word is [[https://en.wikipedia.org/wiki/Palindrome|palindromic]].
Matching statistic: St000629
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St000629: Binary words ⟶ ℤResult quality: 4% ●values known / values provided: 83%●distinct values known / distinct values provided: 4%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St000629: Binary words ⟶ ℤResult quality: 4% ●values known / values provided: 83%●distinct values known / distinct values provided: 4%
Values
[2]
=> []
=> ?
=> ? => ? ∊ {1,1}
[1,1]
=> [1]
=> []
=> => ? ∊ {1,1}
[3]
=> []
=> ?
=> ? => ? ∊ {2,2}
[2,1]
=> [1]
=> []
=> => ? ∊ {2,2}
[1,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[4]
=> []
=> ?
=> ? => ? ∊ {2,2,6}
[3,1]
=> [1]
=> []
=> => ? ∊ {2,2,6}
[2,2]
=> [2]
=> []
=> => ? ∊ {2,2,6}
[2,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[5]
=> []
=> ?
=> ? => ? ∊ {0,4,24}
[4,1]
=> [1]
=> []
=> => ? ∊ {0,4,24}
[3,2]
=> [2]
=> []
=> => ? ∊ {0,4,24}
[3,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[2,2,1]
=> [2,1]
=> [1]
=> 10 => 0
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 0
[6]
=> []
=> ?
=> ? => ? ∊ {2,6,8,120}
[5,1]
=> [1]
=> []
=> => ? ∊ {2,6,8,120}
[4,2]
=> [2]
=> []
=> => ? ∊ {2,6,8,120}
[4,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[3,3]
=> [3]
=> []
=> => ? ∊ {2,6,8,120}
[3,2,1]
=> [2,1]
=> [1]
=> 10 => 0
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[2,2,2]
=> [2,2]
=> [2]
=> 100 => 0
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 110 => 0
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 0
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 0
[7]
=> []
=> ?
=> ? => ? ∊ {0,0,6,720}
[6,1]
=> [1]
=> []
=> => ? ∊ {0,0,6,720}
[5,2]
=> [2]
=> []
=> => ? ∊ {0,0,6,720}
[5,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[4,3]
=> [3]
=> []
=> => ? ∊ {0,0,6,720}
[4,2,1]
=> [2,1]
=> [1]
=> 10 => 0
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[3,3,1]
=> [3,1]
=> [1]
=> 10 => 0
[3,2,2]
=> [2,2]
=> [2]
=> 100 => 0
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 110 => 0
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 0
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1010 => 0
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1110 => 0
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 0
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 111110 => 0
[8]
=> []
=> ?
=> ? => ? ∊ {0,4,8,48,5040}
[7,1]
=> [1]
=> []
=> => ? ∊ {0,4,8,48,5040}
[6,2]
=> [2]
=> []
=> => ? ∊ {0,4,8,48,5040}
[6,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[5,3]
=> [3]
=> []
=> => ? ∊ {0,4,8,48,5040}
[5,2,1]
=> [2,1]
=> [1]
=> 10 => 0
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[4,4]
=> [4]
=> []
=> => ? ∊ {0,4,8,48,5040}
[4,3,1]
=> [3,1]
=> [1]
=> 10 => 0
[4,2,2]
=> [2,2]
=> [2]
=> 100 => 0
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> 110 => 0
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 0
[3,3,2]
=> [3,2]
=> [2]
=> 100 => 0
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> 110 => 0
[3,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1010 => 0
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1110 => 0
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 0
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 1100 => 0
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 10110 => 0
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 0
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 111110 => 0
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 1111110 => 0
[9]
=> []
=> ?
=> ? => ? ∊ {0,0,6,36,40320}
[8,1]
=> [1]
=> []
=> => ? ∊ {0,0,6,36,40320}
[7,2]
=> [2]
=> []
=> => ? ∊ {0,0,6,36,40320}
[7,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[6,3]
=> [3]
=> []
=> => ? ∊ {0,0,6,36,40320}
[6,2,1]
=> [2,1]
=> [1]
=> 10 => 0
[6,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[5,4]
=> [4]
=> []
=> => ? ∊ {0,0,6,36,40320}
[5,3,1]
=> [3,1]
=> [1]
=> 10 => 0
[5,2,2]
=> [2,2]
=> [2]
=> 100 => 0
[5,2,1,1]
=> [2,1,1]
=> [1,1]
=> 110 => 0
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 0
[4,4,1]
=> [4,1]
=> [1]
=> 10 => 0
[10]
=> []
=> ?
=> ? => ? ∊ {0,0,4,20,384,362880}
[9,1]
=> [1]
=> []
=> => ? ∊ {0,0,4,20,384,362880}
[8,2]
=> [2]
=> []
=> => ? ∊ {0,0,4,20,384,362880}
[7,3]
=> [3]
=> []
=> => ? ∊ {0,0,4,20,384,362880}
[6,4]
=> [4]
=> []
=> => ? ∊ {0,0,4,20,384,362880}
[5,5]
=> [5]
=> []
=> => ? ∊ {0,0,4,20,384,362880}
[11]
=> []
=> ?
=> ? => ? ∊ {0,0,0,0,10,3628800}
[10,1]
=> [1]
=> []
=> => ? ∊ {0,0,0,0,10,3628800}
[9,2]
=> [2]
=> []
=> => ? ∊ {0,0,0,0,10,3628800}
[8,3]
=> [3]
=> []
=> => ? ∊ {0,0,0,0,10,3628800}
[7,4]
=> [4]
=> []
=> => ? ∊ {0,0,0,0,10,3628800}
[6,5]
=> [5]
=> []
=> => ? ∊ {0,0,0,0,10,3628800}
[12]
=> []
=> ?
=> ? => ? ∊ {0,4,12,64,324,3840,39916800}
[11,1]
=> [1]
=> []
=> => ? ∊ {0,4,12,64,324,3840,39916800}
[10,2]
=> [2]
=> []
=> => ? ∊ {0,4,12,64,324,3840,39916800}
[9,3]
=> [3]
=> []
=> => ? ∊ {0,4,12,64,324,3840,39916800}
[8,4]
=> [4]
=> []
=> => ? ∊ {0,4,12,64,324,3840,39916800}
[7,5]
=> [5]
=> []
=> => ? ∊ {0,4,12,64,324,3840,39916800}
[6,6]
=> [6]
=> []
=> => ? ∊ {0,4,12,64,324,3840,39916800}
Description
The defect of a binary word.
The defect of a finite word w is given by the difference between the maximum possible number and the actual number of palindromic factors contained in w. The maximum possible number of palindromic factors in a word w is |w|+1.
Matching statistic: St000921
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00317: Integer partitions —odd parts⟶ Binary words
St000921: Binary words ⟶ ℤResult quality: 4% ●values known / values provided: 82%●distinct values known / distinct values provided: 4%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00317: Integer partitions —odd parts⟶ Binary words
St000921: Binary words ⟶ ℤResult quality: 4% ●values known / values provided: 82%●distinct values known / distinct values provided: 4%
Values
[2]
=> []
=> ?
=> ? => ? ∊ {1,1}
[1,1]
=> [1]
=> []
=> ? => ? ∊ {1,1}
[3]
=> []
=> ?
=> ? => ? ∊ {2,2}
[2,1]
=> [1]
=> []
=> ? => ? ∊ {2,2}
[1,1,1]
=> [1,1]
=> [1]
=> 1 => 0
[4]
=> []
=> ?
=> ? => ? ∊ {2,2,6}
[3,1]
=> [1]
=> []
=> ? => ? ∊ {2,2,6}
[2,2]
=> [2]
=> []
=> ? => ? ∊ {2,2,6}
[2,1,1]
=> [1,1]
=> [1]
=> 1 => 0
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 11 => 0
[5]
=> []
=> ?
=> ? => ? ∊ {0,4,24}
[4,1]
=> [1]
=> []
=> ? => ? ∊ {0,4,24}
[3,2]
=> [2]
=> []
=> ? => ? ∊ {0,4,24}
[3,1,1]
=> [1,1]
=> [1]
=> 1 => 0
[2,2,1]
=> [2,1]
=> [1]
=> 1 => 0
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 11 => 0
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 111 => 0
[6]
=> []
=> ?
=> ? => ? ∊ {2,6,8,120}
[5,1]
=> [1]
=> []
=> ? => ? ∊ {2,6,8,120}
[4,2]
=> [2]
=> []
=> ? => ? ∊ {2,6,8,120}
[4,1,1]
=> [1,1]
=> [1]
=> 1 => 0
[3,3]
=> [3]
=> []
=> ? => ? ∊ {2,6,8,120}
[3,2,1]
=> [2,1]
=> [1]
=> 1 => 0
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 11 => 0
[2,2,2]
=> [2,2]
=> [2]
=> 0 => 0
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 11 => 0
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 111 => 0
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1111 => 0
[7]
=> []
=> ?
=> ? => ? ∊ {0,0,6,720}
[6,1]
=> [1]
=> []
=> ? => ? ∊ {0,0,6,720}
[5,2]
=> [2]
=> []
=> ? => ? ∊ {0,0,6,720}
[5,1,1]
=> [1,1]
=> [1]
=> 1 => 0
[4,3]
=> [3]
=> []
=> ? => ? ∊ {0,0,6,720}
[4,2,1]
=> [2,1]
=> [1]
=> 1 => 0
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 11 => 0
[3,3,1]
=> [3,1]
=> [1]
=> 1 => 0
[3,2,2]
=> [2,2]
=> [2]
=> 0 => 0
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 11 => 0
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 111 => 0
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 01 => 0
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 111 => 0
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1111 => 0
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 11111 => 0
[8]
=> []
=> ?
=> ? => ? ∊ {0,4,8,48,5040}
[7,1]
=> [1]
=> []
=> ? => ? ∊ {0,4,8,48,5040}
[6,2]
=> [2]
=> []
=> ? => ? ∊ {0,4,8,48,5040}
[6,1,1]
=> [1,1]
=> [1]
=> 1 => 0
[5,3]
=> [3]
=> []
=> ? => ? ∊ {0,4,8,48,5040}
[5,2,1]
=> [2,1]
=> [1]
=> 1 => 0
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> 11 => 0
[4,4]
=> [4]
=> []
=> ? => ? ∊ {0,4,8,48,5040}
[4,3,1]
=> [3,1]
=> [1]
=> 1 => 0
[4,2,2]
=> [2,2]
=> [2]
=> 0 => 0
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> 11 => 0
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 111 => 0
[3,3,2]
=> [3,2]
=> [2]
=> 0 => 0
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> 11 => 0
[3,2,2,1]
=> [2,2,1]
=> [2,1]
=> 01 => 0
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 111 => 0
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1111 => 0
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 00 => 0
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 011 => 0
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1111 => 0
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 11111 => 0
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 111111 => 0
[9]
=> []
=> ?
=> ? => ? ∊ {0,0,6,36,40320}
[8,1]
=> [1]
=> []
=> ? => ? ∊ {0,0,6,36,40320}
[7,2]
=> [2]
=> []
=> ? => ? ∊ {0,0,6,36,40320}
[7,1,1]
=> [1,1]
=> [1]
=> 1 => 0
[6,3]
=> [3]
=> []
=> ? => ? ∊ {0,0,6,36,40320}
[6,2,1]
=> [2,1]
=> [1]
=> 1 => 0
[6,1,1,1]
=> [1,1,1]
=> [1,1]
=> 11 => 0
[5,4]
=> [4]
=> []
=> ? => ? ∊ {0,0,6,36,40320}
[5,3,1]
=> [3,1]
=> [1]
=> 1 => 0
[5,2,2]
=> [2,2]
=> [2]
=> 0 => 0
[5,2,1,1]
=> [2,1,1]
=> [1,1]
=> 11 => 0
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 111 => 0
[4,4,1]
=> [4,1]
=> [1]
=> 1 => 0
[10]
=> []
=> ?
=> ? => ? ∊ {0,0,4,20,384,362880}
[9,1]
=> [1]
=> []
=> ? => ? ∊ {0,0,4,20,384,362880}
[8,2]
=> [2]
=> []
=> ? => ? ∊ {0,0,4,20,384,362880}
[7,3]
=> [3]
=> []
=> ? => ? ∊ {0,0,4,20,384,362880}
[6,4]
=> [4]
=> []
=> ? => ? ∊ {0,0,4,20,384,362880}
[5,5]
=> [5]
=> []
=> ? => ? ∊ {0,0,4,20,384,362880}
[11]
=> []
=> ?
=> ? => ? ∊ {0,0,0,0,10,3628800}
[10,1]
=> [1]
=> []
=> ? => ? ∊ {0,0,0,0,10,3628800}
[9,2]
=> [2]
=> []
=> ? => ? ∊ {0,0,0,0,10,3628800}
[8,3]
=> [3]
=> []
=> ? => ? ∊ {0,0,0,0,10,3628800}
[7,4]
=> [4]
=> []
=> ? => ? ∊ {0,0,0,0,10,3628800}
[6,5]
=> [5]
=> []
=> ? => ? ∊ {0,0,0,0,10,3628800}
[12]
=> []
=> ?
=> ? => ? ∊ {0,0,4,12,64,324,3840,39916800}
[11,1]
=> [1]
=> []
=> ? => ? ∊ {0,0,4,12,64,324,3840,39916800}
[10,2]
=> [2]
=> []
=> ? => ? ∊ {0,0,4,12,64,324,3840,39916800}
[9,3]
=> [3]
=> []
=> ? => ? ∊ {0,0,4,12,64,324,3840,39916800}
[8,4]
=> [4]
=> []
=> ? => ? ∊ {0,0,4,12,64,324,3840,39916800}
[7,5]
=> [5]
=> []
=> ? => ? ∊ {0,0,4,12,64,324,3840,39916800}
[6,6]
=> [6]
=> []
=> ? => ? ∊ {0,0,4,12,64,324,3840,39916800}
[1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> 1111111111 => ? ∊ {0,0,4,12,64,324,3840,39916800}
Description
The number of internal inversions of a binary word.
Let ˉw be the non-decreasing rearrangement of w, that is, ˉw is sorted.
An internal inversion is a pair i<j such that wi>wj and ˉwi=ˉwj. For example, the word 110 has two inversions, but only the second is internal.
Matching statistic: St001371
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St001371: Binary words ⟶ ℤResult quality: 4% ●values known / values provided: 81%●distinct values known / distinct values provided: 4%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St001371: Binary words ⟶ ℤResult quality: 4% ●values known / values provided: 81%●distinct values known / distinct values provided: 4%
Values
[2]
=> []
=> ?
=> ? => ? ∊ {1,1}
[1,1]
=> [1]
=> []
=> => ? ∊ {1,1}
[3]
=> []
=> ?
=> ? => ? ∊ {2,2}
[2,1]
=> [1]
=> []
=> => ? ∊ {2,2}
[1,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[4]
=> []
=> ?
=> ? => ? ∊ {2,2,6}
[3,1]
=> [1]
=> []
=> => ? ∊ {2,2,6}
[2,2]
=> [2]
=> []
=> => ? ∊ {2,2,6}
[2,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[5]
=> []
=> ?
=> ? => ? ∊ {0,4,24}
[4,1]
=> [1]
=> []
=> => ? ∊ {0,4,24}
[3,2]
=> [2]
=> []
=> => ? ∊ {0,4,24}
[3,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[2,2,1]
=> [2,1]
=> [1]
=> 10 => 0
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 0
[6]
=> []
=> ?
=> ? => ? ∊ {2,6,8,120}
[5,1]
=> [1]
=> []
=> => ? ∊ {2,6,8,120}
[4,2]
=> [2]
=> []
=> => ? ∊ {2,6,8,120}
[4,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[3,3]
=> [3]
=> []
=> => ? ∊ {2,6,8,120}
[3,2,1]
=> [2,1]
=> [1]
=> 10 => 0
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[2,2,2]
=> [2,2]
=> [2]
=> 100 => 0
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 110 => 0
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 0
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 0
[7]
=> []
=> ?
=> ? => ? ∊ {0,0,6,720}
[6,1]
=> [1]
=> []
=> => ? ∊ {0,0,6,720}
[5,2]
=> [2]
=> []
=> => ? ∊ {0,0,6,720}
[5,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[4,3]
=> [3]
=> []
=> => ? ∊ {0,0,6,720}
[4,2,1]
=> [2,1]
=> [1]
=> 10 => 0
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[3,3,1]
=> [3,1]
=> [1]
=> 10 => 0
[3,2,2]
=> [2,2]
=> [2]
=> 100 => 0
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 110 => 0
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 0
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1010 => 0
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1110 => 0
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 0
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 111110 => 0
[8]
=> []
=> ?
=> ? => ? ∊ {0,4,8,48,5040}
[7,1]
=> [1]
=> []
=> => ? ∊ {0,4,8,48,5040}
[6,2]
=> [2]
=> []
=> => ? ∊ {0,4,8,48,5040}
[6,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[5,3]
=> [3]
=> []
=> => ? ∊ {0,4,8,48,5040}
[5,2,1]
=> [2,1]
=> [1]
=> 10 => 0
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[4,4]
=> [4]
=> []
=> => ? ∊ {0,4,8,48,5040}
[4,3,1]
=> [3,1]
=> [1]
=> 10 => 0
[4,2,2]
=> [2,2]
=> [2]
=> 100 => 0
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> 110 => 0
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 0
[3,3,2]
=> [3,2]
=> [2]
=> 100 => 0
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> 110 => 0
[3,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1010 => 0
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1110 => 0
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 0
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 1100 => 0
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 10110 => 0
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 0
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 111110 => 0
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 1111110 => 0
[9]
=> []
=> ?
=> ? => ? ∊ {0,0,6,36,40320}
[8,1]
=> [1]
=> []
=> => ? ∊ {0,0,6,36,40320}
[7,2]
=> [2]
=> []
=> => ? ∊ {0,0,6,36,40320}
[7,1,1]
=> [1,1]
=> [1]
=> 10 => 0
[6,3]
=> [3]
=> []
=> => ? ∊ {0,0,6,36,40320}
[6,2,1]
=> [2,1]
=> [1]
=> 10 => 0
[6,1,1,1]
=> [1,1,1]
=> [1,1]
=> 110 => 0
[5,4]
=> [4]
=> []
=> => ? ∊ {0,0,6,36,40320}
[5,3,1]
=> [3,1]
=> [1]
=> 10 => 0
[5,2,2]
=> [2,2]
=> [2]
=> 100 => 0
[5,2,1,1]
=> [2,1,1]
=> [1,1]
=> 110 => 0
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 0
[4,4,1]
=> [4,1]
=> [1]
=> 10 => 0
[10]
=> []
=> ?
=> ? => ? ∊ {0,0,4,20,384,362880}
[9,1]
=> [1]
=> []
=> => ? ∊ {0,0,4,20,384,362880}
[8,2]
=> [2]
=> []
=> => ? ∊ {0,0,4,20,384,362880}
[7,3]
=> [3]
=> []
=> => ? ∊ {0,0,4,20,384,362880}
[6,4]
=> [4]
=> []
=> => ? ∊ {0,0,4,20,384,362880}
[5,5]
=> [5]
=> []
=> => ? ∊ {0,0,4,20,384,362880}
[11]
=> []
=> ?
=> ? => ? ∊ {0,0,0,0,0,10,3628800}
[10,1]
=> [1]
=> []
=> => ? ∊ {0,0,0,0,0,10,3628800}
[9,2]
=> [2]
=> []
=> => ? ∊ {0,0,0,0,0,10,3628800}
[8,3]
=> [3]
=> []
=> => ? ∊ {0,0,0,0,0,10,3628800}
[7,4]
=> [4]
=> []
=> => ? ∊ {0,0,0,0,0,10,3628800}
[6,5]
=> [5]
=> []
=> => ? ∊ {0,0,0,0,0,10,3628800}
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> 1111111110 => ? ∊ {0,0,0,0,0,10,3628800}
[12]
=> []
=> ?
=> ? => ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[11,1]
=> [1]
=> []
=> => ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[10,2]
=> [2]
=> []
=> => ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[9,3]
=> [3]
=> []
=> => ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[8,4]
=> [4]
=> []
=> => ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[7,5]
=> [5]
=> []
=> => ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[6,6]
=> [6]
=> []
=> => ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[2,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> 1111111110 => ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> 11111111110 => ? ∊ {0,0,0,4,12,64,324,3840,39916800}
Description
The length of the longest Yamanouchi prefix of a binary word.
This is the largest index i such that in each of the prefixes w1, w1w2, w1w2…wi the number of zeros is greater than or equal to the number of ones.
Matching statistic: St001695
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St001695: Standard tableaux ⟶ ℤResult quality: 4% ●values known / values provided: 81%●distinct values known / distinct values provided: 4%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St001695: Standard tableaux ⟶ ℤResult quality: 4% ●values known / values provided: 81%●distinct values known / distinct values provided: 4%
Values
[2]
=> []
=> ?
=> ?
=> ? ∊ {1,1}
[1,1]
=> [1]
=> []
=> []
=> ? ∊ {1,1}
[3]
=> []
=> ?
=> ?
=> ? ∊ {2,2}
[2,1]
=> [1]
=> []
=> []
=> ? ∊ {2,2}
[1,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[4]
=> []
=> ?
=> ?
=> ? ∊ {2,2,6}
[3,1]
=> [1]
=> []
=> []
=> ? ∊ {2,2,6}
[2,2]
=> [2]
=> []
=> []
=> ? ∊ {2,2,6}
[2,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[5]
=> []
=> ?
=> ?
=> ? ∊ {0,4,24}
[4,1]
=> [1]
=> []
=> []
=> ? ∊ {0,4,24}
[3,2]
=> [2]
=> []
=> []
=> ? ∊ {0,4,24}
[3,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[2,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[6]
=> []
=> ?
=> ?
=> ? ∊ {2,6,8,120}
[5,1]
=> [1]
=> []
=> []
=> ? ∊ {2,6,8,120}
[4,2]
=> [2]
=> []
=> []
=> ? ∊ {2,6,8,120}
[4,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[3,3]
=> [3]
=> []
=> []
=> ? ∊ {2,6,8,120}
[3,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[2,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[7]
=> []
=> ?
=> ?
=> ? ∊ {0,0,6,720}
[6,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,6,720}
[5,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,6,720}
[5,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[4,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,6,720}
[4,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[3,3,1]
=> [3,1]
=> [1]
=> [[1]]
=> 0
[3,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> [[1,2],[3]]
=> 0
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 0
[8]
=> []
=> ?
=> ?
=> ? ∊ {0,4,8,48,5040}
[7,1]
=> [1]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[6,2]
=> [2]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[6,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[5,3]
=> [3]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[5,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[4,4]
=> [4]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[4,3,1]
=> [3,1]
=> [1]
=> [[1]]
=> 0
[4,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[3,3,2]
=> [3,2]
=> [2]
=> [[1,2]]
=> 0
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[3,2,2,1]
=> [2,2,1]
=> [2,1]
=> [[1,2],[3]]
=> 0
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 0
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 0
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 0
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 0
[9]
=> []
=> ?
=> ?
=> ? ∊ {0,0,6,36,40320}
[8,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[7,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[7,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[6,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[6,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[6,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[5,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[5,3,1]
=> [3,1]
=> [1]
=> [[1]]
=> 0
[5,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[5,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[4,4,1]
=> [4,1]
=> [1]
=> [[1]]
=> 0
[10]
=> []
=> ?
=> ?
=> ? ∊ {0,0,4,20,384,362880}
[9,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[8,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[7,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[6,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[5,5]
=> [5]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[11]
=> []
=> ?
=> ?
=> ? ∊ {0,0,0,0,0,10,3628800}
[10,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[9,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[8,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[7,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[6,5]
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? ∊ {0,0,0,0,0,10,3628800}
[12]
=> []
=> ?
=> ?
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[11,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[10,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[9,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[8,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[7,5]
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[6,6]
=> [6]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[2,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
Description
The natural comajor index of a standard Young tableau.
A natural descent of a standard tableau T is an entry i such that i+1 appears in a higher row than i in English notation.
The natural comajor index of a tableau of size n with natural descent set D is then ∑d∈Dn−d.
Matching statistic: St001698
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St001698: Standard tableaux ⟶ ℤResult quality: 4% ●values known / values provided: 81%●distinct values known / distinct values provided: 4%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St001698: Standard tableaux ⟶ ℤResult quality: 4% ●values known / values provided: 81%●distinct values known / distinct values provided: 4%
Values
[2]
=> []
=> ?
=> ?
=> ? ∊ {1,1}
[1,1]
=> [1]
=> []
=> []
=> ? ∊ {1,1}
[3]
=> []
=> ?
=> ?
=> ? ∊ {2,2}
[2,1]
=> [1]
=> []
=> []
=> ? ∊ {2,2}
[1,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[4]
=> []
=> ?
=> ?
=> ? ∊ {2,2,6}
[3,1]
=> [1]
=> []
=> []
=> ? ∊ {2,2,6}
[2,2]
=> [2]
=> []
=> []
=> ? ∊ {2,2,6}
[2,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[5]
=> []
=> ?
=> ?
=> ? ∊ {0,4,24}
[4,1]
=> [1]
=> []
=> []
=> ? ∊ {0,4,24}
[3,2]
=> [2]
=> []
=> []
=> ? ∊ {0,4,24}
[3,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[2,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[6]
=> []
=> ?
=> ?
=> ? ∊ {2,6,8,120}
[5,1]
=> [1]
=> []
=> []
=> ? ∊ {2,6,8,120}
[4,2]
=> [2]
=> []
=> []
=> ? ∊ {2,6,8,120}
[4,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[3,3]
=> [3]
=> []
=> []
=> ? ∊ {2,6,8,120}
[3,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[2,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[7]
=> []
=> ?
=> ?
=> ? ∊ {0,0,6,720}
[6,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,6,720}
[5,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,6,720}
[5,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[4,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,6,720}
[4,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[3,3,1]
=> [3,1]
=> [1]
=> [[1]]
=> 0
[3,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> [[1,2],[3]]
=> 0
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 0
[8]
=> []
=> ?
=> ?
=> ? ∊ {0,4,8,48,5040}
[7,1]
=> [1]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[6,2]
=> [2]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[6,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[5,3]
=> [3]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[5,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[4,4]
=> [4]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[4,3,1]
=> [3,1]
=> [1]
=> [[1]]
=> 0
[4,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[3,3,2]
=> [3,2]
=> [2]
=> [[1,2]]
=> 0
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[3,2,2,1]
=> [2,2,1]
=> [2,1]
=> [[1,2],[3]]
=> 0
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 0
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 0
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 0
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 0
[9]
=> []
=> ?
=> ?
=> ? ∊ {0,0,6,36,40320}
[8,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[7,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[7,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[6,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[6,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[6,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[5,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[5,3,1]
=> [3,1]
=> [1]
=> [[1]]
=> 0
[5,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[5,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[4,4,1]
=> [4,1]
=> [1]
=> [[1]]
=> 0
[10]
=> []
=> ?
=> ?
=> ? ∊ {0,0,4,20,384,362880}
[9,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[8,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[7,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[6,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[5,5]
=> [5]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[11]
=> []
=> ?
=> ?
=> ? ∊ {0,0,0,0,0,10,3628800}
[10,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[9,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[8,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[7,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[6,5]
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? ∊ {0,0,0,0,0,10,3628800}
[12]
=> []
=> ?
=> ?
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[11,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[10,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[9,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[8,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[7,5]
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[6,6]
=> [6]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[2,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
Description
The comajor index of a standard tableau minus the weighted size of its shape.
Matching statistic: St001699
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
St001699: Standard tableaux ⟶ ℤResult quality: 4% ●values known / values provided: 81%●distinct values known / distinct values provided: 4%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
St001699: Standard tableaux ⟶ ℤResult quality: 4% ●values known / values provided: 81%●distinct values known / distinct values provided: 4%
Values
[2]
=> []
=> ?
=> ?
=> ? ∊ {1,1}
[1,1]
=> [1]
=> []
=> []
=> ? ∊ {1,1}
[3]
=> []
=> ?
=> ?
=> ? ∊ {2,2}
[2,1]
=> [1]
=> []
=> []
=> ? ∊ {2,2}
[1,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[4]
=> []
=> ?
=> ?
=> ? ∊ {2,2,6}
[3,1]
=> [1]
=> []
=> []
=> ? ∊ {2,2,6}
[2,2]
=> [2]
=> []
=> []
=> ? ∊ {2,2,6}
[2,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[5]
=> []
=> ?
=> ?
=> ? ∊ {0,4,24}
[4,1]
=> [1]
=> []
=> []
=> ? ∊ {0,4,24}
[3,2]
=> [2]
=> []
=> []
=> ? ∊ {0,4,24}
[3,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[2,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[6]
=> []
=> ?
=> ?
=> ? ∊ {2,6,8,120}
[5,1]
=> [1]
=> []
=> []
=> ? ∊ {2,6,8,120}
[4,2]
=> [2]
=> []
=> []
=> ? ∊ {2,6,8,120}
[4,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[3,3]
=> [3]
=> []
=> []
=> ? ∊ {2,6,8,120}
[3,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[2,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[7]
=> []
=> ?
=> ?
=> ? ∊ {0,0,6,720}
[6,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,6,720}
[5,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,6,720}
[5,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[4,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,6,720}
[4,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[3,3,1]
=> [3,1]
=> [1]
=> [[1]]
=> 0
[3,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> [[1,3],[2]]
=> 0
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 0
[8]
=> []
=> ?
=> ?
=> ? ∊ {0,4,8,48,5040}
[7,1]
=> [1]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[6,2]
=> [2]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[6,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[5,3]
=> [3]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[5,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[4,4]
=> [4]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[4,3,1]
=> [3,1]
=> [1]
=> [[1]]
=> 0
[4,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[3,3,2]
=> [3,2]
=> [2]
=> [[1,2]]
=> 0
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[3,2,2,1]
=> [2,2,1]
=> [2,1]
=> [[1,3],[2]]
=> 0
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 0
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [[1,4],[2],[3]]
=> 0
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 0
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 0
[9]
=> []
=> ?
=> ?
=> ? ∊ {0,0,6,36,40320}
[8,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[7,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[7,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[6,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[6,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[6,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[5,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[5,3,1]
=> [3,1]
=> [1]
=> [[1]]
=> 0
[5,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[5,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[4,4,1]
=> [4,1]
=> [1]
=> [[1]]
=> 0
[10]
=> []
=> ?
=> ?
=> ? ∊ {0,0,4,20,384,362880}
[9,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[8,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[7,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[6,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[5,5]
=> [5]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[11]
=> []
=> ?
=> ?
=> ? ∊ {0,0,0,0,0,10,3628800}
[10,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[9,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[8,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[7,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[6,5]
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? ∊ {0,0,0,0,0,10,3628800}
[12]
=> []
=> ?
=> ?
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[11,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[10,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[9,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[8,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[7,5]
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[6,6]
=> [6]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[2,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
Description
The major index of a standard tableau minus the weighted size of its shape.
Matching statistic: St001712
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St001712: Standard tableaux ⟶ ℤResult quality: 4% ●values known / values provided: 81%●distinct values known / distinct values provided: 4%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St001712: Standard tableaux ⟶ ℤResult quality: 4% ●values known / values provided: 81%●distinct values known / distinct values provided: 4%
Values
[2]
=> []
=> ?
=> ?
=> ? ∊ {1,1}
[1,1]
=> [1]
=> []
=> []
=> ? ∊ {1,1}
[3]
=> []
=> ?
=> ?
=> ? ∊ {2,2}
[2,1]
=> [1]
=> []
=> []
=> ? ∊ {2,2}
[1,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[4]
=> []
=> ?
=> ?
=> ? ∊ {2,2,6}
[3,1]
=> [1]
=> []
=> []
=> ? ∊ {2,2,6}
[2,2]
=> [2]
=> []
=> []
=> ? ∊ {2,2,6}
[2,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[5]
=> []
=> ?
=> ?
=> ? ∊ {0,4,24}
[4,1]
=> [1]
=> []
=> []
=> ? ∊ {0,4,24}
[3,2]
=> [2]
=> []
=> []
=> ? ∊ {0,4,24}
[3,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[2,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[6]
=> []
=> ?
=> ?
=> ? ∊ {2,6,8,120}
[5,1]
=> [1]
=> []
=> []
=> ? ∊ {2,6,8,120}
[4,2]
=> [2]
=> []
=> []
=> ? ∊ {2,6,8,120}
[4,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[3,3]
=> [3]
=> []
=> []
=> ? ∊ {2,6,8,120}
[3,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[2,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[7]
=> []
=> ?
=> ?
=> ? ∊ {0,0,6,720}
[6,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,6,720}
[5,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,6,720}
[5,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[4,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,6,720}
[4,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[3,3,1]
=> [3,1]
=> [1]
=> [[1]]
=> 0
[3,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> [[1,2],[3]]
=> 0
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 0
[8]
=> []
=> ?
=> ?
=> ? ∊ {0,4,8,48,5040}
[7,1]
=> [1]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[6,2]
=> [2]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[6,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[5,3]
=> [3]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[5,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[4,4]
=> [4]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[4,3,1]
=> [3,1]
=> [1]
=> [[1]]
=> 0
[4,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[3,3,2]
=> [3,2]
=> [2]
=> [[1,2]]
=> 0
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[3,2,2,1]
=> [2,2,1]
=> [2,1]
=> [[1,2],[3]]
=> 0
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 0
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 0
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 0
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 0
[9]
=> []
=> ?
=> ?
=> ? ∊ {0,0,6,36,40320}
[8,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[7,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[7,1,1]
=> [1,1]
=> [1]
=> [[1]]
=> 0
[6,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[6,2,1]
=> [2,1]
=> [1]
=> [[1]]
=> 0
[6,1,1,1]
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[5,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[5,3,1]
=> [3,1]
=> [1]
=> [[1]]
=> 0
[5,2,2]
=> [2,2]
=> [2]
=> [[1,2]]
=> 0
[5,2,1,1]
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0
[4,4,1]
=> [4,1]
=> [1]
=> [[1]]
=> 0
[10]
=> []
=> ?
=> ?
=> ? ∊ {0,0,4,20,384,362880}
[9,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[8,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[7,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[6,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[5,5]
=> [5]
=> []
=> []
=> ? ∊ {0,0,4,20,384,362880}
[11]
=> []
=> ?
=> ?
=> ? ∊ {0,0,0,0,0,10,3628800}
[10,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[9,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[8,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[7,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[6,5]
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,10,3628800}
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? ∊ {0,0,0,0,0,10,3628800}
[12]
=> []
=> ?
=> ?
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[11,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[10,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[9,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[8,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[7,5]
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[6,6]
=> [6]
=> []
=> []
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[2,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
[1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> ? ∊ {0,0,0,4,12,64,324,3840,39916800}
Description
The number of natural descents of a standard Young tableau.
A natural descent of a standard tableau T is an entry i such that i+1 appears in a higher row than i in English notation.
Matching statistic: St001107
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001107: Dyck paths ⟶ ℤResult quality: 4% ●values known / values provided: 80%●distinct values known / distinct values provided: 4%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001107: Dyck paths ⟶ ℤResult quality: 4% ●values known / values provided: 80%●distinct values known / distinct values provided: 4%
Values
[2]
=> []
=> ?
=> ?
=> ? ∊ {1,1}
[1,1]
=> [1]
=> []
=> []
=> ? ∊ {1,1}
[3]
=> []
=> ?
=> ?
=> ? ∊ {2,2}
[2,1]
=> [1]
=> []
=> []
=> ? ∊ {2,2}
[1,1,1]
=> [1,1]
=> [1]
=> [1,0,1,0]
=> 0
[4]
=> []
=> ?
=> ?
=> ? ∊ {2,2,6}
[3,1]
=> [1]
=> []
=> []
=> ? ∊ {2,2,6}
[2,2]
=> [2]
=> []
=> []
=> ? ∊ {2,2,6}
[2,1,1]
=> [1,1]
=> [1]
=> [1,0,1,0]
=> 0
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[5]
=> []
=> ?
=> ?
=> ? ∊ {0,4,24}
[4,1]
=> [1]
=> []
=> []
=> ? ∊ {0,4,24}
[3,2]
=> [2]
=> []
=> []
=> ? ∊ {0,4,24}
[3,1,1]
=> [1,1]
=> [1]
=> [1,0,1,0]
=> 0
[2,2,1]
=> [2,1]
=> [1]
=> [1,0,1,0]
=> 0
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 0
[6]
=> []
=> ?
=> ?
=> ? ∊ {2,6,8,120}
[5,1]
=> [1]
=> []
=> []
=> ? ∊ {2,6,8,120}
[4,2]
=> [2]
=> []
=> []
=> ? ∊ {2,6,8,120}
[4,1,1]
=> [1,1]
=> [1]
=> [1,0,1,0]
=> 0
[3,3]
=> [3]
=> []
=> []
=> ? ∊ {2,6,8,120}
[3,2,1]
=> [2,1]
=> [1]
=> [1,0,1,0]
=> 0
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[2,2,2]
=> [2,2]
=> [2]
=> [1,1,0,0,1,0]
=> 0
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[7]
=> []
=> ?
=> ?
=> ? ∊ {0,0,6,720}
[6,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,6,720}
[5,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,6,720}
[5,1,1]
=> [1,1]
=> [1]
=> [1,0,1,0]
=> 0
[4,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,6,720}
[4,2,1]
=> [2,1]
=> [1]
=> [1,0,1,0]
=> 0
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[3,3,1]
=> [3,1]
=> [1]
=> [1,0,1,0]
=> 0
[3,2,2]
=> [2,2]
=> [2]
=> [1,1,0,0,1,0]
=> 0
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 0
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 0
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 0
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0
[8]
=> []
=> ?
=> ?
=> ? ∊ {0,4,8,48,5040}
[7,1]
=> [1]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[6,2]
=> [2]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[6,1,1]
=> [1,1]
=> [1]
=> [1,0,1,0]
=> 0
[5,3]
=> [3]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[5,2,1]
=> [2,1]
=> [1]
=> [1,0,1,0]
=> 0
[5,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[4,4]
=> [4]
=> []
=> []
=> ? ∊ {0,4,8,48,5040}
[4,3,1]
=> [3,1]
=> [1]
=> [1,0,1,0]
=> 0
[4,2,2]
=> [2,2]
=> [2]
=> [1,1,0,0,1,0]
=> 0
[4,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 0
[3,3,2]
=> [3,2]
=> [2]
=> [1,1,0,0,1,0]
=> 0
[3,3,1,1]
=> [3,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[3,2,2,1]
=> [2,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 0
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 0
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[2,2,2,2]
=> [2,2,2]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 0
[2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 0
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[9]
=> []
=> ?
=> ?
=> ? ∊ {0,0,6,36,40320}
[8,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[7,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[7,1,1]
=> [1,1]
=> [1]
=> [1,0,1,0]
=> 0
[6,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[6,2,1]
=> [2,1]
=> [1]
=> [1,0,1,0]
=> 0
[6,1,1,1]
=> [1,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[5,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,6,36,40320}
[5,3,1]
=> [3,1]
=> [1]
=> [1,0,1,0]
=> 0
[5,2,2]
=> [2,2]
=> [2]
=> [1,1,0,0,1,0]
=> 0
[5,2,1,1]
=> [2,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[5,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 0
[4,4,1]
=> [4,1]
=> [1]
=> [1,0,1,0]
=> 0
[10]
=> []
=> ?
=> ?
=> ? ∊ {0,0,0,4,20,384,362880}
[9,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,0,4,20,384,362880}
[8,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,0,4,20,384,362880}
[7,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,0,4,20,384,362880}
[6,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,4,20,384,362880}
[5,5]
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,4,20,384,362880}
[1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,4,20,384,362880}
[11]
=> []
=> ?
=> ?
=> ? ∊ {0,0,0,0,0,0,10,3628800}
[10,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,10,3628800}
[9,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,10,3628800}
[8,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,10,3628800}
[7,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,10,3628800}
[6,5]
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,10,3628800}
[2,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,10,3628800}
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,10,3628800}
[12]
=> []
=> ?
=> ?
=> ? ∊ {0,0,0,0,0,4,12,64,324,3840,39916800}
[11,1]
=> [1]
=> []
=> []
=> ? ∊ {0,0,0,0,0,4,12,64,324,3840,39916800}
[10,2]
=> [2]
=> []
=> []
=> ? ∊ {0,0,0,0,0,4,12,64,324,3840,39916800}
[9,3]
=> [3]
=> []
=> []
=> ? ∊ {0,0,0,0,0,4,12,64,324,3840,39916800}
[8,4]
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,4,12,64,324,3840,39916800}
[7,5]
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,4,12,64,324,3840,39916800}
[6,6]
=> [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,4,12,64,324,3840,39916800}
Description
The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path.
In other words, this is the lowest height of a valley of a Dyck path, or its semilength in case of the unique path without valleys.
The following 4 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!