searching the database
Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000531
St000531: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> 1
[2]
=> 2
[1,1]
=> 2
[3]
=> 3
[2,1]
=> 1
[1,1,1]
=> 3
[4]
=> 4
[3,1]
=> 2
[2,2]
=> 2
[2,1,1]
=> 2
[1,1,1,1]
=> 4
[5]
=> 5
[4,1]
=> 3
[3,2]
=> 4
[3,1,1]
=> 0
[2,2,1]
=> 4
[2,1,1,1]
=> 3
[1,1,1,1,1]
=> 5
[6]
=> 6
[5,1]
=> 4
[4,2]
=> 6
[4,1,1]
=> 0
[3,3]
=> 6
[3,2,1]
=> 1
[3,1,1,1]
=> 0
[2,2,2]
=> 6
[2,2,1,1]
=> 6
[2,1,1,1,1]
=> 4
[1,1,1,1,1,1]
=> 6
[7]
=> 7
[6,1]
=> 5
[5,2]
=> 8
[5,1,1]
=> 0
[4,3]
=> 9
[4,2,1]
=> 2
[4,1,1,1]
=> 0
[3,3,1]
=> 2
[3,2,2]
=> 2
[3,2,1,1]
=> 2
[3,1,1,1,1]
=> 0
[2,2,2,1]
=> 9
[2,2,1,1,1]
=> 8
[2,1,1,1,1,1]
=> 5
[1,1,1,1,1,1,1]
=> 7
[8]
=> 8
[7,1]
=> 6
[6,2]
=> 10
[6,1,1]
=> 0
[5,3]
=> 12
[5,2,1]
=> 3
Description
The leading coefficient of the rook polynomial of an integer partition.
Let m be the minimum of the number of parts and the size of the first part of an integer partition λ. Then this statistic yields the number of ways to place m non-attacking rooks on the Ferrers board of λ.
Matching statistic: St001498
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00103: Dyck paths —peeling map⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St001498: Dyck paths ⟶ ℤResult quality: 4% ●values known / values provided: 18%●distinct values known / distinct values provided: 4%
Mp00103: Dyck paths —peeling map⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St001498: Dyck paths ⟶ ℤResult quality: 4% ●values known / values provided: 18%●distinct values known / distinct values provided: 4%
Values
[1]
=> [1,0]
=> [1,0]
=> [1,0]
=> ? = 1
[2]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? ∊ {2,2}
[1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? ∊ {2,2}
[3]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {1,3,3}
[2,1]
=> [1,0,1,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {1,3,3}
[1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {1,3,3}
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {2,2,2,4,4}
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {2,2,2,4,4}
[2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {2,2,2,4,4}
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {2,2,2,4,4}
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {2,2,2,4,4}
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,3,3,4,4,5,5}
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,3,3,4,4,5,5}
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,3,3,4,4,5,5}
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,3,3,4,4,5,5}
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,3,3,4,4,5,5}
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,3,3,4,4,5,5}
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,3,3,4,4,5,5}
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,1,4,4,6,6,6,6,6,6}
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,1,4,4,6,6,6,6,6,6}
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,1,4,4,6,6,6,6,6,6}
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,1,4,4,6,6,6,6,6,6}
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,1,4,4,6,6,6,6,6,6}
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,1,4,4,6,6,6,6,6,6}
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,1,4,4,6,6,6,6,6,6}
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 0
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,1,4,4,6,6,6,6,6,6}
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,1,4,4,6,6,6,6,6,6}
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,1,4,4,6,6,6,6,6,6}
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,2,2,2,2,5,5,7,7,8,8,9,9}
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,2,2,2,2,5,5,7,7,8,8,9,9}
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,2,2,2,2,5,5,7,7,8,8,9,9}
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,2,2,2,2,5,5,7,7,8,8,9,9}
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,2,2,2,2,5,5,7,7,8,8,9,9}
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,2,2,2,2,5,5,7,7,8,8,9,9}
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,2,2,2,2,5,5,7,7,8,8,9,9}
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,2,2,2,2,5,5,7,7,8,8,9,9}
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 0
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,2,2,2,2,5,5,7,7,8,8,9,9}
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,2,2,2,2,5,5,7,7,8,8,9,9}
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 0
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,2,2,2,2,5,5,7,7,8,8,9,9}
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,2,2,2,2,5,5,7,7,8,8,9,9}
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,2,2,2,2,5,5,7,7,8,8,9,9}
[8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {3,3,4,4,4,4,4,6,6,8,8,10,10,12,12,12,12}
[7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {3,3,4,4,4,4,4,6,6,8,8,10,10,12,12,12,12}
[6,2]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {3,3,4,4,4,4,4,6,6,8,8,10,10,12,12,12,12}
[6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {3,3,4,4,4,4,4,6,6,8,8,10,10,12,12,12,12}
[5,3]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {3,3,4,4,4,4,4,6,6,8,8,10,10,12,12,12,12}
[5,2,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {3,3,4,4,4,4,4,6,6,8,8,10,10,12,12,12,12}
[5,1,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {3,3,4,4,4,4,4,6,6,8,8,10,10,12,12,12,12}
[4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {3,3,4,4,4,4,4,6,6,8,8,10,10,12,12,12,12}
[4,3,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {3,3,4,4,4,4,4,6,6,8,8,10,10,12,12,12,12}
[4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 0
[3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 0
[3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 0
[2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 0
[2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 0
[5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[4,3,2]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 0
[4,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> 0
[3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 0
[3,3,2,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 0
[3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 0
[3,2,2,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> 0
[2,2,2,2,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 0
[2,2,2,1,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 0
[5,3,2]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[4,4,2]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 0
[4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 0
[4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> 0
[4,2,2,2]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 0
[3,3,3,1]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 0
[3,3,2,2]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 0
[3,3,2,1,1]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> 0
[3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 0
[2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 0
[2,2,2,2,1,1]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> 0
[5,4,2]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[5,3,3]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> 0
[4,4,3]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 0
[4,4,2,1]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> 0
[4,3,3,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> 0
[4,3,2,2]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 0
[3,3,3,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 0
[3,3,3,1,1]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> 0
[3,3,2,2,1]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 0
[3,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> 0
[2,2,2,2,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> 0
[5,5,2]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[5,4,3]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> 0
[4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 0
[4,4,3,1]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> 0
[4,4,2,2]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 0
[4,3,3,2]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> 0
[3,3,3,3]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 0
[3,3,3,2,1]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> 0
[3,3,2,2,2]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> 0
[2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> 0
Description
The normalised height of a Nakayama algebra with magnitude 1.
We use the bijection (see code) suggested by Christian Stump, to have a bijection between such Nakayama algebras with magnitude 1 and Dyck paths. The normalised height is the height of the (periodic) Dyck path given by the top of the Auslander-Reiten quiver. Thus when having a CNakayama algebra it is the Loewy length minus the number of simple modules and for the LNakayama algebras it is the usual height.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!