Identifier
Values
[] => 1
[1] => 1
[2] => 2
[1,1] => 2
[3] => 3
[2,1] => 1
[1,1,1] => 3
[4] => 4
[3,1] => 2
[2,2] => 2
[2,1,1] => 2
[1,1,1,1] => 4
[5] => 5
[4,1] => 3
[3,2] => 4
[3,1,1] => 0
[2,2,1] => 4
[2,1,1,1] => 3
[1,1,1,1,1] => 5
[6] => 6
[5,1] => 4
[4,2] => 6
[4,1,1] => 0
[3,3] => 6
[3,2,1] => 1
[3,1,1,1] => 0
[2,2,2] => 6
[2,2,1,1] => 6
[2,1,1,1,1] => 4
[1,1,1,1,1,1] => 6
[7] => 7
[6,1] => 5
[5,2] => 8
[5,1,1] => 0
[4,3] => 9
[4,2,1] => 2
[4,1,1,1] => 0
[3,3,1] => 2
[3,2,2] => 2
[3,2,1,1] => 2
[3,1,1,1,1] => 0
[2,2,2,1] => 9
[2,2,1,1,1] => 8
[2,1,1,1,1,1] => 5
[1,1,1,1,1,1,1] => 7
[8] => 8
[7,1] => 6
[6,2] => 10
[6,1,1] => 0
[5,3] => 12
[5,2,1] => 3
[5,1,1,1] => 0
[4,4] => 12
[4,3,1] => 4
[4,2,2] => 4
[4,2,1,1] => 0
[4,1,1,1,1] => 0
[3,3,2] => 4
[3,3,1,1] => 4
[3,2,2,1] => 4
[3,2,1,1,1] => 3
[3,1,1,1,1,1] => 0
[2,2,2,2] => 12
[2,2,2,1,1] => 12
[2,2,1,1,1,1] => 10
[2,1,1,1,1,1,1] => 6
[1,1,1,1,1,1,1,1] => 8
[9] => 9
[8,1] => 7
[7,2] => 12
[7,1,1] => 0
[6,3] => 15
[6,2,1] => 4
[6,1,1,1] => 0
[5,4] => 16
[5,3,1] => 6
[5,2,2] => 6
[5,2,1,1] => 0
[5,1,1,1,1] => 0
[4,4,1] => 6
[4,3,2] => 8
[4,3,1,1] => 0
[4,2,2,1] => 0
[4,2,1,1,1] => 0
[4,1,1,1,1,1] => 0
[3,3,3] => 6
[3,3,2,1] => 8
[3,3,1,1,1] => 6
[3,2,2,2] => 6
[3,2,2,1,1] => 6
[3,2,1,1,1,1] => 4
[3,1,1,1,1,1,1] => 0
[2,2,2,2,1] => 16
[2,2,2,1,1,1] => 15
[2,2,1,1,1,1,1] => 12
[2,1,1,1,1,1,1,1] => 7
[1,1,1,1,1,1,1,1,1] => 9
[10] => 10
[9,1] => 8
[8,2] => 14
[8,1,1] => 0
>>> Load all 272 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The leading coefficient of the rook polynomial of an integer partition.
Let $m$ be the minimum of the number of parts and the size of the first part of an integer partition $\lambda$. Then this statistic yields the number of ways to place $m$ non-attacking rooks on the Ferrers board of $\lambda$.
Let $m$ be the minimum of the number of parts and the size of the first part of an integer partition $\lambda$. Then this statistic yields the number of ways to place $m$ non-attacking rooks on the Ferrers board of $\lambda$.
References
Code
def statistic(la):
return (matrix([[1]*p + [0]*(la[0]-p) for p in la]).rook_vector())[-1]
Created
Jun 10, 2016 at 23:50 by Martin Rubey
Updated
Dec 22, 2020 at 13:32 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!