Your data matches 317 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
St000549: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> []
=> 0
([],2)
=> []
=> 0
([(0,1)],2)
=> [1]
=> 1
([],3)
=> []
=> 0
([(1,2)],3)
=> [1]
=> 1
([(0,2),(1,2)],3)
=> [1,1]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([],4)
=> []
=> 0
([(2,3)],4)
=> [1]
=> 1
([(1,3),(2,3)],4)
=> [1,1]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> 2
([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 2
([(1,2),(1,3),(2,3)],4)
=> [3]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> 0
([],5)
=> []
=> 0
([(3,4)],5)
=> [1]
=> 1
([(2,4),(3,4)],5)
=> [1,1]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> 2
([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 2
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> 0
Description
The number of odd partial sums of an integer partition.
Matching statistic: St001057
Mp00156: Graphs line graphGraphs
Mp00157: Graphs connected complementGraphs
St001057: Graphs ⟶ ℤResult quality: 83% values known / values provided: 83%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],0)
=> ([],0)
=> ? = 0
([],2)
=> ([],0)
=> ([],0)
=> ? = 0
([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1
([],3)
=> ([],0)
=> ([],0)
=> ? = 0
([(1,2)],3)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([],4)
=> ([],0)
=> ([],0)
=> ? = 1
([(2,3)],4)
=> ([],1)
=> ([],1)
=> 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,3),(1,2)],4)
=> ([],2)
=> ([],2)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 0
([],5)
=> ([],0)
=> ([],0)
=> ? ∊ {1,1,2,2,2}
([(3,4)],5)
=> ([],1)
=> ([],1)
=> 1
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,4),(2,3)],5)
=> ([],2)
=> ([],2)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7)
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,5),(1,6),(1,7),(2,3),(2,4),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,7),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? ∊ {1,1,2,2,2}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,7),(5,6)],8)
=> ? ∊ {1,1,2,2,2}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(0,7),(0,8),(1,2),(1,3),(1,7),(1,8),(2,3),(2,5),(2,6),(2,8),(3,4),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,7),(0,8),(1,5),(1,6),(2,3),(2,4),(3,6),(3,8),(4,5),(4,7),(5,8),(6,7)],9)
=> ? ∊ {1,1,2,2,2}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? ∊ {1,1,2,2,2}
Description
The Grundy value of the game of creating an independent set in a graph. Two players alternately add a vertex to an initially empty set, which is not adjacent to any of the vertices it already contains. Alternatively, the game can be described as starting with a graph, the players remove vertices together with their neighbors, until the graph is empty.
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00030: Dyck paths zeta mapDyck paths
St001027: Dyck paths ⟶ ℤResult quality: 75% values known / values provided: 77%distinct values known / distinct values provided: 75%
Values
([],1)
=> []
=> []
=> []
=> ? = 0
([],2)
=> []
=> []
=> []
=> ? = 0
([(0,1)],2)
=> [1]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
([],3)
=> []
=> []
=> []
=> ? = 0
([(1,2)],3)
=> [1]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
([(0,2),(1,2)],3)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
([],4)
=> []
=> []
=> []
=> ? = 0
([(2,3)],4)
=> [1]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
([(1,3),(2,3)],4)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 0
([(0,3),(1,2)],4)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 0
([(1,2),(1,3),(2,3)],4)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> 2
([],5)
=> []
=> []
=> []
=> ? ∊ {0,0,0,0,2,3,3,3}
([(3,4)],5)
=> [1]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
([(2,4),(3,4)],5)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
([(1,4),(2,3)],5)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,2,3,3,3}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,2,3,3,3}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,2,3,3,3}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,2,3,3,3}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,2,3,3,3}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,2,3,3,3}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,2,3,3,3}
Description
Number of simple modules with projective dimension equal to injective dimension in the Nakayama algebra corresponding to the Dyck path.
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00229: Dyck paths Delest-ViennotDyck paths
St000120: Dyck paths ⟶ ℤResult quality: 75% values known / values provided: 75%distinct values known / distinct values provided: 100%
Values
([],1)
=> []
=> []
=> []
=> ? = 0
([],2)
=> []
=> []
=> []
=> ? = 1
([(0,1)],2)
=> [1]
=> [1,0]
=> [1,0]
=> 0
([],3)
=> []
=> []
=> []
=> ? = 1
([(1,2)],3)
=> [1]
=> [1,0]
=> [1,0]
=> 0
([(0,2),(1,2)],3)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 1
([],4)
=> []
=> []
=> []
=> ? = 1
([(2,3)],4)
=> [1]
=> [1,0]
=> [1,0]
=> 0
([(1,3),(2,3)],4)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> 0
([(0,3),(1,2)],4)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> 0
([(1,2),(1,3),(2,3)],4)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 2
([],5)
=> []
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2,2}
([(3,4)],5)
=> [1]
=> [1,0]
=> [1,0]
=> 0
([(2,4),(3,4)],5)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
([(1,4),(2,3)],5)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,2,2}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,2,2}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? ∊ {0,1,1,1,1,1,1,2,2}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,2,2}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,2,2}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,2,2}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,2,2}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,2,2}
Description
The number of left tunnels of a Dyck path. A tunnel is a pair (a,b) where a is the position of an open parenthesis and b is the position of the matching close parenthesis. If a+b
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00229: Dyck paths Delest-ViennotDyck paths
St001188: Dyck paths ⟶ ℤResult quality: 75% values known / values provided: 75%distinct values known / distinct values provided: 75%
Values
([],1)
=> []
=> []
=> []
=> ? = 0
([],2)
=> []
=> []
=> []
=> ? = 1
([(0,1)],2)
=> [1]
=> [1,0]
=> [1,0]
=> 0
([],3)
=> []
=> []
=> []
=> ? = 1
([(1,2)],3)
=> [1]
=> [1,0]
=> [1,0]
=> 0
([(0,2),(1,2)],3)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 1
([],4)
=> []
=> []
=> []
=> ? = 1
([(2,3)],4)
=> [1]
=> [1,0]
=> [1,0]
=> 0
([(1,3),(2,3)],4)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> 0
([(0,3),(1,2)],4)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> 0
([(1,2),(1,3),(2,3)],4)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 2
([],5)
=> []
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,3,3,3}
([(3,4)],5)
=> [1]
=> [1,0]
=> [1,0]
=> 0
([(2,4),(3,4)],5)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
([(1,4),(2,3)],5)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,3,3,3}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,3,3,3}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? ∊ {0,1,1,1,1,1,3,3,3}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,3,3,3}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,3,3,3}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,3,3,3}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,3,3,3}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,3,3,3}
Description
The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. Also the number of simple modules that are isolated vertices in the sense of 4.5. (4) in the reference.
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00229: Dyck paths Delest-ViennotDyck paths
St001244: Dyck paths ⟶ ℤResult quality: 75% values known / values provided: 75%distinct values known / distinct values provided: 75%
Values
([],1)
=> []
=> []
=> []
=> ? = 0
([],2)
=> []
=> []
=> []
=> ? = 1
([(0,1)],2)
=> [1]
=> [1,0]
=> [1,0]
=> 0
([],3)
=> []
=> []
=> []
=> ? = 1
([(1,2)],3)
=> [1]
=> [1,0]
=> [1,0]
=> 0
([(0,2),(1,2)],3)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 1
([],4)
=> []
=> []
=> []
=> ? = 1
([(2,3)],4)
=> [1]
=> [1,0]
=> [1,0]
=> 0
([(1,3),(2,3)],4)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> 0
([(0,3),(1,2)],4)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> 0
([(1,2),(1,3),(2,3)],4)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 2
([],5)
=> []
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,3,3,3}
([(3,4)],5)
=> [1]
=> [1,0]
=> [1,0]
=> 0
([(2,4),(3,4)],5)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
([(1,4),(2,3)],5)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,3,3,3}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,3,3,3}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? ∊ {0,1,1,1,1,1,3,3,3}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,3,3,3}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,3,3,3}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,3,3,3}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,3,3,3}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,3,3,3}
Description
The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. For the projective dimension see [[St001007]] and for 1-regularity see [[St001126]]. After applying the inverse zeta map [[Mp00032]], this statistic matches the number of rises of length at least 2 [[St000659]].
Mp00117: Graphs Ore closureGraphs
Mp00250: Graphs clique graphGraphs
Mp00111: Graphs complementGraphs
St000259: Graphs ⟶ ℤResult quality: 69% values known / values provided: 69%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([],2)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0
([],3)
=> ([],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,2)],3)
=> ([(1,2)],3)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? = 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> 0
([],4)
=> ([],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(2,3)],4)
=> ([(2,3)],4)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,2}
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {1,2,2}
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> 0
([],5)
=> ([],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(3,4)],5)
=> ([(3,4)],5)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,3,3}
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,3,3}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,3,3}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,3,3}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,3,3}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,3,3}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,3,3}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,3,3}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,3,3}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,3,3}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,3,3}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,3,3}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Mp00117: Graphs Ore closureGraphs
Mp00250: Graphs clique graphGraphs
Mp00111: Graphs complementGraphs
St000777: Graphs ⟶ ℤResult quality: 69% values known / values provided: 69%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([],2)
=> ([],2)
=> ([],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([],3)
=> ([],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
([(1,2)],3)
=> ([(1,2)],3)
=> ([],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 + 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([],4)
=> ([],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(2,3)],4)
=> ([(2,3)],4)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,2} + 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {1,2,2} + 1
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2} + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([],5)
=> ([],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(3,4)],5)
=> ([(3,4)],5)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,3} + 1
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,3} + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,3} + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,3} + 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,3} + 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,3} + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,3} + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,3} + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 3 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,3} + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,3} + 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 2 + 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,3} + 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {0,1,1,1,2,2,2,2,2,2,2,3} + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St000329: Dyck paths ⟶ ℤResult quality: 67% values known / values provided: 67%distinct values known / distinct values provided: 100%
Values
([],1)
=> []
=> []
=> ? = 0
([],2)
=> []
=> []
=> ? = 1
([(0,1)],2)
=> [1]
=> [1,0,1,0]
=> 0
([],3)
=> []
=> []
=> ? = 1
([(1,2)],3)
=> [1]
=> [1,0,1,0]
=> 0
([(0,2),(1,2)],3)
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
([],4)
=> []
=> []
=> ? ∊ {0,0}
([(2,3)],4)
=> [1]
=> [1,0,1,0]
=> 0
([(1,3),(2,3)],4)
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
([(0,3),(1,2)],4)
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
([(1,2),(1,3),(2,3)],4)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0}
([],5)
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,2,2,2,3}
([(3,4)],5)
=> [1]
=> [1,0,1,0]
=> 0
([(2,4),(3,4)],5)
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2
([(1,4),(2,3)],5)
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
([(2,3),(2,4),(3,4)],5)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,1,2,2,2,3}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,1,2,2,2,3}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,1,2,2,2,3}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,1,2,2,2,3}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,1,2,2,2,3}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,1,2,2,2,3}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,1,2,2,2,3}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,1,2,2,2,3}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,1,2,2,2,3}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,1,2,2,2,3}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,1,2,2,2,3}
Description
The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1.
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St001508: Dyck paths ⟶ ℤResult quality: 67% values known / values provided: 67%distinct values known / distinct values provided: 100%
Values
([],1)
=> []
=> []
=> ? = 0
([],2)
=> []
=> []
=> ? = 1
([(0,1)],2)
=> [1]
=> [1,0,1,0]
=> 0
([],3)
=> []
=> []
=> ? = 1
([(1,2)],3)
=> [1]
=> [1,0,1,0]
=> 0
([(0,2),(1,2)],3)
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
([],4)
=> []
=> []
=> ? ∊ {0,0}
([(2,3)],4)
=> [1]
=> [1,0,1,0]
=> 0
([(1,3),(2,3)],4)
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
([(0,3),(1,2)],4)
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
([(1,2),(1,3),(2,3)],4)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0}
([],5)
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,3}
([(3,4)],5)
=> [1]
=> [1,0,1,0]
=> 0
([(2,4),(3,4)],5)
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2
([(1,4),(2,3)],5)
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
([(2,3),(2,4),(3,4)],5)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,3}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,3}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,3}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,3}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,3}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,3}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,3}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,3}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,3}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,3}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,2,3}
Description
The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. Given two lattice paths $U,L$ from $(0,0)$ to $(d,n-d)$, [1] describes a bijection between lattice paths weakly between $U$ and $L$ and subsets of $\{1,\dots,n\}$ such that the set of all such subsets gives the standard complex of the lattice path matroid $M[U,L]$. This statistic gives the cardinality of the image of this bijection when a Dyck path is considered as a path weakly above the diagonal and relative to the diagonal boundary.
The following 307 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000331The number of upper interactions of a Dyck path. St001142The projective dimension of the socle of the regular module as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St001594The number of indecomposable projective modules in the Nakayama algebra corresponding to the Dyck path such that the UC-condition is satisfied. St001873For a Nakayama algebra corresponding to a Dyck path, we define the matrix C with entries the Hom-spaces between $e_i J$ and $e_j J$ (the radical of the indecomposable projective modules). St001951The number of factors in the disjoint direct product decomposition of the automorphism group of a graph. St001498The normalised height of a Nakayama algebra with magnitude 1. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St000260The radius of a connected graph. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000455The second largest eigenvalue of a graph if it is integral. St000137The Grundy value of an integer partition. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000741The Colin de Verdière graph invariant. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001249Sum of the odd parts of a partition. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001389The number of partitions of the same length below the given integer partition. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001525The number of symmetric hooks on the diagonal of a partition. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001939The number of parts that are equal to their multiplicity in the integer partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001933The largest multiplicity of a part in an integer partition. St000667The greatest common divisor of the parts of the partition. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001571The Cartan determinant of the integer partition. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St001118The acyclic chromatic index of a graph. St001176The size of a partition minus its first part. St001281The normalized isoperimetric number of a graph. St001593This is the number of standard Young tableaux of the given shifted shape. St001599The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees. St001600The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple graphs. St001601The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on trees. St001628The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple connected graphs. St001913The number of preimages of an integer partition in Bulgarian solitaire. St000454The largest eigenvalue of a graph if it is integral. St000003The number of standard Young tableaux of the partition. St000005The bounce statistic of a Dyck path. St000006The dinv of a Dyck path. St000010The length of the partition. St000012The area of a Dyck path. St000015The number of peaks of a Dyck path. St000026The position of the first return of a Dyck path. St000088The row sums of the character table of the symmetric group. St000147The largest part of an integer partition. St000148The number of odd parts of a partition. St000159The number of distinct parts of the integer partition. St000160The multiplicity of the smallest part of a partition. St000183The side length of the Durfee square of an integer partition. St000212The number of standard Young tableaux for an integer partition such that no two consecutive entries appear in the same row. St000228The size of a partition. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000321The number of integer partitions of n that are dominated by an integer partition. St000326The position of the first one in a binary word after appending a 1 at the end. St000340The number of non-final maximal constant sub-paths of length greater than one. St000345The number of refinements of a partition. St000346The number of coarsenings of a partition. St000377The dinv defect of an integer partition. St000378The diagonal inversion number of an integer partition. St000384The maximal part of the shifted composition of an integer partition. St000389The number of runs of ones of odd length in a binary word. St000390The number of runs of ones in a binary word. St000394The sum of the heights of the peaks of a Dyck path minus the number of peaks. St000442The maximal area to the right of an up step of a Dyck path. St000459The hook length of the base cell of a partition. St000475The number of parts equal to 1 in a partition. St000476The sum of the semi-lengths of tunnels before a valley of a Dyck path. St000513The number of invariant subsets of size 2 when acting with a permutation of given cycle type. St000519The largest length of a factor maximising the subword complexity. St000531The leading coefficient of the rook polynomial of an integer partition. St000533The minimum of the number of parts and the size of the first part of an integer partition. St000547The number of even non-empty partial sums of an integer partition. St000548The number of different non-empty partial sums of an integer partition. St000618The number of self-evacuating tableaux of given shape. St000644The number of graphs with given frequency partition. St000659The number of rises of length at least 2 of a Dyck path. St000684The global dimension of the LNakayama algebra associated to a Dyck path. St000685The dominant dimension of the LNakayama algebra associated to a Dyck path. St000686The finitistic dominant dimension of a Dyck path. St000688The global dimension minus the dominant dimension of the LNakayama algebra associated to a Dyck path. St000734The last entry in the first row of a standard tableau. St000783The side length of the largest staircase partition fitting into a partition. St000784The maximum of the length and the largest part of the integer partition. St000835The minimal difference in size when partitioning the integer partition into two subpartitions. St000867The sum of the hook lengths in the first row of an integer partition. St000876The number of factors in the Catalan decomposition of a binary word. St000885The number of critical steps in the Catalan decomposition of a binary word. St000897The number of different multiplicities of parts of an integer partition. St000921The number of internal inversions of a binary word. St000930The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver. St000932The number of occurrences of the pattern UDU in a Dyck path. St000935The number of ordered refinements of an integer partition. St000947The major index east count of a Dyck path. St000954Number of times the corresponding LNakayama algebra has $Ext^i(D(A),A)=0$ for $i>0$. St000955Number of times one has $Ext^i(D(A),A)>0$ for $i>0$ for the corresponding LNakayama algebra. St000970Number of peaks minus the dominant dimension of the corresponding LNakayama algebra. St000992The alternating sum of the parts of an integer partition. St001008Number of indecomposable injective modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001010Number of indecomposable injective modules with projective dimension g-1 when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001017Number of indecomposable injective modules with projective dimension equal to the codominant dimension in the Nakayama algebra corresponding to the Dyck path. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001026The maximum of the projective dimensions of the indecomposable non-projective injective modules minus the minimum in the Nakayama algebra corresponding to the Dyck path. St001031The height of the bicoloured Motzkin path associated with the Dyck path. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St001036The number of inner corners of the parallelogram polyomino associated with the Dyck path. St001055The Grundy value for the game of removing cells of a row in an integer partition. St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001121The multiplicity of the irreducible representation indexed by the partition in the Kronecker square corresponding to the partition. St001126Number of simple module that are 1-regular in the corresponding Nakayama algebra. St001127The sum of the squares of the parts of a partition. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St001159Number of simple modules with dominant dimension equal to the global dimension in the corresponding Nakayama algebra. St001161The major index north count of a Dyck path. St001164Number of indecomposable injective modules whose socle has projective dimension at most g-1 (g the global dimension) minus the number of indecomposable projective-injective modules. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001189The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path. St001194The injective dimension of $A/AfA$ in the corresponding Nakayama algebra $A$ when $Af$ is the minimal faithful projective-injective left $A$-module St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows: St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001217The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1. St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St001273The projective dimension of the first term in an injective coresolution of the regular module. St001280The number of parts of an integer partition that are at least two. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001365The number of lattice paths of the same length weakly above the path given by a binary word. St001382The number of boxes in the diagram of a partition that do not lie in its Durfee square. St001383The BG-rank of an integer partition. St001387Number of standard Young tableaux of the skew shape tracing the border of the given partition. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001424The number of distinct squares in a binary word. St001432The order dimension of the partition. St001462The number of factors of a standard tableaux under concatenation. St001471The magnitude of a Dyck path. St001480The number of simple summands of the module J^2/J^3. St001484The number of singletons of an integer partition. St001502The global dimension minus the dominant dimension of magnitude 1 Nakayama algebras. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001530The depth of a Dyck path. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001659The number of ways to place as many non-attacking rooks as possible on a Ferrers board. St001733The number of weak left to right maxima of a Dyck path. St001780The order of promotion on the set of standard tableaux of given shape. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St001932The number of pairs of singleton blocks in the noncrossing set partition corresponding to a Dyck path, that can be merged to create another noncrossing set partition. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St001955The number of natural descents for set-valued two row standard Young tableaux. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001651The Frankl number of a lattice. St001621The number of atoms of a lattice. St001624The breadth of a lattice. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St000907The number of maximal antichains of minimal length in a poset. St000460The hook length of the last cell along the main diagonal of an integer partition. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001527The cyclic permutation representation number of an integer partition. St001561The value of the elementary symmetric function evaluated at 1. St001627The number of coloured connected graphs such that the multiplicities of colours are given by a partition. St001924The number of cells in an integer partition whose arm and leg length coincide. St001967The coefficient of the monomial corresponding to the integer partition in a certain power series. St001968The coefficient of the monomial corresponding to the integer partition in a certain power series. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001520The number of strict 3-descents. St000456The monochromatic index of a connected graph. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001570The minimal number of edges to add to make a graph Hamiltonian. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001060The distinguishing index of a graph. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000668The least common multiple of the parts of the partition. St000681The Grundy value of Chomp on Ferrers diagrams. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000929The constant term of the character polynomial of an integer partition. St000934The 2-degree of an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000941The number of characters of the symmetric group whose value on the partition is even. St000993The multiplicity of the largest part of an integer partition. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001128The exponens consonantiae of a partition. St001568The smallest positive integer that does not appear twice in the partition. St001877Number of indecomposable injective modules with projective dimension 2. St000284The Plancherel distribution on integer partitions. St000567The sum of the products of all pairs of parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000914The sum of the values of the Möbius function of a poset. St000933The number of multipartitions of sizes given by an integer partition. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001545The second Elser number of a connected graph. St000477The weight of a partition according to Alladi. St000478Another weight of a partition according to Alladi. St000928The sum of the coefficients of the character polynomial of an integer partition. St000707The product of the factorials of the parts. St000936The number of even values of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000369The dinv deficit of a Dyck path. St000376The bounce deficit of a Dyck path. St000658The number of rises of length 2 of a Dyck path. St000661The number of rises of length 3 of a Dyck path. St000674The number of hills of a Dyck path. St000678The number of up steps after the last double rise of a Dyck path. St000683The number of points below the Dyck path such that the diagonal to the north-east hits the path between two down steps, and the diagonal to the north-west hits the path between two up steps. St000693The modular (standard) major index of a standard tableau. St000706The product of the factorials of the multiplicities of an integer partition. St000735The last entry on the main diagonal of a standard tableau. St000744The length of the path to the largest entry in a standard Young tableau. St000790The number of pairs of centered tunnels, one strictly containing the other, of a Dyck path. St000791The number of pairs of left tunnels, one strictly containing the other, of a Dyck path. St000874The position of the last double rise in a Dyck path. St000931The number of occurrences of the pattern UUU in a Dyck path. St000946The sum of the skew hook positions in a Dyck path. St000976The sum of the positions of double up-steps of a Dyck path. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St000984The number of boxes below precisely one peak. St001032The number of horizontal steps in the bicoloured Motzkin path associated with the Dyck path. St001038The minimal height of a column in the parallelogram polyomino associated with the Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001139The number of occurrences of hills of size 2 in a Dyck path. St001141The number of occurrences of hills of size 3 in a Dyck path. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St000422The energy of a graph, if it is integral. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St000046The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000225Difference between largest and smallest parts in a partition. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St000781The number of proper colouring schemes of a Ferrers diagram. St000944The 3-degree of an integer partition. St001175The size of a partition minus the hook length of the base cell. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St001248Sum of the even parts of a partition. St001279The sum of the parts of an integer partition that are at least two. St001360The number of covering relations in Young's lattice below a partition. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001541The Gini index of an integer partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St001587Half of the largest even part of an integer partition. St001657The number of twos in an integer partition. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St001961The sum of the greatest common divisors of all pairs of parts. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001645The pebbling number of a connected graph. St001330The hat guessing number of a graph.