Your data matches 45 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000633: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],2)
=> 2
([(0,1)],2)
=> 1
([],3)
=> 6
([(1,2)],3)
=> 1
([(0,1),(0,2)],3)
=> 2
([(0,2),(2,1)],3)
=> 1
([(0,2),(1,2)],3)
=> 2
([],4)
=> 24
([(2,3)],4)
=> 2
([(1,2),(1,3)],4)
=> 2
([(0,1),(0,2),(0,3)],4)
=> 6
([(0,2),(0,3),(3,1)],4)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,2),(2,3)],4)
=> 1
([(0,3),(3,1),(3,2)],4)
=> 2
([(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(3,2)],4)
=> 2
([(0,3),(1,3),(2,3)],4)
=> 6
([(0,3),(1,2)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
([(0,3),(2,1),(3,2)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> 1
([],5)
=> 120
([(3,4)],5)
=> 6
([(2,3),(2,4)],5)
=> 4
([(1,2),(1,3),(1,4)],5)
=> 6
([(0,1),(0,2),(0,3),(0,4)],5)
=> 24
([(0,2),(0,3),(0,4),(4,1)],5)
=> 2
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 6
([(1,3),(1,4),(4,2)],5)
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
([(2,3),(3,4)],5)
=> 2
([(1,4),(4,2),(4,3)],5)
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> 6
([(2,4),(3,4)],5)
=> 4
([(1,4),(2,4),(4,3)],5)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> 4
([(1,4),(2,4),(3,4)],5)
=> 6
([(0,4),(1,4),(2,4),(4,3)],5)
=> 6
([(0,4),(1,4),(2,4),(3,4)],5)
=> 24
([(0,4),(1,4),(2,3)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
Description
The size of the automorphism group of a poset. A poset automorphism is a permutation of the elements of the poset preserving the order relation.
Matching statistic: St000259
Mp00198: Posets incomparability graphGraphs
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000259: Graphs ⟶ ℤResult quality: 18% values known / values provided: 56%distinct values known / distinct values provided: 18%
Values
([],2)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 1
([(0,1)],2)
=> ([],2)
=> [2] => ([],2)
=> ? = 2
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 2
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> [1,2] => ([(1,2)],3)
=> ? ∊ {1,2,6}
([(0,2),(2,1)],3)
=> ([],3)
=> [3] => ([],3)
=> ? ∊ {1,2,6}
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [1,2] => ([(1,2)],3)
=> ? ∊ {1,2,6}
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,2,2,2,4,6,6,24}
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,2,2,2,4,6,6,24}
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1,3] => ([(2,3)],4)
=> ? ∊ {1,1,2,2,2,4,6,6,24}
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> [1,3] => ([(2,3)],4)
=> ? ∊ {1,1,2,2,2,4,6,6,24}
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [1,3] => ([(2,3)],4)
=> ? ∊ {1,1,2,2,2,4,6,6,24}
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,2,2,2,4,6,6,24}
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,2,2,2,4,6,6,24}
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [4] => ([],4)
=> ? ∊ {1,1,2,2,2,4,6,6,24}
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,2,2,2,4,6,6,24}
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,4),(3,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(1,4),(4,2)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(2,3),(2,4),(2,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,2),(1,3),(1,4),(1,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,1),(0,2),(0,3),(0,4),(0,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,12,12,12,12,12,12,12,12,12,12,12,12,24,24,24,24,24,24,36,48,48,120,120,720}
([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,12,12,12,12,12,12,12,12,12,12,12,12,24,24,24,24,24,24,36,48,48,120,120,720}
([(0,1),(0,2),(0,3),(0,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,12,12,12,12,12,12,12,12,12,12,12,12,24,24,24,24,24,24,36,48,48,120,120,720}
([(0,1),(0,2),(0,3),(0,4),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,12,12,12,12,12,12,12,12,12,12,12,12,24,24,24,24,24,24,36,48,48,120,120,720}
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,12,12,12,12,12,12,12,12,12,12,12,12,24,24,24,24,24,24,36,48,48,120,120,720}
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,2),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(2,3),(2,4),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Mp00198: Posets incomparability graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001378: Integer partitions ⟶ ℤResult quality: 44% values known / values provided: 44%distinct values known / distinct values provided: 64%
Values
([],2)
=> ([(0,1)],2)
=> [2]
=> []
=> ? = 2
([(0,1)],2)
=> ([],2)
=> [1,1]
=> [1]
=> 1
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {2,6}
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {2,6}
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> [1]
=> 1
([(0,2),(2,1)],3)
=> ([],3)
=> [1,1,1]
=> [1,1]
=> 2
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> [1]
=> 1
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,2,2,2,4,6,24}
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,2,2,2,4,6,24}
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,2,2,2,4,6,24}
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 2
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,2,2,2,4,6,24}
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 2
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,2,2,2,4,6,24}
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {1,2,2,2,4,6,24}
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,2,2,2,4,6,24}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 6
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 2
([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 6
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 4
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 2
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 4
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 6
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 4
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(0,4),(1,2),(1,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
([(1,4),(3,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 6
([(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 2
([(0,3),(1,4),(4,2)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 2
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,6,6,12,12,24,120}
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 24
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 6
([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,12,12,12,12,12,24,36,48,48,120,720}
([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,12,12,12,12,12,24,36,48,48,120,720}
([(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,12,12,12,12,12,24,36,48,48,120,720}
([(2,3),(2,4),(2,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,12,12,12,12,12,24,36,48,48,120,720}
([(1,2),(1,3),(1,4),(1,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,12,12,12,12,12,24,36,48,48,120,720}
([(0,1),(0,2),(0,3),(0,4),(0,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3),(0,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3),(0,4),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 2
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,12,12,12,12,12,24,36,48,48,120,720}
([(1,2),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,12,12,12,12,12,24,36,48,48,120,720}
([(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,12,12,12,12,12,24,36,48,48,120,720}
([(2,3),(2,4),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,12,12,12,12,12,24,36,48,48,120,720}
Description
The product of the cohook lengths of the integer partition. For a cell $c = (i,j)$, the '''cohook length''' of $c$ is $h^*(c) = i+j-1$. This statistic is then $$\prod_{c \in \lambda} h^*(c).$$
Matching statistic: St000100
Mp00206: Posets antichains of maximal sizeLattices
Mp00197: Lattices lattice of congruencesLattices
Mp00193: Lattices to posetPosets
St000100: Posets ⟶ ℤResult quality: 18% values known / values provided: 43%distinct values known / distinct values provided: 18%
Values
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 2
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,6}
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,6}
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,6}
([],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(4,2),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(1,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,2),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,12,12,12,12,12,12,12,12,12,12,12,12,24,24,24,24,24,24,36,48,48,120,120,720}
([(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(2,3),(2,4),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
Description
The number of linear extensions of a poset.
Matching statistic: St000640
Mp00206: Posets antichains of maximal sizeLattices
Mp00197: Lattices lattice of congruencesLattices
Mp00193: Lattices to posetPosets
St000640: Posets ⟶ ℤResult quality: 18% values known / values provided: 43%distinct values known / distinct values provided: 18%
Values
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 2
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,6}
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,6}
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,6}
([],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(4,2),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(1,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,2),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,12,12,12,12,12,12,12,12,12,12,12,12,24,24,24,24,24,24,36,48,48,120,120,720}
([(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(2,3),(2,4),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
Description
The rank of the largest boolean interval in a poset.
Matching statistic: St000910
Mp00206: Posets antichains of maximal sizeLattices
Mp00197: Lattices lattice of congruencesLattices
Mp00193: Lattices to posetPosets
St000910: Posets ⟶ ℤResult quality: 18% values known / values provided: 43%distinct values known / distinct values provided: 18%
Values
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 2
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,6}
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,6}
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,6}
([],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(4,2),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(1,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,2),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,12,12,12,12,12,12,12,12,12,12,12,12,24,24,24,24,24,24,36,48,48,120,120,720}
([(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(2,3),(2,4),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
Description
The number of maximal chains of minimal length in a poset.
Matching statistic: St001105
Mp00206: Posets antichains of maximal sizeLattices
Mp00197: Lattices lattice of congruencesLattices
Mp00193: Lattices to posetPosets
St001105: Posets ⟶ ℤResult quality: 18% values known / values provided: 43%distinct values known / distinct values provided: 18%
Values
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 2
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,6}
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,6}
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,6}
([],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(4,2),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(1,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,2),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,12,12,12,12,12,12,12,12,12,12,12,12,24,24,24,24,24,24,36,48,48,120,120,720}
([(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(2,3),(2,4),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
Description
The number of greedy linear extensions of a poset. A linear extension of a poset $P$ with elements $\{x_1,\dots,x_n\}$ is greedy, if it can be obtained by the following algorithm: * Step 1. Choose a minimal element $x_1$. * Step 2. Suppose $X=\{x_1,\dots,x_i\}$ have been chosen. If there is at least one minimal element of $P\setminus X$ which is greater than $x_i$ then choose $x_{i+1}$ to be any such minimal element; otherwise, choose $x_{i+1}$ to be any minimal element of $P\setminus X$. This statistic records the number of greedy linear extensions.
Matching statistic: St001106
Mp00206: Posets antichains of maximal sizeLattices
Mp00197: Lattices lattice of congruencesLattices
Mp00193: Lattices to posetPosets
St001106: Posets ⟶ ℤResult quality: 18% values known / values provided: 43%distinct values known / distinct values provided: 18%
Values
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 2
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,6}
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,6}
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,6}
([],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(4,2),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(1,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,2),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,12,12,12,12,12,12,12,12,12,12,12,12,24,24,24,24,24,24,36,48,48,120,120,720}
([(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(2,3),(2,4),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
Description
The number of supergreedy linear extensions of a poset. A linear extension of a poset P with elements $\{x_1,\dots,x_n\}$ is supergreedy, if it can be obtained by the following algorithm: * Step 1. Choose a minimal element $x_1$. * Step 2. Suppose $X=\{x_1,\dots,x_i\}$ have been chosen, let $M$ be the set of minimal elements of $P\setminus X$. If there is an element of $M$ which covers an element $x_j$ in $X$, then let $x_{i+1}$ be one of these such that $j$ is maximal; otherwise, choose $x_{i+1}$ to be any element of $M$. This statistic records the number of supergreedy linear extensions.
Matching statistic: St001632
Mp00206: Posets antichains of maximal sizeLattices
Mp00197: Lattices lattice of congruencesLattices
Mp00193: Lattices to posetPosets
St001632: Posets ⟶ ℤResult quality: 18% values known / values provided: 43%distinct values known / distinct values provided: 18%
Values
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 2
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,6}
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,6}
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,6}
([],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(4,2),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(1,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,2),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,12,12,12,12,12,12,12,12,12,12,12,12,24,24,24,24,24,24,36,48,48,120,120,720}
([(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(2,3),(2,4),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
Description
The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset.
Matching statistic: St001637
Mp00206: Posets antichains of maximal sizeLattices
Mp00197: Lattices lattice of congruencesLattices
Mp00193: Lattices to posetPosets
St001637: Posets ⟶ ℤResult quality: 18% values known / values provided: 43%distinct values known / distinct values provided: 18%
Values
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 2
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,6}
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,6}
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,6}
([],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,2,2,2,2,4,6,6,24}
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(4,2),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(1,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,2),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,6,6,6,6,6,6,12,12,24,24,120}
([],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,12,12,12,12,12,12,12,12,12,12,12,12,24,24,24,24,24,24,36,48,48,120,120,720}
([(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(2,3),(2,4),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
Description
The number of (upper) dissectors of a poset.
The following 35 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001668The number of points of the poset minus the width of the poset. St000993The multiplicity of the largest part of an integer partition. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000260The radius of a connected graph. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St000284The Plancherel distribution on integer partitions. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000668The least common multiple of the parts of the partition. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000706The product of the factorials of the multiplicities of an integer partition. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000933The number of multipartitions of sizes given by an integer partition. St001128The exponens consonantiae of a partition. St001568The smallest positive integer that does not appear twice in the partition. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001498The normalised height of a Nakayama algebra with magnitude 1. St001877Number of indecomposable injective modules with projective dimension 2. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001118The acyclic chromatic index of a graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000456The monochromatic index of a connected graph. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.