Your data matches 27 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000645: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> 0
[1,0,1,0]
=> 1
[1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> 2
[1,0,1,1,0,0]
=> 2
[1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> 1
[1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,0,0]
=> 3
[1,0,1,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,0,0]
=> 3
[1,0,1,1,1,0,0,0]
=> 3
[1,1,0,0,1,0,1,0]
=> 3
[1,1,0,0,1,1,0,0]
=> 4
[1,1,0,1,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> 3
[1,1,1,0,0,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> 5
[1,0,1,0,1,1,0,1,0,0]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> 4
[1,0,1,1,0,0,1,0,1,0]
=> 5
[1,0,1,1,0,0,1,1,0,0]
=> 6
[1,0,1,1,0,1,0,0,1,0]
=> 5
[1,0,1,1,0,1,0,1,0,0]
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> 4
[1,0,1,1,1,0,0,0,1,0]
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> 5
[1,0,1,1,1,0,1,0,0,0]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> 4
[1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> 4
[1,1,0,0,1,1,0,0,1,0]
=> 6
[1,1,0,0,1,1,0,1,0,0]
=> 5
[1,1,0,0,1,1,1,0,0,0]
=> 6
[1,1,0,1,0,0,1,0,1,0]
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> 5
[1,1,0,1,1,0,0,1,0,0]
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> 3
Description
The sum of the areas of the rectangles formed by two consecutive peaks and the valley in between. For a Dyck path $D = D_1 \cdots D_{2n}$ with peaks in positions $i_1 < \ldots < i_k$ and valleys in positions $j_1 < \ldots < j_{k-1}$, this statistic is given by $$ \sum_{a=1}^{k-1} (j_a-i_a)(i_{a+1}-j_a) $$
Mp00027: Dyck paths to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St000957: Permutations ⟶ ℤResult quality: 51% values known / values provided: 51%distinct values known / distinct values provided: 69%
Values
[1,0]
=> []
=> []
=> [] => ? = 0
[1,0,1,0]
=> [1]
=> [1,0,1,0]
=> [2,1] => 1
[1,1,0,0]
=> []
=> []
=> [] => ? = 0
[1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => 2
[1,0,1,1,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [2,3,1] => 2
[1,1,0,0,1,0]
=> [2]
=> [1,1,0,0,1,0]
=> [3,1,2] => 2
[1,1,0,1,0,0]
=> [1]
=> [1,0,1,0]
=> [2,1] => 1
[1,1,1,0,0,0]
=> []
=> []
=> [] => ? = 0
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 3
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 4
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 3
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 3
[1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 3
[1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 4
[1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 3
[1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => 2
[1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [2,3,1] => 2
[1,1,1,0,0,0,1,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 3
[1,1,1,0,0,1,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [3,1,2] => 2
[1,1,1,0,1,0,0,0]
=> [1]
=> [1,0,1,0]
=> [2,1] => 1
[1,1,1,1,0,0,0,0]
=> []
=> []
=> [] => ? = 0
[1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => 4
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => 4
[1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => 5
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => 4
[1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => 4
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => 5
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => 6
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 5
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 4
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 4
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 6
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 5
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 4
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => 4
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => 4
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 6
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 5
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 6
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => 4
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => 5
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => 4
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 3
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => 5
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 4
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 3
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => 4
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => 6
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => 4
[1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 3
[1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> [] => ? = 0
[1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> [] => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,7,5,4,3,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,6,4,3,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,7,4,3,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,6,7,4,3,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,5,3,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,5,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [6,7,4,5,3,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,5,4,6,3,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [6,5,4,7,3,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [4,4,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [5,6,4,7,3,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [7,4,5,6,3,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [5,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [6,4,5,7,3,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [4,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [5,4,6,7,3,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,4,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [5,5,4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [6,7,5,3,4,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [7,5,6,3,4,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [6,5,7,3,4,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [4,4,4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [5,6,7,3,4,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,6,4,3,5,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [5,5,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,7,4,3,5,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,6,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,7,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [4,4,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [5,6,4,3,7,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [6,3,3,2,2,1]
=> [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [7,4,5,3,6,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [5,3,3,2,2,1]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [6,4,5,3,7,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [4,3,3,2,2,1]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [5,4,6,3,7,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [3,3,3,2,2,1]
=> [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [4,5,6,3,7,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [6,5,2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [7,6,3,4,5,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [5,5,2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [6,7,3,4,5,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [6,4,2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [7,5,3,4,6,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [5,4,2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [6,5,3,4,7,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [4,4,2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [5,6,3,4,7,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [6,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [7,4,3,5,6,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [5,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [6,4,3,5,7,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [4,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [5,4,3,6,7,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [3,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [4,5,3,6,7,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [6,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [7,3,4,5,6,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [5,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [6,3,4,5,7,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [5,3,4,6,7,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [4,3,5,6,7,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,4,5,6,7,2,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,2,3,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [5,5,4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [6,7,5,4,2,3,1] => ? ∊ {0,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
Description
The number of Bruhat lower covers of a permutation. This is, for a permutation $\pi$, the number of permutations $\tau$ with $\operatorname{inv}(\tau) = \operatorname{inv}(\pi) - 1$ such that $\tau*t = \pi$ for a transposition $t$. This is also the number of occurrences of the boxed pattern $21$: occurrences of the pattern $21$ such that any entry between the two matched entries is either larger or smaller than both of the matched entries.
Matching statistic: St000081
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00065: Permutations permutation posetPosets
Mp00074: Posets to graphGraphs
St000081: Graphs ⟶ ℤResult quality: 49% values known / values provided: 49%distinct values known / distinct values provided: 77%
Values
[1,0]
=> [1] => ([],1)
=> ([],1)
=> 0
[1,0,1,0]
=> [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,0,0]
=> [2,1] => ([],2)
=> ([],2)
=> 0
[1,0,1,0,1,0]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[1,0,1,1,0,0]
=> [1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
[1,1,0,0,1,0]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
[1,1,0,1,0,0]
=> [2,3,1] => ([(1,2)],3)
=> ([(1,2)],3)
=> 1
[1,1,1,0,0,0]
=> [3,2,1] => ([],3)
=> ([],3)
=> 0
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => ([(2,3)],4)
=> ([(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([],4)
=> ([],4)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 5
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 5
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 6
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 4
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 5
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 6
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 5
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 6
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 5
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => ([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,6,5,7] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,5,4,6,7] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,3,5,4,7,6] => ([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,1),(4,2)],7)
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,5,6,4,7] => ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> ([(0,5),(1,2),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,3,6,5,4,7] => ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,3,6,5,7,4] => ([(0,4),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,5),(1,6),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,5,6,7] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,4,3,5,7,6] => ([(0,5),(1,6),(2,6),(5,1),(5,2),(6,3),(6,4)],7)
=> ([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5,7] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2),(4,6),(5,6)],7)
=> ([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,7,6,5] => ([(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,1),(3,2)],7)
=> ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,4,5,3,6,7] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,4,5,3,7,6] => ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,2),(4,1),(4,3)],7)
=> ([(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,4,5,6,3,7] => ([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> ([(0,6),(1,2),(1,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,4,6,5,3,7] => ([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,4,6,5,7,3] => ([(0,5),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,6),(1,6),(2,3),(2,4),(3,5),(4,5),(5,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,5,4,3,6,7] => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,2,5,4,3,7,6] => ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,1),(4,2),(4,3)],7)
=> ([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,2,5,4,6,3,7] => ([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,5,4,6,7,3] => ([(0,5),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,2,5,4,7,6,3] => ([(0,4),(2,5),(2,6),(3,5),(3,6),(4,1),(4,2),(4,3)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,2,6,4,5,3,7] => ([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,6,4,5,7,3] => ([(0,5),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,6),(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,6,5,4,3,7] => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,6,5,4,7,3] => ([(0,5),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,2,7,5,4,6,3] => ([(0,5),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,7,6] => ([(0,3),(0,4),(3,6),(4,6),(5,1),(5,2),(6,5)],7)
=> ([(0,6),(1,6),(2,3),(2,4),(3,5),(4,5),(5,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,2,4,6,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,6,7,5] => ([(0,3),(0,4),(3,6),(4,6),(5,1),(6,2),(6,5)],7)
=> ([(0,5),(1,6),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,7,6,5] => ([(0,4),(0,5),(4,6),(5,6),(6,1),(6,2),(6,3)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,4,6,7] => ([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6),(6,1)],7)
=> ([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6] => ([(0,1),(0,2),(1,5),(1,6),(2,5),(2,6),(5,3),(5,4),(6,3),(6,4)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,2,5,6,4,7] => ([(0,2),(0,3),(1,5),(2,4),(2,6),(3,4),(3,6),(4,5),(6,1)],7)
=> ([(0,3),(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,3,2,5,6,7,4] => ([(0,2),(0,3),(2,5),(2,6),(3,5),(3,6),(4,1),(6,4)],7)
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,3,2,5,7,6,4] => ([(0,3),(0,4),(3,5),(3,6),(4,5),(4,6),(6,1),(6,2)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,3,2,6,5,4,7] => ([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,3,2,6,5,7,4] => ([(0,1),(0,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(5,3),(6,3)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,3,2,7,5,6,4] => ([(0,2),(0,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(6,1)],7)
=> ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,7,6,5,4] => ([(0,1),(0,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,3,4,2,5,6,7] => ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ([(0,5),(1,2),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5,7,6] => ([(0,4),(0,5),(1,6),(4,6),(5,1),(6,2),(6,3)],7)
=> ([(0,6),(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,3,4,2,6,5,7] => ([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,3,4,2,6,7,5] => ([(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,2),(6,1)],7)
=> ([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,3,4,2,7,6,5] => ([(0,2),(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,1)],7)
=> ([(0,1),(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,3,4,5,2,6,7] => ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,6),(1,2),(1,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,3,4,5,2,7,6] => ([(0,2),(0,4),(1,5),(1,6),(2,5),(2,6),(3,1),(4,3)],7)
=> ([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,6,2,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> ([(0,5),(0,6),(1,2),(1,4),(2,3),(3,5),(4,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,3,4,6,5,2,7] => ([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,3,4,6,5,7,2] => ([(0,3),(0,4),(1,6),(2,6),(4,5),(5,1),(5,2)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
[1,0,1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,3,5,4,2,6,7] => ([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,12}
Description
The number of edges of a graph.
Mp00102: Dyck paths rise compositionInteger compositions
Mp00172: Integer compositions rotate back to frontInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 44% values known / values provided: 44%distinct values known / distinct values provided: 54%
Values
[1,0]
=> [1] => [1] => [1,0]
=> 0
[1,0,1,0]
=> [1,1] => [1,1] => [1,0,1,0]
=> 1
[1,1,0,0]
=> [2] => [2] => [1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,1] => [1,1,1] => [1,0,1,0,1,0]
=> ? = 2
[1,0,1,1,0,0]
=> [1,2] => [2,1] => [1,1,0,0,1,0]
=> 1
[1,1,0,0,1,0]
=> [2,1] => [1,2] => [1,0,1,1,0,0]
=> 2
[1,1,0,1,0,0]
=> [2,1] => [1,2] => [1,0,1,1,0,0]
=> 2
[1,1,1,0,0,0]
=> [3] => [3] => [1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> ? ∊ {2,3,4,4}
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> ? ∊ {2,3,4,4}
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> ? ∊ {2,3,4,4}
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> ? ∊ {2,3,4,4}
[1,0,1,1,1,0,0,0]
=> [1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 3
[1,1,0,0,1,1,0,0]
=> [2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 3
[1,1,0,1,1,0,0,0]
=> [2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 3
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 3
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> [4] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> ? ∊ {2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> ? ∊ {2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> ? ∊ {2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> ? ∊ {2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> ? ∊ {2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> ? ∊ {2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> ? ∊ {2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 4
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 3
[1,1,1,0,0,1,0,0,1,0]
=> [3,1,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 4
[1,1,1,0,0,1,0,1,0,0]
=> [3,1,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 4
[1,1,1,0,0,1,1,0,0,0]
=> [3,2] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 3
[1,1,1,0,1,0,0,0,1,0]
=> [3,1,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 4
[1,1,1,0,1,0,0,1,0,0]
=> [3,1,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 4
[1,1,1,0,1,0,1,0,0,0]
=> [3,1,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 4
[1,1,1,0,1,1,0,0,0,0]
=> [3,2] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 3
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 4
[1,1,1,1,0,0,0,1,0,0]
=> [4,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 4
[1,1,1,1,0,0,1,0,0,0]
=> [4,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 4
[1,1,1,1,0,1,0,0,0,0]
=> [4,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 4
[1,1,1,1,1,0,0,0,0,0]
=> [5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,3,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,3,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {2,3,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,2,1] => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {2,3,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? ∊ {2,3,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> ? ∊ {2,3,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> ? ∊ {2,3,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,2,1,1] => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> ? ∊ {2,3,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,2,1,1] => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> ? ∊ {2,3,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,2,2] => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> ? ∊ {2,3,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? ∊ {2,3,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,3,1] => [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? ∊ {2,3,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,3,1] => [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? ∊ {2,3,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,4] => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? ∊ {2,3,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,1,1,1] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,3,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,1,2] => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> ? ∊ {2,3,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,2,1] => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> ? ∊ {2,3,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,2,1] => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> ? ∊ {2,3,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,3] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> ? ∊ {2,3,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,1,1,1] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,3,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,1,2] => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> ? ∊ {2,3,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,1,1,1] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,3,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,1,1,1] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,3,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,1,2] => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> ? ∊ {2,3,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,2,1] => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> ? ∊ {2,3,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,2,1] => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> ? ∊ {2,3,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,2,1] => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> ? ∊ {2,3,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,3] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> ? ∊ {2,3,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,5] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,3] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> 3
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,2,1,1] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2] => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> 4
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,2,1,1] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,2,1,1] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,2,2] => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> 4
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,3,1] => [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> 5
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00160: Permutations graph of inversionsGraphs
St000777: Graphs ⟶ ℤResult quality: 32% values known / values provided: 32%distinct values known / distinct values provided: 54%
Values
[1,0]
=> [1] => ([],1)
=> 1 = 0 + 1
[1,0,1,0]
=> [2,1] => ([(0,1)],2)
=> 2 = 1 + 1
[1,1,0,0]
=> [1,2] => ([],2)
=> ? = 0 + 1
[1,0,1,0,1,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,0,1,1,0,0]
=> [2,1,3] => ([(1,2)],3)
=> ? ∊ {0,1,2} + 1
[1,1,0,0,1,0]
=> [1,3,2] => ([(1,2)],3)
=> ? ∊ {0,1,2} + 1
[1,1,0,1,0,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ? ∊ {0,1,2} + 1
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,3,3,3,3,3,4,4} + 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {0,1,3,3,3,3,3,4,4} + 1
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 4 = 3 + 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {0,1,3,3,3,3,3,4,4} + 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,3,3,3,3,3,4,4} + 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {0,1,3,3,3,3,3,4,4} + 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 4 = 3 + 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3 = 2 + 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,3,3,3,3,3,4,4} + 1
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {0,1,3,3,3,3,3,4,4} + 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,3,3,3,3,3,4,4} + 1
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {0,1,3,3,3,3,3,4,4} + 1
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6} + 1
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,1,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6} + 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 5 = 4 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6} + 1
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,1,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6} + 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? ∊ {0,1,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6} + 1
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 5 = 4 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,1,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6} + 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {0,1,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6} + 1
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,1,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6} + 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 5 = 4 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {0,1,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6} + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6} + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6} + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {0,1,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6} + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,1,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6} + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => ([(3,4)],5)
=> ? ∊ {0,1,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6} + 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 5 = 4 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,1,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6} + 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 3 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,1,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6} + 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,1,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6} + 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 5 = 4 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6} + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6} + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {0,1,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6} + 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,1,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6} + 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,1,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6} + 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6} + 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 5 = 4 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 3 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6} + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {0,1,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6} + 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6} + 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6} + 1
[1,1,1,1,0,1,0,0,0,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([],5)
=> ? ∊ {0,1,2,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6} + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,5,1,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,3,4,1,6,5] => ([(0,1),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 5 = 4 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,3,4,1,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,3,1,5,6,4] => ([(0,5),(1,5),(2,4),(3,4)],6)
=> ? ∊ {0,1,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,1,5,4,6] => ([(1,2),(3,5),(4,5)],6)
=> ? ∊ {0,1,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [2,3,5,1,6,4] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 6 = 5 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,1,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [2,3,1,4,6,5] => ([(1,2),(3,5),(4,5)],6)
=> ? ∊ {0,1,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,6,4,5] => ([(0,5),(1,5),(2,4),(3,4)],6)
=> ? ∊ {0,1,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 5 = 4 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,3,1,4,5,6] => ([(3,5),(4,5)],6)
=> ? ∊ {0,1,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [2,4,1,5,6,3] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 6 = 5 + 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [2,4,5,1,6,3] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 6 = 5 + 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 5 = 4 + 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,6,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 6 = 5 + 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [2,5,1,3,6,4] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 6 = 5 + 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [2,5,1,6,3,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [2,5,6,1,3,4] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 5 = 4 + 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [3,1,4,5,6,2] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 5 = 4 + 1
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [3,1,4,6,2,5] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 6 = 5 + 1
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [3,4,1,5,6,2] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [3,4,5,1,6,2] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 5 = 4 + 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4 = 3 + 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [3,4,1,6,2,5] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [3,4,6,1,2,5] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [3,1,5,2,6,4] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 6 = 5 + 1
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [3,1,5,6,2,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [3,5,1,2,6,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [3,5,1,6,2,4] => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 5 = 4 + 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [3,5,6,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 4 = 3 + 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [3,1,6,2,4,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 6 = 5 + 1
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Matching statistic: St001498
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00159: Permutations Demazure product with inversePermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St001498: Dyck paths ⟶ ℤResult quality: 31% values known / values provided: 31%distinct values known / distinct values provided: 46%
Values
[1,0]
=> [1] => [1] => [1,0]
=> ? = 0
[1,0,1,0]
=> [2,1] => [2,1] => [1,1,0,0]
=> ? = 0
[1,1,0,0]
=> [1,2] => [1,2] => [1,0,1,0]
=> 1
[1,0,1,0,1,0]
=> [3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> ? ∊ {0,2,2}
[1,0,1,1,0,0]
=> [2,3,1] => [3,2,1] => [1,1,1,0,0,0]
=> ? ∊ {0,2,2}
[1,1,0,0,1,0]
=> [3,1,2] => [3,2,1] => [1,1,1,0,0,0]
=> ? ∊ {0,2,2}
[1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> 2
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4}
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4}
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4}
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4}
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4}
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4}
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4}
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4}
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 3
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 3
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4}
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 3
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 4
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 4
[1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 4
[1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 4
[1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 3
[1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 3
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6}
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 4
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 3
[1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> 2
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,2,1] => [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,2,1] => [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,5,2,1] => [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [4,5,3,2,1,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [5,3,4,2,1,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [4,3,5,2,1,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,1,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [5,4,2,3,1,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [4,5,2,3,1,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [5,3,2,4,1,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [4,3,2,5,1,6] => [5,3,2,4,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,1,6] => [5,3,2,4,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,1,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,1,6] => [5,3,2,4,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,1,6] => [5,2,3,4,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,1,6] => [5,2,3,4,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [5,4,3,1,2,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [4,5,3,1,2,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [5,3,4,1,2,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [4,3,5,1,2,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,4,5,1,2,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [5,4,2,1,3,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,5,2,1,3,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,3,2,1,4,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [4,3,2,1,5,6] => [4,3,2,1,5,6] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> 4
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,2,1,5,6] => [4,3,2,1,5,6] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> 4
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,3,1,4,6] => [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [4,2,3,1,5,6] => [4,3,2,1,5,6] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> 4
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,2,4,1,5,6] => [4,2,3,1,5,6] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> 4
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [2,3,4,1,5,6] => [4,2,3,1,5,6] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> 4
Description
The normalised height of a Nakayama algebra with magnitude 1. We use the bijection (see code) suggested by Christian Stump, to have a bijection between such Nakayama algebras with magnitude 1 and Dyck paths. The normalised height is the height of the (periodic) Dyck path given by the top of the Auslander-Reiten quiver. Thus when having a CNakayama algebra it is the Loewy length minus the number of simple modules and for the LNakayama algebras it is the usual height.
Matching statistic: St000987
Mp00233: Dyck paths skew partitionSkew partitions
Mp00181: Skew partitions row lengthsInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000987: Graphs ⟶ ℤResult quality: 30% values known / values provided: 30%distinct values known / distinct values provided: 54%
Values
[1,0]
=> [[1],[]]
=> [1] => ([],1)
=> 0
[1,0,1,0]
=> [[1,1],[]]
=> [1,1] => ([(0,1)],2)
=> 1
[1,1,0,0]
=> [[2],[]]
=> [2] => ([],2)
=> 0
[1,0,1,0,1,0]
=> [[1,1,1],[]]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[1,0,1,1,0,0]
=> [[2,1],[]]
=> [2,1] => ([(0,2),(1,2)],3)
=> 2
[1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1,2] => ([(1,2)],3)
=> 1
[1,1,0,1,0,0]
=> [[3],[]]
=> [3] => ([],3)
=> 0
[1,1,1,0,0,0]
=> [[2,2],[]]
=> [2,2] => ([(1,3),(2,3)],4)
=> 2
[1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [2,2] => ([(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [1,3] => ([(2,3)],4)
=> 1
[1,1,0,1,0,1,0,0]
=> [[4],[]]
=> [4] => ([],4)
=> 0
[1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [2,3] => ([(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1],[]]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6
[1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6
[1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [2,3] => ([(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [1,4] => ([(3,4)],5)
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> [5] => ([],5)
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2,4] => ([(3,5),(4,5)],6)
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [3,4] => ([(3,6),(4,6),(5,6)],7)
=> 3
[1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> [2,2,2,2] => ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {4,4,6,6,6}
[1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> [3,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {4,4,6,6,6}
[1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> [2,3,3] => ([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {4,4,6,6,6}
[1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? ∊ {4,4,6,6,6}
[1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> [3,3,3] => ([(2,8),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {4,4,6,6,6}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1,1],[]]
=> [2,2,2,1,1] => ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1,1],[]]
=> [3,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3,1],[1,1]]
=> [2,2,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [[4,4,1],[1]]
=> [3,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2,1],[1]]
=> [2,3,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2,1],[1]]
=> [1,2,2,2,1] => ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2,1],[]]
=> [3,2,2,1] => ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2,1],[]]
=> [2,2,2,2,1] => ([(0,8),(1,7),(1,8),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2,1],[]]
=> [3,3,2,1] => ([(0,8),(1,7),(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3,1],[2]]
=> [1,3,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [[4,3,1],[]]
=> [4,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3,1],[1]]
=> [2,3,3,1] => ([(0,8),(1,8),(2,7),(2,8),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [[4,4,1],[]]
=> [4,4,1] => ([(0,8),(1,8),(2,8),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3,1],[]]
=> [3,3,3,1] => ([(0,9),(1,9),(2,8),(2,9),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [[3,3,3,2],[1,1,1]]
=> [2,2,2,2] => ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [[4,4,2],[1,1]]
=> [3,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [[4,4,4],[2,2]]
=> [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [[5,5],[2]]
=> [3,5] => ([(4,7),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [[4,4,3],[2,1]]
=> [2,3,3] => ([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [[3,3,3,3],[2,1,1]]
=> [1,2,2,3] => ([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [[4,3,3],[1,1]]
=> [3,2,3] => ([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [[3,3,3,3],[1,1,1]]
=> [2,2,2,3] => ([(2,8),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [[4,4,3],[1,1]]
=> [3,3,3] => ([(2,8),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [[4,4,4],[3,1]]
=> [1,3,4] => ([(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [[5,4],[1]]
=> [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [[4,4,4],[2,1]]
=> [2,3,4] => ([(3,8),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [[5,5],[1]]
=> [4,5] => ([(4,8),(5,8),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [[4,4,4],[1,1]]
=> [3,3,4] => ([(3,9),(4,9),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1]]
=> [2,2,2,2] => ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> [2,4,2] => ([(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,0,1,1,0,0,0,1,0]
=> [[3,3,3,2],[2,1]]
=> [1,2,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [[4,3,2],[1]]
=> [3,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [[3,3,3,2],[1,1]]
=> [2,2,3,2] => ([(1,8),(2,8),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [[4,4,2],[1]]
=> [3,4,2] => ([(1,8),(2,8),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,1,0,0,0,1,0,1,0]
=> [[2,2,2,2,2],[1,1]]
=> [1,1,2,2,2] => ([(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,1,0,0,0,1,1,0,0]
=> [[3,2,2,2],[1]]
=> [2,2,2,2] => ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [[3,3,2,2],[2]]
=> [1,3,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [[4,2,2],[]]
=> [4,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [[3,3,2,2],[1]]
=> [2,3,2,2] => ([(1,8),(2,7),(2,8),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,1,0,1,0,0,0,1,0]
=> [[2,2,2,2,2],[1]]
=> [1,2,2,2,2] => ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [[3,2,2,2],[]]
=> [3,2,2,2] => ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [[2,2,2,2,2],[]]
=> [2,2,2,2,2] => ([(1,9),(2,8),(2,9),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [[3,3,2,2],[]]
=> [3,3,2,2] => ([(1,9),(2,8),(2,9),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [[3,3,3,2],[2]]
=> [1,3,3,2] => ([(1,8),(2,8),(3,7),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [[4,3,2],[]]
=> [4,3,2] => ([(1,8),(2,8),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
Description
The number of positive eigenvalues of the Laplacian matrix of the graph. This is the number of vertices minus the number of connected components of the graph.
Matching statistic: St000171
Mp00233: Dyck paths skew partitionSkew partitions
Mp00181: Skew partitions row lengthsInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000171: Graphs ⟶ ℤResult quality: 30% values known / values provided: 30%distinct values known / distinct values provided: 54%
Values
[1,0]
=> [[1],[]]
=> [1] => ([],1)
=> 0
[1,0,1,0]
=> [[1,1],[]]
=> [1,1] => ([(0,1)],2)
=> 1
[1,1,0,0]
=> [[2],[]]
=> [2] => ([],2)
=> 0
[1,0,1,0,1,0]
=> [[1,1,1],[]]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[1,0,1,1,0,0]
=> [[2,1],[]]
=> [2,1] => ([(0,2),(1,2)],3)
=> 2
[1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1,2] => ([(1,2)],3)
=> 1
[1,1,0,1,0,0]
=> [[3],[]]
=> [3] => ([],3)
=> 0
[1,1,1,0,0,0]
=> [[2,2],[]]
=> [2,2] => ([(1,3),(2,3)],4)
=> 2
[1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [2,2] => ([(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [1,3] => ([(2,3)],4)
=> 1
[1,1,0,1,0,1,0,0]
=> [[4],[]]
=> [4] => ([],4)
=> 0
[1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [2,3] => ([(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1],[]]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6
[1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6
[1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [2,3] => ([(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [1,4] => ([(3,4)],5)
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> [5] => ([],5)
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2,4] => ([(3,5),(4,5)],6)
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [3,4] => ([(3,6),(4,6),(5,6)],7)
=> 3
[1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> [2,2,2,2] => ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {4,4,6,6,6}
[1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> [3,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {4,4,6,6,6}
[1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> [2,3,3] => ([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {4,4,6,6,6}
[1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? ∊ {4,4,6,6,6}
[1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> [3,3,3] => ([(2,8),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {4,4,6,6,6}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1,1],[]]
=> [2,2,2,1,1] => ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1,1],[]]
=> [3,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3,1],[1,1]]
=> [2,2,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [[4,4,1],[1]]
=> [3,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2,1],[1]]
=> [2,3,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2,1],[1]]
=> [1,2,2,2,1] => ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2,1],[]]
=> [3,2,2,1] => ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2,1],[]]
=> [2,2,2,2,1] => ([(0,8),(1,7),(1,8),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2,1],[]]
=> [3,3,2,1] => ([(0,8),(1,7),(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3,1],[2]]
=> [1,3,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [[4,3,1],[]]
=> [4,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3,1],[1]]
=> [2,3,3,1] => ([(0,8),(1,8),(2,7),(2,8),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [[4,4,1],[]]
=> [4,4,1] => ([(0,8),(1,8),(2,8),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3,1],[]]
=> [3,3,3,1] => ([(0,9),(1,9),(2,8),(2,9),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [[3,3,3,2],[1,1,1]]
=> [2,2,2,2] => ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [[4,4,2],[1,1]]
=> [3,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [[4,4,4],[2,2]]
=> [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [[5,5],[2]]
=> [3,5] => ([(4,7),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [[4,4,3],[2,1]]
=> [2,3,3] => ([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [[3,3,3,3],[2,1,1]]
=> [1,2,2,3] => ([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [[4,3,3],[1,1]]
=> [3,2,3] => ([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [[3,3,3,3],[1,1,1]]
=> [2,2,2,3] => ([(2,8),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [[4,4,3],[1,1]]
=> [3,3,3] => ([(2,8),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [[4,4,4],[3,1]]
=> [1,3,4] => ([(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [[5,4],[1]]
=> [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [[4,4,4],[2,1]]
=> [2,3,4] => ([(3,8),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [[5,5],[1]]
=> [4,5] => ([(4,8),(5,8),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [[4,4,4],[1,1]]
=> [3,3,4] => ([(3,9),(4,9),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1]]
=> [2,2,2,2] => ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> [2,4,2] => ([(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,0,1,1,0,0,0,1,0]
=> [[3,3,3,2],[2,1]]
=> [1,2,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [[4,3,2],[1]]
=> [3,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [[3,3,3,2],[1,1]]
=> [2,2,3,2] => ([(1,8),(2,8),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [[4,4,2],[1]]
=> [3,4,2] => ([(1,8),(2,8),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,1,0,0,0,1,0,1,0]
=> [[2,2,2,2,2],[1,1]]
=> [1,1,2,2,2] => ([(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,1,0,0,0,1,1,0,0]
=> [[3,2,2,2],[1]]
=> [2,2,2,2] => ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [[3,3,2,2],[2]]
=> [1,3,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [[4,2,2],[]]
=> [4,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [[3,3,2,2],[1]]
=> [2,3,2,2] => ([(1,8),(2,7),(2,8),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,1,0,1,0,0,0,1,0]
=> [[2,2,2,2,2],[1]]
=> [1,2,2,2,2] => ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [[3,2,2,2],[]]
=> [3,2,2,2] => ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [[2,2,2,2,2],[]]
=> [2,2,2,2,2] => ([(1,9),(2,8),(2,9),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [[3,3,2,2],[]]
=> [3,3,2,2] => ([(1,9),(2,8),(2,9),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [[3,3,3,2],[2]]
=> [1,3,3,2] => ([(1,8),(2,8),(3,7),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [[4,3,2],[]]
=> [4,3,2] => ([(1,8),(2,8),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9}
Description
The degree of the graph. This is the maximal vertex degree of a graph.
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00223: Permutations runsortPermutations
Mp00065: Permutations permutation posetPosets
St001879: Posets ⟶ ℤResult quality: 25% values known / values provided: 25%distinct values known / distinct values provided: 85%
Values
[1,0]
=> [1] => [1] => ([],1)
=> ? = 0
[1,0,1,0]
=> [1,2] => [1,2] => ([(0,1)],2)
=> ? ∊ {0,1}
[1,1,0,0]
=> [2,1] => [1,2] => ([(0,1)],2)
=> ? ∊ {0,1}
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 2
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> ? ∊ {0,1}
[1,1,0,0,1,0]
=> [2,1,3] => [1,3,2] => ([(0,1),(0,2)],3)
=> ? ∊ {0,1}
[1,1,0,1,0,0]
=> [2,3,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 2
[1,1,1,0,0,0]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 3
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ? ∊ {0,1,2,2,2,3,3,3,4}
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,1,2,2,2,3,3,3,4}
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,1,2,2,2,3,3,3,4}
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,1,2,2,2,3,3,3,4}
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,1,2,2,2,3,3,3,4}
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,1,2,2,2,3,3,3,4}
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 3
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ? ∊ {0,1,2,2,2,3,3,3,4}
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {0,1,2,2,2,3,3,3,4}
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ? ∊ {0,1,2,2,2,3,3,3,4}
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 3
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6}
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6}
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6}
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6}
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 6
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6}
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6}
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6}
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 6
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6}
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6}
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6}
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6}
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 6
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6}
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6}
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6}
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6}
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6}
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6}
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [1,5,2,4,3] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6}
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6}
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6}
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6}
[1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6}
[1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [1,5,2,4,3] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6}
[1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6}
[1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6}
[1,1,1,0,1,0,0,0,1,0]
=> [4,2,3,1,5] => [1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6}
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,3,5,1] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6}
[1,1,1,0,1,0,1,0,0,0]
=> [5,2,3,4,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6}
[1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,6,6}
[1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [1,2,3,4,6,5] => ([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,9,9,9}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [1,2,3,5,4,6] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 6
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => [1,2,3,5,6,4] => ([(0,4),(3,2),(4,5),(5,1),(5,3)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,9,9,9}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,5,4] => [1,2,3,6,4,5] => ([(0,4),(3,2),(4,5),(5,1),(5,3)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,9,9,9}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [1,2,4,3,5,6] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 6
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [1,2,4,3,6,5] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,9,9,9}
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => [1,2,4,5,3,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 7
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => [1,2,4,5,6,3] => ([(0,5),(3,4),(4,2),(5,1),(5,3)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,9,9,9}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,4,6,5,3] => [1,2,4,6,3,5] => ([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,9,9,9}
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,4,3,6] => [1,2,5,3,6,4] => ([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6)
=> ? ∊ {0,1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,9,9,9}
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,5,4,6,3] => [1,2,5,3,4,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 7
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => [1,3,2,4,5,6] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 6
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,4,2,5,6] => [1,3,4,2,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> 7
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,2,6] => [1,3,4,5,2,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 8
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,3,5,4,6,2] => [1,3,5,2,4,6] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 7
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,4,3,5,6,2] => [1,4,2,3,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> 7
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,5,3,4,6,2] => [1,5,2,3,4,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 8
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,3,5,4,6] => [1,3,5,2,4,6] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 7
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,5,6] => [1,4,2,3,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> 7
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,1,4,5,3,6] => [1,4,5,2,3,6] => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> 8
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,1,5,4,6,3] => [1,5,2,3,4,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 8
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [2,3,1,5,4,6] => [1,5,2,3,4,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 8
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,4,6,1] => [1,2,3,5,4,6] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 6
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => [1,2,4,3,5,6] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 6
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,5,3,4,6,1] => [1,2,5,3,4,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 7
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [3,2,1,5,4,6] => [1,5,2,3,4,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 8
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,5,4,6,1] => [1,2,5,3,4,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 7
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,2,3,4,5,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,2,3,5,4,1] => [1,2,3,5,4,6] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 6
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [6,2,4,3,5,1] => [1,2,4,3,5,6] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 6
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [6,2,4,5,3,1] => [1,2,4,5,3,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 7
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [6,2,5,4,3,1] => [1,2,5,3,4,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 7
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [6,3,2,4,5,1] => [1,2,4,5,3,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 7
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [6,3,2,5,4,1] => [1,2,5,3,4,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 7
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Matching statistic: St001725
Mp00233: Dyck paths skew partitionSkew partitions
Mp00181: Skew partitions row lengthsInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001725: Graphs ⟶ ℤResult quality: 22% values known / values provided: 22%distinct values known / distinct values provided: 54%
Values
[1,0]
=> [[1],[]]
=> [1] => ([],1)
=> 1 = 0 + 1
[1,0,1,0]
=> [[1,1],[]]
=> [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[1,1,0,0]
=> [[2],[]]
=> [2] => ([],2)
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [[1,1,1],[]]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,0,1,1,0,0]
=> [[2,1],[]]
=> [2,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1,2] => ([(1,2)],3)
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [[3],[]]
=> [3] => ([],3)
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [[2,2],[]]
=> [2,2] => ([(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 4 = 3 + 1
[1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [2,2] => ([(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [1,3] => ([(2,3)],4)
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [[4],[]]
=> [4] => ([],4)
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [2,3] => ([(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1],[]]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 5 = 4 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {4,4,6,6,6,6} + 1
[1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [2,3] => ([(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [1,4] => ([(3,4)],5)
=> 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> [5] => ([],5)
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2,4] => ([(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5 = 4 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [3,4] => ([(3,6),(4,6),(5,6)],7)
=> 4 = 3 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> [2,2,2,2] => ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {4,4,6,6,6,6} + 1
[1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> [3,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {4,4,6,6,6,6} + 1
[1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> [2,3,3] => ([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {4,4,6,6,6,6} + 1
[1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? ∊ {4,4,6,6,6,6} + 1
[1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> [3,3,3] => ([(2,8),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {4,4,6,6,6,6} + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1,1],[]]
=> [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1,1],[1]]
=> [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1,1],[1]]
=> [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1,1],[]]
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1,1],[]]
=> [2,2,2,1,1] => ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1,1],[]]
=> [3,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2,1],[1,1]]
=> [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3,1],[1,1]]
=> [2,2,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [[4,4,1],[1]]
=> [3,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1]]
=> [1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2,1],[1]]
=> [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2,1],[2]]
=> [1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2,1],[1]]
=> [2,3,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2,1],[1]]
=> [1,2,2,2,1] => ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2,1],[]]
=> [3,2,2,1] => ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2,1],[]]
=> [2,2,2,2,1] => ([(0,8),(1,7),(1,8),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2,1],[]]
=> [3,3,2,1] => ([(0,8),(1,7),(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3,1],[2]]
=> [1,3,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [[4,3,1],[]]
=> [4,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3,1],[1]]
=> [2,3,3,1] => ([(0,8),(1,8),(2,7),(2,8),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [[4,4,1],[]]
=> [4,4,1] => ([(0,8),(1,8),(2,8),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3,1],[]]
=> [3,3,3,1] => ([(0,9),(1,9),(2,8),(2,9),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1,1]]
=> [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [[3,3,3,2],[1,1,1]]
=> [2,2,2,2] => ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [[4,4,2],[1,1]]
=> [3,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [[4,4,4],[2,2]]
=> [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [[5,5],[2]]
=> [3,5] => ([(4,7),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [[4,4,3],[2,1]]
=> [2,3,3] => ([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [[3,3,3,3],[2,1,1]]
=> [1,2,2,3] => ([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [[4,3,3],[1,1]]
=> [3,2,3] => ([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [[3,3,3,3],[1,1,1]]
=> [2,2,2,3] => ([(2,8),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [[4,4,3],[1,1]]
=> [3,3,3] => ([(2,8),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [[4,4,4],[3,1]]
=> [1,3,4] => ([(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [[5,4],[1]]
=> [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [[4,4,4],[2,1]]
=> [2,3,4] => ([(3,8),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [[5,5],[1]]
=> [4,5] => ([(4,8),(5,8),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [[4,4,4],[1,1]]
=> [3,3,4] => ([(3,9),(4,9),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [[2,2,2,2,2],[1,1,1]]
=> [1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,1,1,0,0,0,1,0,1,1,0,0]
=> [[3,2,2,2],[1,1]]
=> [2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1]]
=> [2,2,2,2] => ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> [2,4,2] => ([(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,1,1,0,0,1,1,0,0,0,1,0]
=> [[3,3,3,2],[2,1]]
=> [1,2,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [[4,3,2],[1]]
=> [3,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [[3,3,3,2],[1,1]]
=> [2,2,3,2] => ([(1,8),(2,8),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,9,9,9} + 1
Description
The harmonious chromatic number of a graph. A harmonious colouring is a proper vertex colouring such that any pair of colours appears at most once on adjacent vertices.
The following 17 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000923The minimal number with no two order isomorphic substrings of this length in a permutation. St001645The pebbling number of a connected graph. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000800The number of occurrences of the vincular pattern |231 in a permutation. St000327The number of cover relations in a poset. St001772The number of occurrences of the signed pattern 12 in a signed permutation. St001861The number of Bruhat lower covers of a permutation. St001894The depth of a signed permutation. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St000454The largest eigenvalue of a graph if it is integral. St000030The sum of the descent differences of a permutations. St000136The dinv of a parking function. St000194The number of primary dinversion pairs of a labelled dyck path corresponding to a parking function. St000337The lec statistic, the sum of the inversion numbers of the hook factors of a permutation. St001822The number of alignments of a signed permutation. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St000422The energy of a graph, if it is integral.