Your data matches 188 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St000028: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0
[1,0,1,0]
=> [2,1] => 1
[1,1,0,0]
=> [1,2] => 0
[1,0,1,0,1,0]
=> [3,2,1] => 1
[1,0,1,1,0,0]
=> [2,3,1] => 2
[1,1,0,0,1,0]
=> [3,1,2] => 1
[1,1,0,1,0,0]
=> [2,1,3] => 1
[1,1,1,0,0,0]
=> [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 1
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 2
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 3
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 3
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 2
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 2
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => 3
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => 3
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 3
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 4
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 4
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 3
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 4
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 4
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 4
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 3
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 3
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => 3
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => 3
Description
The number of stack-sorts needed to sort a permutation. A permutation is (West) $t$-stack sortable if it is sortable using $t$ stacks in series. Let $W_t(n,k)$ be the number of permutations of size $n$ with $k$ descents which are $t$-stack sortable. Then the polynomials $W_{n,t}(x) = \sum_{k=0}^n W_t(n,k)x^k$ are symmetric and unimodal. We have $W_{n,1}(x) = A_n(x)$, the Eulerian polynomials. One can show that $W_{n,1}(x)$ and $W_{n,2}(x)$ are real-rooted. Precisely the permutations that avoid the pattern $231$ have statistic at most $1$, see [3]. These are counted by $\frac{1}{n+1}\binom{2n}{n}$ ([[OEIS:A000108]]). Precisely the permutations that avoid the pattern $2341$ and the barred pattern $3\bar 5241$ have statistic at most $2$, see [4]. These are counted by $\frac{2(3n)!}{(n+1)!(2n+1)!}$ ([[OEIS:A000139]]).
Mp00023: Dyck paths to non-crossing permutationPermutations
St000141: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0
[1,0,1,0]
=> [1,2] => 0
[1,1,0,0]
=> [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => 1
[1,1,1,0,0,0]
=> [3,2,1] => 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 2
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 2
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 2
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 3
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => 3
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 3
Description
The maximum drop size of a permutation. The maximum drop size of a permutation $\pi$ of $[n]=\{1,2,\ldots, n\}$ is defined to be the maximum value of $i-\pi(i)$.
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St000651: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0
[1,0,1,0]
=> [2,1] => 0
[1,1,0,0]
=> [1,2] => 1
[1,0,1,0,1,0]
=> [3,2,1] => 0
[1,0,1,1,0,0]
=> [2,3,1] => 1
[1,1,0,0,1,0]
=> [3,1,2] => 1
[1,1,0,1,0,0]
=> [2,1,3] => 2
[1,1,1,0,0,0]
=> [1,2,3] => 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 0
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 1
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 2
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 1
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 2
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 3
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 3
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 2
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 2
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 3
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 1
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => 4
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => 4
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => 4
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => 4
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => 4
Description
The maximal size of a rise in a permutation. This is $\max_i \sigma_{i+1}-\sigma_i$, except for the permutations without rises, where it is $0$.
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St000013: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1,0]
=> 1 = 0 + 1
[1,0,1,0]
=> [1,2] => [1,0,1,0]
=> 1 = 0 + 1
[1,1,0,0]
=> [2,1] => [1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [3,2,1] => [1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [1,1,0,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> 4 = 3 + 1
Description
The height of a Dyck path. The height of a Dyck path $D$ of semilength $n$ is defined as the maximal height of a peak of $D$. The height of $D$ at position $i$ is the number of up-steps minus the number of down-steps before position $i$.
Matching statistic: St000306
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00030: Dyck paths zeta mapDyck paths
St000306: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1,0]
=> [1,0]
=> 0
[1,0,1,0]
=> [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 0
[1,1,0,0]
=> [2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,1,0,0,0]
=> [3,2,1] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 3
Description
The bounce count of a Dyck path. For a Dyck path $D$ of length $2n$, this is the number of points $(i,i)$ for $1 \leq i < n$ that are touching points of the [[Mp00099|bounce path]] of $D$.
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
St000662: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1,0]
=> [1] => 0
[1,0,1,0]
=> [1,2] => [1,0,1,0]
=> [1,2] => 0
[1,1,0,0]
=> [2,1] => [1,1,0,0]
=> [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => [1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> [2,3,1] => 1
[1,1,1,0,0,0]
=> [3,2,1] => [1,1,1,0,0,0]
=> [3,2,1] => 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 2
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 2
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 2
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 3
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 3
Description
The staircase size of the code of a permutation. The code $c(\pi)$ of a permutation $\pi$ of length $n$ is given by the sequence $(c_1,\ldots,c_{n})$ with $c_i = |\{j > i : \pi(j) < \pi(i)\}|$. This is a bijection between permutations and all sequences $(c_1,\ldots,c_n)$ with $0 \leq c_i \leq n-i$. The staircase size of the code is the maximal $k$ such that there exists a subsequence $(c_{i_k},\ldots,c_{i_1})$ of $c(\pi)$ with $c_{i_j} \geq j$. This statistic is mapped through [[Mp00062]] to the number of descents, showing that together with the number of inversions [[St000018]] it is Euler-Mahonian.
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00142: Dyck paths promotionDyck paths
Mp00138: Dyck paths to noncrossing partitionSet partitions
St000730: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> {{1},{2}}
=> 0
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 0
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,1,0,0]
=> {{1},{2,3}}
=> 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 0
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> 2
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,5},{4}}
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> {{1},{2,4},{3},{5}}
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> {{1},{2,5},{3},{4}}
=> 3
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> 3
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5},{6}}
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4},{5,6}}
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3},{4,5},{6}}
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3},{4,6},{5}}
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3},{4,5,6}}
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> {{1},{2},{3,4},{5},{6}}
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> {{1},{2},{3,4},{5,6}}
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> {{1},{2},{3,5},{4},{6}}
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> {{1},{2},{3,6},{4},{5}}
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> {{1},{2},{3,5,6},{4}}
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> {{1},{2},{3,4,5},{6}}
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> {{1},{2},{3,6},{4,5}}
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> {{1},{2},{3,4,6},{5}}
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> {{1},{2},{3,4,5,6}}
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> {{1},{2,3},{4},{5},{6}}
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> {{1},{2,3},{4},{5,6}}
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> {{1},{2,3},{4,5},{6}}
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> {{1},{2,3},{4,6},{5}}
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> {{1},{2,3},{4,5,6}}
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> {{1},{2,4},{3},{5},{6}}
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> {{1},{2,4},{3},{5,6}}
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> {{1},{2,5},{3},{4},{6}}
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> {{1},{2,6},{3},{4},{5}}
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> {{1},{2,5,6},{3},{4}}
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> {{1},{2,4,5},{3},{6}}
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> {{1},{2,6},{3},{4,5}}
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> {{1},{2,4,6},{3},{5}}
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> {{1},{2,4,5,6},{3}}
=> 2
Description
The maximal arc length of a set partition. The arcs of a set partition are those $i < j$ that are consecutive elements in the blocks. If there are no arcs, the maximal arc length is $0$.
Matching statistic: St001046
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00146: Dyck paths to tunnel matchingPerfect matchings
St001046: Perfect matchings ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1,0]
=> [(1,2)]
=> 0
[1,0,1,0]
=> [1,2] => [1,0,1,0]
=> [(1,2),(3,4)]
=> 0
[1,1,0,0]
=> [2,1] => [1,1,0,0]
=> [(1,4),(2,3)]
=> 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1
[1,1,0,0,1,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> 1
[1,1,1,0,0,0]
=> [3,2,1] => [1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> 2
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> 2
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> 2
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> 3
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10)]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10)]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [(1,10),(2,3),(4,5),(6,9),(7,8)]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [1,1,0,1,1,1,0,0,0,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> 3
Description
The maximal number of arcs nesting a given arc of a perfect matching. This is also the largest weight of a down step in the histoire d'Hermite corresponding to the perfect matching.
Matching statistic: St001296
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
St001296: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1,0]
=> [1,0]
=> 0
[1,0,1,0]
=> [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 0
[1,1,0,0]
=> [2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,0,0,1,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[1,1,1,0,0,0]
=> [3,2,1] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 3
Description
The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. See [[http://www.findstat.org/DyckPaths/NakayamaAlgebras]].
Matching statistic: St000062
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St000062: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1,0]
=> [1] => 1 = 0 + 1
[1,0,1,0]
=> [1,2] => [1,0,1,0]
=> [2,1] => 1 = 0 + 1
[1,1,0,0]
=> [2,1] => [1,1,0,0]
=> [1,2] => 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> [3,2,1] => 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,0,1,1,0,0]
=> [2,3,1] => 2 = 1 + 1
[1,1,0,0,1,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> [3,1,2] => 2 = 1 + 1
[1,1,0,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> [2,1,3] => 2 = 1 + 1
[1,1,1,0,0,0]
=> [3,2,1] => [1,1,1,0,0,0]
=> [1,2,3] => 3 = 2 + 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 3 = 2 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 3 = 2 + 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 4 = 3 + 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 4 = 3 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => 3 = 2 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 3 = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 3 = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 4 = 3 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 4 = 3 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 3 = 2 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => 2 = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => 2 = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => 3 = 2 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => 3 = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => 4 = 3 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => 4 = 3 + 1
Description
The length of the longest increasing subsequence of the permutation.
The following 178 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000166The depth minus 1 of an ordered tree. St000442The maximal area to the right of an up step of a Dyck path. St000720The size of the largest partition in the oscillating tableau corresponding to the perfect matching. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows: St001717The largest size of an interval in a poset. St000094The depth of an ordered tree. St000444The length of the maximal rise of a Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St000485The length of the longest cycle of a permutation. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001933The largest multiplicity of a part in an integer partition. St001020Sum of the codominant dimensions of the non-projective indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path. St001416The length of a longest palindromic factor of a binary word. St001417The length of a longest palindromic subword of a binary word. St000460The hook length of the last cell along the main diagonal of an integer partition. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001498The normalised height of a Nakayama algebra with magnitude 1. St000456The monochromatic index of a connected graph. St000652The maximal difference between successive positions of a permutation. St001330The hat guessing number of a graph. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000461The rix statistic of a permutation. St000454The largest eigenvalue of a graph if it is integral. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St000259The diameter of a connected graph. St001683The number of distinct positions of the pattern letter 3 in occurrences of 132 in a permutation. St001645The pebbling number of a connected graph. St001503The largest distance of a vertex to a vertex in a cycle in the resolution quiver of the corresponding Nakayama algebra. St000667The greatest common divisor of the parts of the partition. St001571The Cartan determinant of the integer partition. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St000937The number of positive values of the symmetric group character corresponding to the partition. St000675The number of centered multitunnels of a Dyck path. St001568The smallest positive integer that does not appear twice in the partition. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000668The least common multiple of the parts of the partition. St000708The product of the parts of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St000260The radius of a connected graph. St001052The length of the exterior of a permutation. St000875The semilength of the longest Dyck word in the Catalan factorisation of a binary word. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St000054The first entry of the permutation. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000307The number of rowmotion orbits of a poset. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000245The number of ascents of a permutation. St000672The number of minimal elements in Bruhat order not less than the permutation. St000834The number of right outer peaks of a permutation. St000871The number of very big ascents of a permutation. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St000035The number of left outer peaks of a permutation. St000153The number of adjacent cycles of a permutation. St000374The number of exclusive right-to-left minima of a permutation. St000742The number of big ascents of a permutation after prepending zero. St000996The number of exclusive left-to-right maxima of a permutation. St001589The nesting number of a perfect matching. St000455The second largest eigenvalue of a graph if it is integral. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St000080The rank of the poset. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St000528The height of a poset. St000907The number of maximal antichains of minimal length in a poset. St000912The number of maximal antichains in a poset. St001343The dimension of the reduced incidence algebra of a poset. St001636The number of indecomposable injective modules with projective dimension at most one in the incidence algebra of the poset. St001782The order of rowmotion on the set of order ideals of a poset. St000524The number of posets with the same order polynomial. St000526The number of posets with combinatorially isomorphic order polytopes. St000633The size of the automorphism group of a poset. St000640The rank of the largest boolean interval in a poset. St000910The number of maximal chains of minimal length in a poset. St000914The sum of the values of the Möbius function of a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000474Dyson's crank of a partition. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St000993The multiplicity of the largest part of an integer partition. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001280The number of parts of an integer partition that are at least two. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001389The number of partitions of the same length below the given integer partition. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001432The order dimension of the partition. St001527The cyclic permutation representation number of an integer partition. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001924The number of cells in an integer partition whose arm and leg length coincide. St001235The global dimension of the corresponding Comp-Nakayama algebra. St000483The number of times a permutation switches from increasing to decreasing or decreasing to increasing. St000145The Dyson rank of a partition. St000477The weight of a partition according to Alladi. St000478Another weight of a partition according to Alladi. St000509The diagonal index (content) of a partition. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000681The Grundy value of Chomp on Ferrers diagrams. St000939The number of characters of the symmetric group whose value on the partition is positive. St001279The sum of the parts of an integer partition that are at least two. St001360The number of covering relations in Young's lattice below a partition. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001541The Gini index of an integer partition. St001599The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001608The number of coloured rooted trees such that the multiplicities of colours are given by a partition. St001611The number of multiset partitions such that the multiplicities of elements are given by a partition. St001627The number of coloured connected graphs such that the multiplicities of colours are given by a partition. St001628The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple connected graphs. St001763The Hurwitz number of an integer partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001938The number of transitive monotone factorizations of genus zero of a permutation of given cycle type. St001060The distinguishing index of a graph. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001637The number of (upper) dissectors of a poset. St001668The number of points of the poset minus the width of the poset. St001890The maximum magnitude of the Möbius function of a poset. St000264The girth of a graph, which is not a tree. St001875The number of simple modules with projective dimension at most 1. St001596The number of two-by-two squares inside a skew partition. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St001682The number of distinct positions of the pattern letter 1 in occurrences of 123 in a permutation. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001686The order of promotion on a Gelfand-Tsetlin pattern. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001877Number of indecomposable injective modules with projective dimension 2. St000647The number of big descents of a permutation. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000284The Plancherel distribution on integer partitions. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St001128The exponens consonantiae of a partition. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St000779The tier of a permutation. St001115The number of even descents of a permutation. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001557The number of inversions of the second entry of a permutation. St000451The length of the longest pattern of the form k 1 2. St000619The number of cyclic descents of a permutation. St000422The energy of a graph, if it is integral. St001488The number of corners of a skew partition. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001860The number of factors of the Stanley symmetric function associated with a signed permutation. St000392The length of the longest run of ones in a binary word. St001372The length of a longest cyclic run of ones of a binary word. St000381The largest part of an integer composition. St001624The breadth of a lattice. St000386The number of factors DDU in a Dyck path. St000884The number of isolated descents of a permutation. St000994The number of cycle peaks and the number of cycle valleys of a permutation. St001435The number of missing boxes in the first row. St000891The number of distinct diagonal sums of a permutation matrix. St000022The number of fixed points of a permutation. St000731The number of double exceedences of a permutation. St000291The number of descents of a binary word. St000292The number of ascents of a binary word. St000703The number of deficiencies of a permutation. St000390The number of runs of ones in a binary word.