searching the database
Your data matches 57 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000670
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00103: Dyck paths —peeling map⟶ Dyck paths
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
St000670: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
St000670: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
 => [1,0]
 => [1] => 0
[1,0,1,0]
 => [1,0,1,0]
 => [2,1] => 1
[1,1,0,0]
 => [1,0,1,0]
 => [2,1] => 1
[1,0,1,0,1,0]
 => [1,0,1,0,1,0]
 => [2,3,1] => 2
[1,0,1,1,0,0]
 => [1,0,1,0,1,0]
 => [2,3,1] => 2
[1,1,0,0,1,0]
 => [1,0,1,0,1,0]
 => [2,3,1] => 2
[1,1,0,1,0,0]
 => [1,0,1,0,1,0]
 => [2,3,1] => 2
[1,1,1,0,0,0]
 => [1,0,1,0,1,0]
 => [2,3,1] => 2
[1,0,1,0,1,0,1,0]
 => [1,0,1,0,1,0,1,0]
 => [2,3,4,1] => 2
[1,0,1,0,1,1,0,0]
 => [1,0,1,0,1,0,1,0]
 => [2,3,4,1] => 2
[1,0,1,1,0,0,1,0]
 => [1,0,1,0,1,0,1,0]
 => [2,3,4,1] => 2
[1,0,1,1,0,1,0,0]
 => [1,0,1,0,1,0,1,0]
 => [2,3,4,1] => 2
[1,0,1,1,1,0,0,0]
 => [1,0,1,0,1,0,1,0]
 => [2,3,4,1] => 2
[1,1,0,0,1,0,1,0]
 => [1,0,1,0,1,0,1,0]
 => [2,3,4,1] => 2
[1,1,0,0,1,1,0,0]
 => [1,0,1,0,1,0,1,0]
 => [2,3,4,1] => 2
[1,1,0,1,0,0,1,0]
 => [1,0,1,0,1,0,1,0]
 => [2,3,4,1] => 2
[1,1,0,1,0,1,0,0]
 => [1,0,1,0,1,0,1,0]
 => [2,3,4,1] => 2
[1,1,0,1,1,0,0,0]
 => [1,0,1,0,1,0,1,0]
 => [2,3,4,1] => 2
[1,1,1,0,0,0,1,0]
 => [1,0,1,0,1,0,1,0]
 => [2,3,4,1] => 2
[1,1,1,0,0,1,0,0]
 => [1,0,1,0,1,0,1,0]
 => [2,3,4,1] => 2
[1,1,1,0,1,0,0,0]
 => [1,0,1,0,1,0,1,0]
 => [2,3,4,1] => 2
[1,1,1,1,0,0,0,0]
 => [1,0,1,1,0,0,1,0]
 => [2,1,4,3] => 2
[1,0,1,0,1,0,1,0,1,0]
 => [1,0,1,0,1,0,1,0,1,0]
 => [2,3,4,5,1] => 2
[1,0,1,0,1,0,1,1,0,0]
 => [1,0,1,0,1,0,1,0,1,0]
 => [2,3,4,5,1] => 2
[1,0,1,0,1,1,0,0,1,0]
 => [1,0,1,0,1,0,1,0,1,0]
 => [2,3,4,5,1] => 2
[1,0,1,0,1,1,0,1,0,0]
 => [1,0,1,0,1,0,1,0,1,0]
 => [2,3,4,5,1] => 2
[1,0,1,0,1,1,1,0,0,0]
 => [1,0,1,0,1,0,1,0,1,0]
 => [2,3,4,5,1] => 2
[1,0,1,1,0,0,1,0,1,0]
 => [1,0,1,0,1,0,1,0,1,0]
 => [2,3,4,5,1] => 2
[1,0,1,1,0,0,1,1,0,0]
 => [1,0,1,0,1,0,1,0,1,0]
 => [2,3,4,5,1] => 2
[1,0,1,1,0,1,0,0,1,0]
 => [1,0,1,0,1,0,1,0,1,0]
 => [2,3,4,5,1] => 2
[1,0,1,1,0,1,0,1,0,0]
 => [1,0,1,0,1,0,1,0,1,0]
 => [2,3,4,5,1] => 2
[1,0,1,1,0,1,1,0,0,0]
 => [1,0,1,0,1,0,1,0,1,0]
 => [2,3,4,5,1] => 2
[1,0,1,1,1,0,0,0,1,0]
 => [1,0,1,0,1,0,1,0,1,0]
 => [2,3,4,5,1] => 2
[1,0,1,1,1,0,0,1,0,0]
 => [1,0,1,0,1,0,1,0,1,0]
 => [2,3,4,5,1] => 2
[1,0,1,1,1,0,1,0,0,0]
 => [1,0,1,0,1,0,1,0,1,0]
 => [2,3,4,5,1] => 2
[1,0,1,1,1,1,0,0,0,0]
 => [1,0,1,0,1,1,0,0,1,0]
 => [2,3,1,5,4] => 3
[1,1,0,0,1,0,1,0,1,0]
 => [1,0,1,0,1,0,1,0,1,0]
 => [2,3,4,5,1] => 2
[1,1,0,0,1,0,1,1,0,0]
 => [1,0,1,0,1,0,1,0,1,0]
 => [2,3,4,5,1] => 2
[1,1,0,0,1,1,0,0,1,0]
 => [1,0,1,0,1,0,1,0,1,0]
 => [2,3,4,5,1] => 2
[1,1,0,0,1,1,0,1,0,0]
 => [1,0,1,0,1,0,1,0,1,0]
 => [2,3,4,5,1] => 2
[1,1,0,0,1,1,1,0,0,0]
 => [1,0,1,0,1,0,1,0,1,0]
 => [2,3,4,5,1] => 2
[1,1,0,1,0,0,1,0,1,0]
 => [1,0,1,0,1,0,1,0,1,0]
 => [2,3,4,5,1] => 2
[1,1,0,1,0,0,1,1,0,0]
 => [1,0,1,0,1,0,1,0,1,0]
 => [2,3,4,5,1] => 2
[1,1,0,1,0,1,0,0,1,0]
 => [1,0,1,0,1,0,1,0,1,0]
 => [2,3,4,5,1] => 2
[1,1,0,1,0,1,0,1,0,0]
 => [1,0,1,0,1,0,1,0,1,0]
 => [2,3,4,5,1] => 2
[1,1,0,1,0,1,1,0,0,0]
 => [1,0,1,0,1,0,1,0,1,0]
 => [2,3,4,5,1] => 2
[1,1,0,1,1,0,0,0,1,0]
 => [1,0,1,0,1,0,1,0,1,0]
 => [2,3,4,5,1] => 2
[1,1,0,1,1,0,0,1,0,0]
 => [1,0,1,0,1,0,1,0,1,0]
 => [2,3,4,5,1] => 2
[1,1,0,1,1,0,1,0,0,0]
 => [1,0,1,0,1,0,1,0,1,0]
 => [2,3,4,5,1] => 2
[1,1,0,1,1,1,0,0,0,0]
 => [1,0,1,0,1,1,0,0,1,0]
 => [2,3,1,5,4] => 3
Description
The reversal length of a permutation.
A reversal in a permutation $\pi = [\pi_1,\ldots,\pi_n]$ is a reversal of a subsequence of the form $\operatorname{reversal}_{i,j}(\pi) = [\pi_1,\ldots,\pi_{i-1},\pi_j,\pi_{j-1},\ldots,\pi_{i+1},\pi_i,\pi_{j+1},\ldots,\pi_n]$ for $1 \leq i < j \leq n$.
This statistic is then given by the minimal number of reversals needed to sort a permutation.
The reversal distance between two permutations plays an important role in studying DNA structures.
Matching statistic: St000015
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St000015: Dyck paths ⟶ ℤResult quality: 40% ●values known / values provided: 68%●distinct values known / distinct values provided: 40%
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St000015: Dyck paths ⟶ ℤResult quality: 40% ●values known / values provided: 68%●distinct values known / distinct values provided: 40%
Values
[1,0]
 => [[1],[]]
 => []
 => []
 => ? = 0
[1,0,1,0]
 => [[1,1],[]]
 => []
 => []
 => ? ∊ {1,1}
[1,1,0,0]
 => [[2],[]]
 => []
 => []
 => ? ∊ {1,1}
[1,0,1,0,1,0]
 => [[1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,0,1,1,0,0]
 => [[2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,1,0,0,1,0]
 => [[2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,1,0,0]
 => [[3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,1,1,0,0,0]
 => [[2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,0,1,0,1,0,1,0]
 => [[1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,0,0]
 => [[2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,1,0,0,1,0]
 => [[2,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,0,1,0,0]
 => [[3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,0,0]
 => [[2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,0,0,1,0,1,0]
 => [[2,2,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,0,1,1,0,0]
 => [[3,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,1,0,0,1,0]
 => [[3,3],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,0,1,0,1,0,0]
 => [[4],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,0,1,1,0,0,0]
 => [[3,3],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,0,1,0]
 => [[2,2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,1,0,0]
 => [[3,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,1,0,1,0,0,0]
 => [[2,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,1,1,0,0,0,0]
 => [[3,3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,0,1,0,1,0,1,0]
 => [[1,1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,0,1,1,0,0]
 => [[2,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,1,0,0,1,0]
 => [[2,2,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,0,1,0,0]
 => [[3,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,1,1,0,0,0]
 => [[2,2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,0,0,1,0,1,0]
 => [[2,2,2,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,1,0,0,1,1,0,0]
 => [[3,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,0,1,0,0,1,0]
 => [[3,3,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,1,0,1,0,1,0,0]
 => [[4,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,0,1,1,0,0,0]
 => [[3,3,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,1,0,0,0,1,0]
 => [[2,2,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,1,0,0,1,0,0]
 => [[3,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,1,0,1,0,0,0]
 => [[2,2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,1,1,0,0,0,0]
 => [[3,3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,0,0,1,0,1,0,1,0]
 => [[2,2,2,2],[1,1,1]]
 => [1,1,1]
 => [1,0,1,1,1,0,0,0]
 => 2
[1,1,0,0,1,0,1,1,0,0]
 => [[3,2,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,0,1,1,0,0,1,0]
 => [[3,3,2],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 3
[1,1,0,0,1,1,0,1,0,0]
 => [[4,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,0,1,1,1,0,0,0]
 => [[3,3,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,1,0,0,1,0,1,0]
 => [[3,3,3],[2,2]]
 => [2,2]
 => [1,1,0,0,1,1,0,0]
 => 2
[1,1,0,1,0,0,1,1,0,0]
 => [[4,3],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,0,1,0,1,0,0,1,0]
 => [[4,4],[3]]
 => [3]
 => [1,1,1,0,0,0,1,0]
 => 2
[1,1,0,1,0,1,0,1,0,0]
 => [[5],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,0,1,0,1,1,0,0,0]
 => [[4,4],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,0,1,1,0,0,0,1,0]
 => [[3,3,3],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 3
[1,1,0,1,1,0,0,1,0,0]
 => [[4,3],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,1,1,0,1,0,0,0]
 => [[3,3,3],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,1,1,1,0,0,0,0]
 => [[4,4],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,0,1,0,1,0]
 => [[2,2,2,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,1,0,0,0,1,1,0,0]
 => [[3,2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,1,0,0,1,0]
 => [[3,3,2],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,1,0,0,1,0,1,0,0]
 => [[4,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,0,0,1,1,0,0,0]
 => [[3,3,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,1,0,0,0,1,0]
 => [[2,2,2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,1,0,0,1,0,0]
 => [[3,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,0,1,0,1,0,0,0]
 => [[2,2,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,0,1,1,0,0,0,0]
 => [[3,3,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,1,0,0,0,0,1,0]
 => [[3,3,3],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,1,1,0,0,0,1,0,0]
 => [[4,3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,1,0,0,1,0,0,0]
 => [[3,3,3],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,1,0,1,0,0,0,0]
 => [[4,4],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,1,1,0,0,0,0,0]
 => [[3,3,3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,0,1,0,1,0,1,0]
 => [[1,1,1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,0,1,1,0,0]
 => [[2,1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,1,0,0,1,0]
 => [[2,2,1,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,0,1,1,0,1,0,0]
 => [[3,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,1,1,0,0,0]
 => [[2,2,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,0,1,0,1,0]
 => [[2,2,2,1,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,0,1,1,0,0,1,1,0,0]
 => [[3,2,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,0,1,0,0,1,0]
 => [[3,3,1,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,0,1,1,0,1,0,1,0,0]
 => [[4,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,1,1,0,0,0]
 => [[3,3,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,1,0,0,0,1,0]
 => [[2,2,2,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,1,0,0,1,0,0]
 => [[3,2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,1,0,1,0,0,0]
 => [[2,2,2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,1,1,0,0,0,0]
 => [[3,3,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,0,1,0,1,0,1,0]
 => [[2,2,2,2,1],[1,1,1]]
 => [1,1,1]
 => [1,0,1,1,1,0,0,0]
 => 2
[1,0,1,1,0,0,1,0,1,1,0,0]
 => [[3,2,2,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,1,0,0,1,1,0,0,1,0]
 => [[3,3,2,1],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 3
[1,0,1,1,0,0,1,1,0,1,0,0]
 => [[4,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,0,0,1,1,1,0,0,0]
 => [[3,3,2,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,1,0,1,0,0,1,0,1,0]
 => [[3,3,3,1],[2,2]]
 => [2,2]
 => [1,1,0,0,1,1,0,0]
 => 2
[1,0,1,1,0,1,0,0,1,1,0,0]
 => [[4,3,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,1,0,1,0,1,0,0,1,0]
 => [[4,4,1],[3]]
 => [3]
 => [1,1,1,0,0,0,1,0]
 => 2
[1,0,1,1,0,1,0,1,0,1,0,0]
 => [[5,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,0,1,1,0,0,0]
 => [[4,4,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,1,0,1,1,0,0,0,1,0]
 => [[3,3,3,1],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 3
[1,0,1,1,0,1,1,0,0,1,0,0]
 => [[4,3,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,1,0,0,1,0,1,0,0]
 => [[4,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,0,1,0,0]
 => [[3,2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,1,0,0,0]
 => [[2,2,2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,1,0,0,0,0]
 => [[3,3,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,0,0,0,1,0,0]
 => [[4,3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,0,1,0,0,0,0]
 => [[4,4,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,1,0,0,0,0,0]
 => [[3,3,3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,0,1,0,1,0,1,0,1,0,0]
 => [[6],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,1,0,0,1,0,1,0,1,0,0]
 => [[5,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,1,0,1,0,0,1,0,1,0,0]
 => [[4,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
Description
The number of peaks of a Dyck path.
Matching statistic: St000684
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St000684: Dyck paths ⟶ ℤResult quality: 40% ●values known / values provided: 68%●distinct values known / distinct values provided: 40%
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St000684: Dyck paths ⟶ ℤResult quality: 40% ●values known / values provided: 68%●distinct values known / distinct values provided: 40%
Values
[1,0]
 => [[1],[]]
 => []
 => []
 => ? = 0
[1,0,1,0]
 => [[1,1],[]]
 => []
 => []
 => ? ∊ {1,1}
[1,1,0,0]
 => [[2],[]]
 => []
 => []
 => ? ∊ {1,1}
[1,0,1,0,1,0]
 => [[1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,0,1,1,0,0]
 => [[2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,1,0,0,1,0]
 => [[2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,1,0,0]
 => [[3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,1,1,0,0,0]
 => [[2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,0,1,0,1,0,1,0]
 => [[1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,0,0]
 => [[2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,1,0,0,1,0]
 => [[2,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,0,1,0,0]
 => [[3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,0,0]
 => [[2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,0,0,1,0,1,0]
 => [[2,2,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,0,1,1,0,0]
 => [[3,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,1,0,0,1,0]
 => [[3,3],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,0,1,0,1,0,0]
 => [[4],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,0,1,1,0,0,0]
 => [[3,3],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,0,1,0]
 => [[2,2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,1,0,0]
 => [[3,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,1,0,1,0,0,0]
 => [[2,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,1,1,0,0,0,0]
 => [[3,3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,0,1,0,1,0,1,0]
 => [[1,1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,0,1,1,0,0]
 => [[2,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,1,0,0,1,0]
 => [[2,2,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,0,1,0,0]
 => [[3,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,1,1,0,0,0]
 => [[2,2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,0,0,1,0,1,0]
 => [[2,2,2,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,1,0,0,1,1,0,0]
 => [[3,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,0,1,0,0,1,0]
 => [[3,3,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,1,0,1,0,1,0,0]
 => [[4,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,0,1,1,0,0,0]
 => [[3,3,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,1,0,0,0,1,0]
 => [[2,2,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,1,0,0,1,0,0]
 => [[3,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,1,0,1,0,0,0]
 => [[2,2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,1,1,0,0,0,0]
 => [[3,3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,0,0,1,0,1,0,1,0]
 => [[2,2,2,2],[1,1,1]]
 => [1,1,1]
 => [1,0,1,1,1,0,0,0]
 => 2
[1,1,0,0,1,0,1,1,0,0]
 => [[3,2,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,0,1,1,0,0,1,0]
 => [[3,3,2],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 3
[1,1,0,0,1,1,0,1,0,0]
 => [[4,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,0,1,1,1,0,0,0]
 => [[3,3,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,1,0,0,1,0,1,0]
 => [[3,3,3],[2,2]]
 => [2,2]
 => [1,1,0,0,1,1,0,0]
 => 2
[1,1,0,1,0,0,1,1,0,0]
 => [[4,3],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,0,1,0,1,0,0,1,0]
 => [[4,4],[3]]
 => [3]
 => [1,1,1,0,0,0,1,0]
 => 2
[1,1,0,1,0,1,0,1,0,0]
 => [[5],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,0,1,0,1,1,0,0,0]
 => [[4,4],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,0,1,1,0,0,0,1,0]
 => [[3,3,3],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 3
[1,1,0,1,1,0,0,1,0,0]
 => [[4,3],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,1,1,0,1,0,0,0]
 => [[3,3,3],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,1,1,1,0,0,0,0]
 => [[4,4],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,0,1,0,1,0]
 => [[2,2,2,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,1,0,0,0,1,1,0,0]
 => [[3,2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,1,0,0,1,0]
 => [[3,3,2],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,1,0,0,1,0,1,0,0]
 => [[4,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,0,0,1,1,0,0,0]
 => [[3,3,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,1,0,0,0,1,0]
 => [[2,2,2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,1,0,0,1,0,0]
 => [[3,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,0,1,0,1,0,0,0]
 => [[2,2,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,0,1,1,0,0,0,0]
 => [[3,3,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,1,0,0,0,0,1,0]
 => [[3,3,3],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,1,1,0,0,0,1,0,0]
 => [[4,3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,1,0,0,1,0,0,0]
 => [[3,3,3],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,1,0,1,0,0,0,0]
 => [[4,4],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,1,1,0,0,0,0,0]
 => [[3,3,3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,0,1,0,1,0,1,0]
 => [[1,1,1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,0,1,1,0,0]
 => [[2,1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,1,0,0,1,0]
 => [[2,2,1,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,0,1,1,0,1,0,0]
 => [[3,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,1,1,0,0,0]
 => [[2,2,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,0,1,0,1,0]
 => [[2,2,2,1,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,0,1,1,0,0,1,1,0,0]
 => [[3,2,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,0,1,0,0,1,0]
 => [[3,3,1,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,0,1,1,0,1,0,1,0,0]
 => [[4,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,1,1,0,0,0]
 => [[3,3,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,1,0,0,0,1,0]
 => [[2,2,2,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,1,0,0,1,0,0]
 => [[3,2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,1,0,1,0,0,0]
 => [[2,2,2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,1,1,0,0,0,0]
 => [[3,3,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,0,1,0,1,0,1,0]
 => [[2,2,2,2,1],[1,1,1]]
 => [1,1,1]
 => [1,0,1,1,1,0,0,0]
 => 2
[1,0,1,1,0,0,1,0,1,1,0,0]
 => [[3,2,2,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,1,0,0,1,1,0,0,1,0]
 => [[3,3,2,1],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 3
[1,0,1,1,0,0,1,1,0,1,0,0]
 => [[4,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,0,0,1,1,1,0,0,0]
 => [[3,3,2,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,1,0,1,0,0,1,0,1,0]
 => [[3,3,3,1],[2,2]]
 => [2,2]
 => [1,1,0,0,1,1,0,0]
 => 2
[1,0,1,1,0,1,0,0,1,1,0,0]
 => [[4,3,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,1,0,1,0,1,0,0,1,0]
 => [[4,4,1],[3]]
 => [3]
 => [1,1,1,0,0,0,1,0]
 => 2
[1,0,1,1,0,1,0,1,0,1,0,0]
 => [[5,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,0,1,1,0,0,0]
 => [[4,4,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,1,0,1,1,0,0,0,1,0]
 => [[3,3,3,1],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 3
[1,0,1,1,0,1,1,0,0,1,0,0]
 => [[4,3,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,1,0,0,1,0,1,0,0]
 => [[4,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,0,1,0,0]
 => [[3,2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,1,0,0,0]
 => [[2,2,2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,1,0,0,0,0]
 => [[3,3,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,0,0,0,1,0,0]
 => [[4,3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,0,1,0,0,0,0]
 => [[4,4,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,1,0,0,0,0,0]
 => [[3,3,3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,0,1,0,1,0,1,0,1,0,0]
 => [[6],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,1,0,0,1,0,1,0,1,0,0]
 => [[5,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,1,0,1,0,0,1,0,1,0,0]
 => [[4,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
Description
The global dimension of the LNakayama algebra associated to a Dyck path.
An n-LNakayama algebra is a quiver algebra with a directed line as a connected quiver with $n$ points for $n \geq 2$. Number those points from the left to the right by $0,1,\ldots,n-1$.
The algebra is then uniquely determined by the dimension $c_i$ of the projective indecomposable modules at point $i$. Such algebras are then uniquely determined by lists of the form $[c_0,c_1,...,c_{n-1}]$ with the conditions: $c_{n-1}=1$ and $c_i -1 \leq c_{i+1}$ for all $i$. The number of such algebras is then the $n-1$-st Catalan number $C_{n-1}$.
One can get also an interpretation with Dyck paths by associating the top boundary of the Auslander-Reiten quiver (which is a Dyck path) to those algebras. Example: [3,4,3,3,2,1] corresponds to the Dyck path [1,1,0,1,1,0,0,1,0,0].
Conjecture: that there is an explicit bijection between $n$-LNakayama algebras with global dimension bounded by $m$ and Dyck paths with height at most $m$.
Examples:
* For $m=2$, the number of Dyck paths with global dimension at most $m$ starts for $n \geq 2$ with 1,2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192.
* For $m=3$, the number of Dyck paths with global dimension at most $m$ starts for $n \geq 2$ with 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946, 28657, 75025, 196418.
Matching statistic: St000686
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St000686: Dyck paths ⟶ ℤResult quality: 40% ●values known / values provided: 68%●distinct values known / distinct values provided: 40%
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St000686: Dyck paths ⟶ ℤResult quality: 40% ●values known / values provided: 68%●distinct values known / distinct values provided: 40%
Values
[1,0]
 => [[1],[]]
 => []
 => []
 => ? = 0
[1,0,1,0]
 => [[1,1],[]]
 => []
 => []
 => ? ∊ {1,1}
[1,1,0,0]
 => [[2],[]]
 => []
 => []
 => ? ∊ {1,1}
[1,0,1,0,1,0]
 => [[1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,0,1,1,0,0]
 => [[2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,1,0,0,1,0]
 => [[2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,1,0,0]
 => [[3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,1,1,0,0,0]
 => [[2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,0,1,0,1,0,1,0]
 => [[1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,0,0]
 => [[2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,1,0,0,1,0]
 => [[2,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,0,1,0,0]
 => [[3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,0,0]
 => [[2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,0,0,1,0,1,0]
 => [[2,2,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,0,1,1,0,0]
 => [[3,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,1,0,0,1,0]
 => [[3,3],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,0,1,0,1,0,0]
 => [[4],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,0,1,1,0,0,0]
 => [[3,3],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,0,1,0]
 => [[2,2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,1,0,0]
 => [[3,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,1,0,1,0,0,0]
 => [[2,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,1,1,0,0,0,0]
 => [[3,3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,0,1,0,1,0,1,0]
 => [[1,1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,0,1,1,0,0]
 => [[2,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,1,0,0,1,0]
 => [[2,2,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,0,1,0,0]
 => [[3,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,1,1,0,0,0]
 => [[2,2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,0,0,1,0,1,0]
 => [[2,2,2,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,1,0,0,1,1,0,0]
 => [[3,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,0,1,0,0,1,0]
 => [[3,3,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,1,0,1,0,1,0,0]
 => [[4,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,0,1,1,0,0,0]
 => [[3,3,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,1,0,0,0,1,0]
 => [[2,2,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,1,0,0,1,0,0]
 => [[3,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,1,0,1,0,0,0]
 => [[2,2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,1,1,0,0,0,0]
 => [[3,3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,0,0,1,0,1,0,1,0]
 => [[2,2,2,2],[1,1,1]]
 => [1,1,1]
 => [1,0,1,1,1,0,0,0]
 => 2
[1,1,0,0,1,0,1,1,0,0]
 => [[3,2,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,0,1,1,0,0,1,0]
 => [[3,3,2],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 3
[1,1,0,0,1,1,0,1,0,0]
 => [[4,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,0,1,1,1,0,0,0]
 => [[3,3,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,1,0,0,1,0,1,0]
 => [[3,3,3],[2,2]]
 => [2,2]
 => [1,1,0,0,1,1,0,0]
 => 2
[1,1,0,1,0,0,1,1,0,0]
 => [[4,3],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,0,1,0,1,0,0,1,0]
 => [[4,4],[3]]
 => [3]
 => [1,1,1,0,0,0,1,0]
 => 2
[1,1,0,1,0,1,0,1,0,0]
 => [[5],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,0,1,0,1,1,0,0,0]
 => [[4,4],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,0,1,1,0,0,0,1,0]
 => [[3,3,3],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 3
[1,1,0,1,1,0,0,1,0,0]
 => [[4,3],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,1,1,0,1,0,0,0]
 => [[3,3,3],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,1,1,1,0,0,0,0]
 => [[4,4],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,0,1,0,1,0]
 => [[2,2,2,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,1,0,0,0,1,1,0,0]
 => [[3,2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,1,0,0,1,0]
 => [[3,3,2],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,1,0,0,1,0,1,0,0]
 => [[4,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,0,0,1,1,0,0,0]
 => [[3,3,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,1,0,0,0,1,0]
 => [[2,2,2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,1,0,0,1,0,0]
 => [[3,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,0,1,0,1,0,0,0]
 => [[2,2,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,0,1,1,0,0,0,0]
 => [[3,3,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,1,0,0,0,0,1,0]
 => [[3,3,3],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,1,1,0,0,0,1,0,0]
 => [[4,3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,1,0,0,1,0,0,0]
 => [[3,3,3],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,1,0,1,0,0,0,0]
 => [[4,4],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,1,1,0,0,0,0,0]
 => [[3,3,3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,0,1,0,1,0,1,0]
 => [[1,1,1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,0,1,1,0,0]
 => [[2,1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,1,0,0,1,0]
 => [[2,2,1,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,0,1,1,0,1,0,0]
 => [[3,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,1,1,0,0,0]
 => [[2,2,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,0,1,0,1,0]
 => [[2,2,2,1,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,0,1,1,0,0,1,1,0,0]
 => [[3,2,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,0,1,0,0,1,0]
 => [[3,3,1,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,0,1,1,0,1,0,1,0,0]
 => [[4,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,1,1,0,0,0]
 => [[3,3,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,1,0,0,0,1,0]
 => [[2,2,2,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,1,0,0,1,0,0]
 => [[3,2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,1,0,1,0,0,0]
 => [[2,2,2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,1,1,0,0,0,0]
 => [[3,3,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,0,1,0,1,0,1,0]
 => [[2,2,2,2,1],[1,1,1]]
 => [1,1,1]
 => [1,0,1,1,1,0,0,0]
 => 2
[1,0,1,1,0,0,1,0,1,1,0,0]
 => [[3,2,2,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,1,0,0,1,1,0,0,1,0]
 => [[3,3,2,1],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 3
[1,0,1,1,0,0,1,1,0,1,0,0]
 => [[4,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,0,0,1,1,1,0,0,0]
 => [[3,3,2,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,1,0,1,0,0,1,0,1,0]
 => [[3,3,3,1],[2,2]]
 => [2,2]
 => [1,1,0,0,1,1,0,0]
 => 2
[1,0,1,1,0,1,0,0,1,1,0,0]
 => [[4,3,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,1,0,1,0,1,0,0,1,0]
 => [[4,4,1],[3]]
 => [3]
 => [1,1,1,0,0,0,1,0]
 => 2
[1,0,1,1,0,1,0,1,0,1,0,0]
 => [[5,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,0,1,1,0,0,0]
 => [[4,4,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,1,0,1,1,0,0,0,1,0]
 => [[3,3,3,1],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 3
[1,0,1,1,0,1,1,0,0,1,0,0]
 => [[4,3,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,1,0,0,1,0,1,0,0]
 => [[4,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,0,1,0,0]
 => [[3,2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,1,0,0,0]
 => [[2,2,2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,1,0,0,0,0]
 => [[3,3,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,0,0,0,1,0,0]
 => [[4,3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,0,1,0,0,0,0]
 => [[4,4,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,1,0,0,0,0,0]
 => [[3,3,3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,0,1,0,1,0,1,0,1,0,0]
 => [[6],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,1,0,0,1,0,1,0,1,0,0]
 => [[5,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,1,0,1,0,0,1,0,1,0,0]
 => [[4,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
Description
The finitistic dominant dimension of a Dyck path.
To every LNakayama algebra there is a corresponding Dyck path, see also [[St000684]]. We associate the finitistic dominant dimension of the algebra to the corresponding Dyck path.
Matching statistic: St001068
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001068: Dyck paths ⟶ ℤResult quality: 40% ●values known / values provided: 68%●distinct values known / distinct values provided: 40%
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001068: Dyck paths ⟶ ℤResult quality: 40% ●values known / values provided: 68%●distinct values known / distinct values provided: 40%
Values
[1,0]
 => [[1],[]]
 => []
 => []
 => ? = 0
[1,0,1,0]
 => [[1,1],[]]
 => []
 => []
 => ? ∊ {1,1}
[1,1,0,0]
 => [[2],[]]
 => []
 => []
 => ? ∊ {1,1}
[1,0,1,0,1,0]
 => [[1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,0,1,1,0,0]
 => [[2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,1,0,0,1,0]
 => [[2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,1,0,0]
 => [[3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,1,1,0,0,0]
 => [[2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,0,1,0,1,0,1,0]
 => [[1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,0,0]
 => [[2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,1,0,0,1,0]
 => [[2,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,0,1,0,0]
 => [[3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,0,0]
 => [[2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,0,0,1,0,1,0]
 => [[2,2,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,0,1,1,0,0]
 => [[3,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,1,0,0,1,0]
 => [[3,3],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,0,1,0,1,0,0]
 => [[4],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,0,1,1,0,0,0]
 => [[3,3],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,0,1,0]
 => [[2,2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,1,0,0]
 => [[3,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,1,0,1,0,0,0]
 => [[2,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,1,1,0,0,0,0]
 => [[3,3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,0,1,0,1,0,1,0]
 => [[1,1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,0,1,1,0,0]
 => [[2,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,1,0,0,1,0]
 => [[2,2,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,0,1,0,0]
 => [[3,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,1,1,0,0,0]
 => [[2,2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,0,0,1,0,1,0]
 => [[2,2,2,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,1,0,0,1,1,0,0]
 => [[3,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,0,1,0,0,1,0]
 => [[3,3,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,1,0,1,0,1,0,0]
 => [[4,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,0,1,1,0,0,0]
 => [[3,3,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,1,0,0,0,1,0]
 => [[2,2,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,1,0,0,1,0,0]
 => [[3,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,1,0,1,0,0,0]
 => [[2,2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,1,1,0,0,0,0]
 => [[3,3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,0,0,1,0,1,0,1,0]
 => [[2,2,2,2],[1,1,1]]
 => [1,1,1]
 => [1,0,1,1,1,0,0,0]
 => 2
[1,1,0,0,1,0,1,1,0,0]
 => [[3,2,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,0,1,1,0,0,1,0]
 => [[3,3,2],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 3
[1,1,0,0,1,1,0,1,0,0]
 => [[4,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,0,1,1,1,0,0,0]
 => [[3,3,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,1,0,0,1,0,1,0]
 => [[3,3,3],[2,2]]
 => [2,2]
 => [1,1,0,0,1,1,0,0]
 => 2
[1,1,0,1,0,0,1,1,0,0]
 => [[4,3],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,0,1,0,1,0,0,1,0]
 => [[4,4],[3]]
 => [3]
 => [1,1,1,0,0,0,1,0]
 => 2
[1,1,0,1,0,1,0,1,0,0]
 => [[5],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,0,1,0,1,1,0,0,0]
 => [[4,4],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,0,1,1,0,0,0,1,0]
 => [[3,3,3],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 3
[1,1,0,1,1,0,0,1,0,0]
 => [[4,3],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,1,1,0,1,0,0,0]
 => [[3,3,3],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,1,1,1,0,0,0,0]
 => [[4,4],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,0,1,0,1,0]
 => [[2,2,2,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,1,0,0,0,1,1,0,0]
 => [[3,2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,1,0,0,1,0]
 => [[3,3,2],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,1,0,0,1,0,1,0,0]
 => [[4,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,0,0,1,1,0,0,0]
 => [[3,3,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,1,0,0,0,1,0]
 => [[2,2,2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,1,0,0,1,0,0]
 => [[3,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,0,1,0,1,0,0,0]
 => [[2,2,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,0,1,1,0,0,0,0]
 => [[3,3,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,1,0,0,0,0,1,0]
 => [[3,3,3],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,1,1,0,0,0,1,0,0]
 => [[4,3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,1,0,0,1,0,0,0]
 => [[3,3,3],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,1,0,1,0,0,0,0]
 => [[4,4],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,1,1,0,0,0,0,0]
 => [[3,3,3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,0,1,0,1,0,1,0]
 => [[1,1,1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,0,1,1,0,0]
 => [[2,1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,1,0,0,1,0]
 => [[2,2,1,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,0,1,1,0,1,0,0]
 => [[3,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,1,1,0,0,0]
 => [[2,2,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,0,1,0,1,0]
 => [[2,2,2,1,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,0,1,1,0,0,1,1,0,0]
 => [[3,2,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,0,1,0,0,1,0]
 => [[3,3,1,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,0,1,1,0,1,0,1,0,0]
 => [[4,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,1,1,0,0,0]
 => [[3,3,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,1,0,0,0,1,0]
 => [[2,2,2,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,1,0,0,1,0,0]
 => [[3,2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,1,0,1,0,0,0]
 => [[2,2,2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,1,1,0,0,0,0]
 => [[3,3,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,0,1,0,1,0,1,0]
 => [[2,2,2,2,1],[1,1,1]]
 => [1,1,1]
 => [1,0,1,1,1,0,0,0]
 => 2
[1,0,1,1,0,0,1,0,1,1,0,0]
 => [[3,2,2,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,1,0,0,1,1,0,0,1,0]
 => [[3,3,2,1],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 3
[1,0,1,1,0,0,1,1,0,1,0,0]
 => [[4,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,0,0,1,1,1,0,0,0]
 => [[3,3,2,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,1,0,1,0,0,1,0,1,0]
 => [[3,3,3,1],[2,2]]
 => [2,2]
 => [1,1,0,0,1,1,0,0]
 => 2
[1,0,1,1,0,1,0,0,1,1,0,0]
 => [[4,3,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,1,0,1,0,1,0,0,1,0]
 => [[4,4,1],[3]]
 => [3]
 => [1,1,1,0,0,0,1,0]
 => 2
[1,0,1,1,0,1,0,1,0,1,0,0]
 => [[5,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,0,1,1,0,0,0]
 => [[4,4,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,1,0,1,1,0,0,0,1,0]
 => [[3,3,3,1],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 3
[1,0,1,1,0,1,1,0,0,1,0,0]
 => [[4,3,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,1,0,0,1,0,1,0,0]
 => [[4,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,0,1,0,0]
 => [[3,2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,1,0,0,0]
 => [[2,2,2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,1,0,0,0,0]
 => [[3,3,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,0,0,0,1,0,0]
 => [[4,3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,0,1,0,0,0,0]
 => [[4,4,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,1,0,0,0,0,0]
 => [[3,3,3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,0,1,0,1,0,1,0,1,0,0]
 => [[6],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,1,0,0,1,0,1,0,1,0,0]
 => [[5,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,1,0,1,0,0,1,0,1,0,0]
 => [[4,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
Description
Number of torsionless simple modules in the corresponding Nakayama algebra.
Matching statistic: St001200
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001200: Dyck paths ⟶ ℤResult quality: 40% ●values known / values provided: 68%●distinct values known / distinct values provided: 40%
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001200: Dyck paths ⟶ ℤResult quality: 40% ●values known / values provided: 68%●distinct values known / distinct values provided: 40%
Values
[1,0]
 => [[1],[]]
 => []
 => []
 => ? = 0
[1,0,1,0]
 => [[1,1],[]]
 => []
 => []
 => ? ∊ {1,1}
[1,1,0,0]
 => [[2],[]]
 => []
 => []
 => ? ∊ {1,1}
[1,0,1,0,1,0]
 => [[1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,0,1,1,0,0]
 => [[2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,1,0,0,1,0]
 => [[2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,1,0,0]
 => [[3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,1,1,0,0,0]
 => [[2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,0,1,0,1,0,1,0]
 => [[1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,0,0]
 => [[2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,1,0,0,1,0]
 => [[2,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,0,1,0,0]
 => [[3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,0,0]
 => [[2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,0,0,1,0,1,0]
 => [[2,2,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,0,1,1,0,0]
 => [[3,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,1,0,0,1,0]
 => [[3,3],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,0,1,0,1,0,0]
 => [[4],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,0,1,1,0,0,0]
 => [[3,3],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,0,1,0]
 => [[2,2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,1,0,0]
 => [[3,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,1,0,1,0,0,0]
 => [[2,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,1,1,0,0,0,0]
 => [[3,3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,0,1,0,1,0,1,0]
 => [[1,1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,0,1,1,0,0]
 => [[2,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,1,0,0,1,0]
 => [[2,2,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,0,1,0,0]
 => [[3,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,1,1,0,0,0]
 => [[2,2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,0,0,1,0,1,0]
 => [[2,2,2,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,1,0,0,1,1,0,0]
 => [[3,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,0,1,0,0,1,0]
 => [[3,3,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,1,0,1,0,1,0,0]
 => [[4,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,0,1,1,0,0,0]
 => [[3,3,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,1,0,0,0,1,0]
 => [[2,2,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,1,0,0,1,0,0]
 => [[3,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,1,0,1,0,0,0]
 => [[2,2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,1,1,0,0,0,0]
 => [[3,3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,0,0,1,0,1,0,1,0]
 => [[2,2,2,2],[1,1,1]]
 => [1,1,1]
 => [1,0,1,1,1,0,0,0]
 => 2
[1,1,0,0,1,0,1,1,0,0]
 => [[3,2,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,0,1,1,0,0,1,0]
 => [[3,3,2],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 3
[1,1,0,0,1,1,0,1,0,0]
 => [[4,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,0,1,1,1,0,0,0]
 => [[3,3,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,1,0,0,1,0,1,0]
 => [[3,3,3],[2,2]]
 => [2,2]
 => [1,1,0,0,1,1,0,0]
 => 2
[1,1,0,1,0,0,1,1,0,0]
 => [[4,3],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,0,1,0,1,0,0,1,0]
 => [[4,4],[3]]
 => [3]
 => [1,1,1,0,0,0,1,0]
 => 2
[1,1,0,1,0,1,0,1,0,0]
 => [[5],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,0,1,0,1,1,0,0,0]
 => [[4,4],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,0,1,1,0,0,0,1,0]
 => [[3,3,3],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 3
[1,1,0,1,1,0,0,1,0,0]
 => [[4,3],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,1,1,0,1,0,0,0]
 => [[3,3,3],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,1,1,1,0,0,0,0]
 => [[4,4],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,0,1,0,1,0]
 => [[2,2,2,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,1,0,0,0,1,1,0,0]
 => [[3,2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,1,0,0,1,0]
 => [[3,3,2],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,1,0,0,1,0,1,0,0]
 => [[4,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,0,0,1,1,0,0,0]
 => [[3,3,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,1,0,0,0,1,0]
 => [[2,2,2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,1,0,0,1,0,0]
 => [[3,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,0,1,0,1,0,0,0]
 => [[2,2,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,0,1,1,0,0,0,0]
 => [[3,3,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,1,0,0,0,0,1,0]
 => [[3,3,3],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,1,1,0,0,0,1,0,0]
 => [[4,3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,1,0,0,1,0,0,0]
 => [[3,3,3],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,1,0,1,0,0,0,0]
 => [[4,4],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,1,1,0,0,0,0,0]
 => [[3,3,3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,0,1,0,1,0,1,0]
 => [[1,1,1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,0,1,1,0,0]
 => [[2,1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,1,0,0,1,0]
 => [[2,2,1,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,0,1,1,0,1,0,0]
 => [[3,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,1,1,0,0,0]
 => [[2,2,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,0,1,0,1,0]
 => [[2,2,2,1,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,0,1,1,0,0,1,1,0,0]
 => [[3,2,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,0,1,0,0,1,0]
 => [[3,3,1,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,0,1,1,0,1,0,1,0,0]
 => [[4,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,1,1,0,0,0]
 => [[3,3,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,1,0,0,0,1,0]
 => [[2,2,2,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,1,0,0,1,0,0]
 => [[3,2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,1,0,1,0,0,0]
 => [[2,2,2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,1,1,0,0,0,0]
 => [[3,3,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,0,1,0,1,0,1,0]
 => [[2,2,2,2,1],[1,1,1]]
 => [1,1,1]
 => [1,0,1,1,1,0,0,0]
 => 2
[1,0,1,1,0,0,1,0,1,1,0,0]
 => [[3,2,2,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,1,0,0,1,1,0,0,1,0]
 => [[3,3,2,1],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 3
[1,0,1,1,0,0,1,1,0,1,0,0]
 => [[4,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,0,0,1,1,1,0,0,0]
 => [[3,3,2,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,1,0,1,0,0,1,0,1,0]
 => [[3,3,3,1],[2,2]]
 => [2,2]
 => [1,1,0,0,1,1,0,0]
 => 2
[1,0,1,1,0,1,0,0,1,1,0,0]
 => [[4,3,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,1,0,1,0,1,0,0,1,0]
 => [[4,4,1],[3]]
 => [3]
 => [1,1,1,0,0,0,1,0]
 => 2
[1,0,1,1,0,1,0,1,0,1,0,0]
 => [[5,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,0,1,1,0,0,0]
 => [[4,4,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,1,0,1,1,0,0,0,1,0]
 => [[3,3,3,1],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 3
[1,0,1,1,0,1,1,0,0,1,0,0]
 => [[4,3,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,1,0,0,1,0,1,0,0]
 => [[4,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,0,1,0,0]
 => [[3,2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,1,0,0,0]
 => [[2,2,2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,1,0,0,0,0]
 => [[3,3,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,0,0,0,1,0,0]
 => [[4,3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,0,1,0,0,0,0]
 => [[4,4,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,1,0,0,0,0,0]
 => [[3,3,3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,0,1,0,1,0,1,0,1,0,0]
 => [[6],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,1,0,0,1,0,1,0,1,0,0]
 => [[5,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,1,0,1,0,0,1,0,1,0,0]
 => [[4,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
Description
The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Matching statistic: St001203
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001203: Dyck paths ⟶ ℤResult quality: 40% ●values known / values provided: 68%●distinct values known / distinct values provided: 40%
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001203: Dyck paths ⟶ ℤResult quality: 40% ●values known / values provided: 68%●distinct values known / distinct values provided: 40%
Values
[1,0]
 => [[1],[]]
 => []
 => []
 => ? = 0
[1,0,1,0]
 => [[1,1],[]]
 => []
 => []
 => ? ∊ {1,1}
[1,1,0,0]
 => [[2],[]]
 => []
 => []
 => ? ∊ {1,1}
[1,0,1,0,1,0]
 => [[1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,0,1,1,0,0]
 => [[2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,1,0,0,1,0]
 => [[2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,1,0,0]
 => [[3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,1,1,0,0,0]
 => [[2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,0,1,0,1,0,1,0]
 => [[1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,0,0]
 => [[2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,1,0,0,1,0]
 => [[2,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,0,1,0,0]
 => [[3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,0,0]
 => [[2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,0,0,1,0,1,0]
 => [[2,2,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,0,1,1,0,0]
 => [[3,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,1,0,0,1,0]
 => [[3,3],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,0,1,0,1,0,0]
 => [[4],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,0,1,1,0,0,0]
 => [[3,3],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,0,1,0]
 => [[2,2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,1,0,0]
 => [[3,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,1,0,1,0,0,0]
 => [[2,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,1,1,0,0,0,0]
 => [[3,3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,0,1,0,1,0,1,0]
 => [[1,1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,0,1,1,0,0]
 => [[2,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,1,0,0,1,0]
 => [[2,2,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,0,1,0,0]
 => [[3,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,1,1,0,0,0]
 => [[2,2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,0,0,1,0,1,0]
 => [[2,2,2,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,1,0,0,1,1,0,0]
 => [[3,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,0,1,0,0,1,0]
 => [[3,3,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,1,0,1,0,1,0,0]
 => [[4,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,0,1,1,0,0,0]
 => [[3,3,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,1,0,0,0,1,0]
 => [[2,2,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,1,0,0,1,0,0]
 => [[3,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,1,0,1,0,0,0]
 => [[2,2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,1,1,0,0,0,0]
 => [[3,3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,0,0,1,0,1,0,1,0]
 => [[2,2,2,2],[1,1,1]]
 => [1,1,1]
 => [1,0,1,1,1,0,0,0]
 => 2
[1,1,0,0,1,0,1,1,0,0]
 => [[3,2,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,0,1,1,0,0,1,0]
 => [[3,3,2],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 3
[1,1,0,0,1,1,0,1,0,0]
 => [[4,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,0,1,1,1,0,0,0]
 => [[3,3,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,1,0,0,1,0,1,0]
 => [[3,3,3],[2,2]]
 => [2,2]
 => [1,1,0,0,1,1,0,0]
 => 2
[1,1,0,1,0,0,1,1,0,0]
 => [[4,3],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,0,1,0,1,0,0,1,0]
 => [[4,4],[3]]
 => [3]
 => [1,1,1,0,0,0,1,0]
 => 2
[1,1,0,1,0,1,0,1,0,0]
 => [[5],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,0,1,0,1,1,0,0,0]
 => [[4,4],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,0,1,1,0,0,0,1,0]
 => [[3,3,3],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 3
[1,1,0,1,1,0,0,1,0,0]
 => [[4,3],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,1,1,0,1,0,0,0]
 => [[3,3,3],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,1,1,1,0,0,0,0]
 => [[4,4],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,0,1,0,1,0]
 => [[2,2,2,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,1,0,0,0,1,1,0,0]
 => [[3,2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,1,0,0,1,0]
 => [[3,3,2],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,1,0,0,1,0,1,0,0]
 => [[4,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,0,0,1,1,0,0,0]
 => [[3,3,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,1,0,0,0,1,0]
 => [[2,2,2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,1,0,0,1,0,0]
 => [[3,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,0,1,0,1,0,0,0]
 => [[2,2,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,0,1,1,0,0,0,0]
 => [[3,3,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,1,0,0,0,0,1,0]
 => [[3,3,3],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,1,1,0,0,0,1,0,0]
 => [[4,3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,1,0,0,1,0,0,0]
 => [[3,3,3],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,1,0,1,0,0,0,0]
 => [[4,4],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,1,1,0,0,0,0,0]
 => [[3,3,3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,0,1,0,1,0,1,0]
 => [[1,1,1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,0,1,1,0,0]
 => [[2,1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,1,0,0,1,0]
 => [[2,2,1,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,0,1,1,0,1,0,0]
 => [[3,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,1,1,0,0,0]
 => [[2,2,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,0,1,0,1,0]
 => [[2,2,2,1,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,0,1,1,0,0,1,1,0,0]
 => [[3,2,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,0,1,0,0,1,0]
 => [[3,3,1,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,0,1,1,0,1,0,1,0,0]
 => [[4,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,1,1,0,0,0]
 => [[3,3,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,1,0,0,0,1,0]
 => [[2,2,2,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,1,0,0,1,0,0]
 => [[3,2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,1,0,1,0,0,0]
 => [[2,2,2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,1,1,0,0,0,0]
 => [[3,3,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,0,1,0,1,0,1,0]
 => [[2,2,2,2,1],[1,1,1]]
 => [1,1,1]
 => [1,0,1,1,1,0,0,0]
 => 2
[1,0,1,1,0,0,1,0,1,1,0,0]
 => [[3,2,2,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,1,0,0,1,1,0,0,1,0]
 => [[3,3,2,1],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 3
[1,0,1,1,0,0,1,1,0,1,0,0]
 => [[4,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,0,0,1,1,1,0,0,0]
 => [[3,3,2,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,1,0,1,0,0,1,0,1,0]
 => [[3,3,3,1],[2,2]]
 => [2,2]
 => [1,1,0,0,1,1,0,0]
 => 2
[1,0,1,1,0,1,0,0,1,1,0,0]
 => [[4,3,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,1,0,1,0,1,0,0,1,0]
 => [[4,4,1],[3]]
 => [3]
 => [1,1,1,0,0,0,1,0]
 => 2
[1,0,1,1,0,1,0,1,0,1,0,0]
 => [[5,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,0,1,1,0,0,0]
 => [[4,4,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,1,0,1,1,0,0,0,1,0]
 => [[3,3,3,1],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 3
[1,0,1,1,0,1,1,0,0,1,0,0]
 => [[4,3,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,1,0,0,1,0,1,0,0]
 => [[4,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,0,1,0,0]
 => [[3,2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,1,0,0,0]
 => [[2,2,2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,1,0,0,0,0]
 => [[3,3,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,0,0,0,1,0,0]
 => [[4,3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,0,1,0,0,0,0]
 => [[4,4,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,1,0,0,0,0,0]
 => [[3,3,3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,0,1,0,1,0,1,0,1,0,0]
 => [[6],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,1,0,0,1,0,1,0,1,0,0]
 => [[5,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,1,0,1,0,0,1,0,1,0,0]
 => [[4,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
Description
We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows:
In the list $L$ delete the first entry $c_0$ and substract from all other entries $n-1$ and then append the last element 1 (this was suggested by Christian Stump). The result is a Kupisch series of an LNakayama algebra.
Example:
[5,6,6,6,6] goes into [2,2,2,2,1].
Now associate to the CNakayama algebra with the above properties the Dyck path corresponding to the Kupisch series of the LNakayama algebra.
The statistic return the global dimension of the CNakayama algebra divided by 2. 
Matching statistic: St001526
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001526: Dyck paths ⟶ ℤResult quality: 60% ●values known / values provided: 68%●distinct values known / distinct values provided: 60%
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001526: Dyck paths ⟶ ℤResult quality: 60% ●values known / values provided: 68%●distinct values known / distinct values provided: 60%
Values
[1,0]
 => [[1],[]]
 => []
 => []
 => ? = 0
[1,0,1,0]
 => [[1,1],[]]
 => []
 => []
 => ? ∊ {1,1}
[1,1,0,0]
 => [[2],[]]
 => []
 => []
 => ? ∊ {1,1}
[1,0,1,0,1,0]
 => [[1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,0,1,1,0,0]
 => [[2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,1,0,0,1,0]
 => [[2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,1,0,0]
 => [[3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,1,1,0,0,0]
 => [[2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,0,1,0,1,0,1,0]
 => [[1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,0,0]
 => [[2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,1,0,0,1,0]
 => [[2,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,0,1,0,0]
 => [[3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,0,0]
 => [[2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,0,0,1,0,1,0]
 => [[2,2,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,0,1,1,0,0]
 => [[3,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,1,0,0,1,0]
 => [[3,3],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,0,1,0,1,0,0]
 => [[4],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,0,1,1,0,0,0]
 => [[3,3],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,0,1,0]
 => [[2,2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,1,0,0]
 => [[3,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,1,0,1,0,0,0]
 => [[2,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,1,1,0,0,0,0]
 => [[3,3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,0,1,0,1,0,1,0]
 => [[1,1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,0,1,1,0,0]
 => [[2,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,1,0,0,1,0]
 => [[2,2,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,0,1,0,0]
 => [[3,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,1,1,0,0,0]
 => [[2,2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,0,0,1,0,1,0]
 => [[2,2,2,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,1,0,0,1,1,0,0]
 => [[3,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,0,1,0,0,1,0]
 => [[3,3,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,1,0,1,0,1,0,0]
 => [[4,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,0,1,1,0,0,0]
 => [[3,3,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,1,0,0,0,1,0]
 => [[2,2,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,1,0,0,1,0,0]
 => [[3,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,1,0,1,0,0,0]
 => [[2,2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,1,1,0,0,0,0]
 => [[3,3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,0,0,1,0,1,0,1,0]
 => [[2,2,2,2],[1,1,1]]
 => [1,1,1]
 => [1,0,1,1,1,0,0,0]
 => 3
[1,1,0,0,1,0,1,1,0,0]
 => [[3,2,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,0,1,1,0,0,1,0]
 => [[3,3,2],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 2
[1,1,0,0,1,1,0,1,0,0]
 => [[4,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,0,1,1,1,0,0,0]
 => [[3,3,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,1,0,0,1,0,1,0]
 => [[3,3,3],[2,2]]
 => [2,2]
 => [1,1,0,0,1,1,0,0]
 => 2
[1,1,0,1,0,0,1,1,0,0]
 => [[4,3],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,0,1,0,1,0,0,1,0]
 => [[4,4],[3]]
 => [3]
 => [1,1,1,0,0,0,1,0]
 => 3
[1,1,0,1,0,1,0,1,0,0]
 => [[5],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,0,1,0,1,1,0,0,0]
 => [[4,4],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,0,1,1,0,0,0,1,0]
 => [[3,3,3],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 2
[1,1,0,1,1,0,0,1,0,0]
 => [[4,3],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,1,1,0,1,0,0,0]
 => [[3,3,3],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,1,1,1,0,0,0,0]
 => [[4,4],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,0,1,0,1,0]
 => [[2,2,2,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,1,0,0,0,1,1,0,0]
 => [[3,2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,1,0,0,1,0]
 => [[3,3,2],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,1,0,0,1,0,1,0,0]
 => [[4,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,0,0,1,1,0,0,0]
 => [[3,3,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,1,0,0,0,1,0]
 => [[2,2,2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,1,0,0,1,0,0]
 => [[3,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,0,1,0,1,0,0,0]
 => [[2,2,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,0,1,1,0,0,0,0]
 => [[3,3,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,1,0,0,0,0,1,0]
 => [[3,3,3],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,1,1,0,0,0,1,0,0]
 => [[4,3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,1,0,0,1,0,0,0]
 => [[3,3,3],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,1,0,1,0,0,0,0]
 => [[4,4],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,1,1,0,0,0,0,0]
 => [[3,3,3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,0,1,0,1,0,1,0]
 => [[1,1,1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,0,1,1,0,0]
 => [[2,1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,1,0,0,1,0]
 => [[2,2,1,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,0,1,1,0,1,0,0]
 => [[3,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,1,1,0,0,0]
 => [[2,2,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,0,1,0,1,0]
 => [[2,2,2,1,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,0,1,1,0,0,1,1,0,0]
 => [[3,2,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,0,1,0,0,1,0]
 => [[3,3,1,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,0,1,1,0,1,0,1,0,0]
 => [[4,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,1,1,0,0,0]
 => [[3,3,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,1,0,0,0,1,0]
 => [[2,2,2,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,1,0,0,1,0,0]
 => [[3,2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,1,0,1,0,0,0]
 => [[2,2,2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,1,1,0,0,0,0]
 => [[3,3,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,0,1,0,1,0,1,0]
 => [[2,2,2,2,1],[1,1,1]]
 => [1,1,1]
 => [1,0,1,1,1,0,0,0]
 => 3
[1,0,1,1,0,0,1,0,1,1,0,0]
 => [[3,2,2,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,1,0,0,1,1,0,0,1,0]
 => [[3,3,2,1],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 2
[1,0,1,1,0,0,1,1,0,1,0,0]
 => [[4,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,0,0,1,1,1,0,0,0]
 => [[3,3,2,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,1,0,1,0,0,1,0,1,0]
 => [[3,3,3,1],[2,2]]
 => [2,2]
 => [1,1,0,0,1,1,0,0]
 => 2
[1,0,1,1,0,1,0,0,1,1,0,0]
 => [[4,3,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,1,0,1,0,1,0,0,1,0]
 => [[4,4,1],[3]]
 => [3]
 => [1,1,1,0,0,0,1,0]
 => 3
[1,0,1,1,0,1,0,1,0,1,0,0]
 => [[5,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,0,1,1,0,0,0]
 => [[4,4,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,1,0,1,1,0,0,0,1,0]
 => [[3,3,3,1],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 2
[1,0,1,1,0,1,1,0,0,1,0,0]
 => [[4,3,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,1,0,0,1,0,1,0,0]
 => [[4,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,0,1,0,0]
 => [[3,2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,1,0,0,0]
 => [[2,2,2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,1,0,0,0,0]
 => [[3,3,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,0,0,0,1,0,0]
 => [[4,3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,0,1,0,0,0,0]
 => [[4,4,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,1,0,0,0,0,0]
 => [[3,3,3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,0,1,0,1,0,1,0,1,0,0]
 => [[6],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,1,0,0,1,0,1,0,1,0,0]
 => [[5,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,1,0,1,0,0,1,0,1,0,0]
 => [[4,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
Description
The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St001530
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001530: Dyck paths ⟶ ℤResult quality: 40% ●values known / values provided: 68%●distinct values known / distinct values provided: 40%
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001530: Dyck paths ⟶ ℤResult quality: 40% ●values known / values provided: 68%●distinct values known / distinct values provided: 40%
Values
[1,0]
 => [[1],[]]
 => []
 => []
 => ? = 0
[1,0,1,0]
 => [[1,1],[]]
 => []
 => []
 => ? ∊ {1,1}
[1,1,0,0]
 => [[2],[]]
 => []
 => []
 => ? ∊ {1,1}
[1,0,1,0,1,0]
 => [[1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,0,1,1,0,0]
 => [[2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,1,0,0,1,0]
 => [[2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,1,0,0]
 => [[3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,1,1,0,0,0]
 => [[2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2}
[1,0,1,0,1,0,1,0]
 => [[1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,0,0]
 => [[2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,1,0,0,1,0]
 => [[2,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,0,1,0,0]
 => [[3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,0,0]
 => [[2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,0,0,1,0,1,0]
 => [[2,2,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,0,1,1,0,0]
 => [[3,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,1,0,0,1,0]
 => [[3,3],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,0,1,0,1,0,0]
 => [[4],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,0,1,1,0,0,0]
 => [[3,3],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,0,1,0]
 => [[2,2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,1,0,0]
 => [[3,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,1,0,1,0,0,0]
 => [[2,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,1,1,1,0,0,0,0]
 => [[3,3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,0,1,0,1,0,1,0]
 => [[1,1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,0,1,1,0,0]
 => [[2,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,1,0,0,1,0]
 => [[2,2,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,0,1,0,0]
 => [[3,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,1,1,0,0,0]
 => [[2,2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,0,0,1,0,1,0]
 => [[2,2,2,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,1,0,0,1,1,0,0]
 => [[3,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,0,1,0,0,1,0]
 => [[3,3,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,1,0,1,0,1,0,0]
 => [[4,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,0,1,1,0,0,0]
 => [[3,3,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,1,0,0,0,1,0]
 => [[2,2,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,1,0,0,1,0,0]
 => [[3,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,1,0,1,0,0,0]
 => [[2,2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,1,1,1,0,0,0,0]
 => [[3,3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,0,0,1,0,1,0,1,0]
 => [[2,2,2,2],[1,1,1]]
 => [1,1,1]
 => [1,0,1,1,1,0,0,0]
 => 2
[1,1,0,0,1,0,1,1,0,0]
 => [[3,2,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,0,1,1,0,0,1,0]
 => [[3,3,2],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 3
[1,1,0,0,1,1,0,1,0,0]
 => [[4,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,0,1,1,1,0,0,0]
 => [[3,3,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,1,0,0,1,0,1,0]
 => [[3,3,3],[2,2]]
 => [2,2]
 => [1,1,0,0,1,1,0,0]
 => 2
[1,1,0,1,0,0,1,1,0,0]
 => [[4,3],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,0,1,0,1,0,0,1,0]
 => [[4,4],[3]]
 => [3]
 => [1,1,1,0,0,0,1,0]
 => 2
[1,1,0,1,0,1,0,1,0,0]
 => [[5],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,0,1,0,1,1,0,0,0]
 => [[4,4],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,0,1,1,0,0,0,1,0]
 => [[3,3,3],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 3
[1,1,0,1,1,0,0,1,0,0]
 => [[4,3],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,0,1,1,0,1,0,0,0]
 => [[3,3,3],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,0,1,1,1,0,0,0,0]
 => [[4,4],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,0,1,0,1,0]
 => [[2,2,2,2],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,1,1,0,0,0,1,1,0,0]
 => [[3,2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,0,1,0,0,1,0]
 => [[3,3,2],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,1,0,0,1,0,1,0,0]
 => [[4,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,0,0,1,1,0,0,0]
 => [[3,3,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,1,0,0,0,1,0]
 => [[2,2,2,2],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,0,1,0,0,1,0,0]
 => [[3,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,0,1,0,1,0,0,0]
 => [[2,2,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,0,1,1,0,0,0,0]
 => [[3,3,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,1,0,0,0,0,1,0]
 => [[3,3,3],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,1,1,1,0,0,0,1,0,0]
 => [[4,3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,1,0,0,1,0,0,0]
 => [[3,3,3],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,1,1,1,0,1,0,0,0,0]
 => [[4,4],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,1,1,1,1,0,0,0,0,0]
 => [[3,3,3],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[1,0,1,0,1,0,1,0,1,0,1,0]
 => [[1,1,1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,0,1,1,0,0]
 => [[2,1,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,1,0,0,1,0]
 => [[2,2,1,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,0,1,1,0,1,0,0]
 => [[3,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,1,1,0,0,0]
 => [[2,2,1,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,0,1,0,1,0]
 => [[2,2,2,1,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,0,1,1,0,0,1,1,0,0]
 => [[3,2,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,0,1,0,0,1,0]
 => [[3,3,1,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,0,1,1,0,1,0,1,0,0]
 => [[4,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,1,1,0,0,0]
 => [[3,3,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,1,0,0,0,1,0]
 => [[2,2,2,1,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,0,1,1,1,0,0,1,0,0]
 => [[3,2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,1,0,1,0,0,0]
 => [[2,2,2,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,1,1,0,0,0,0]
 => [[3,3,1,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,0,1,0,1,0,1,0]
 => [[2,2,2,2,1],[1,1,1]]
 => [1,1,1]
 => [1,0,1,1,1,0,0,0]
 => 2
[1,0,1,1,0,0,1,0,1,1,0,0]
 => [[3,2,2,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,1,0,0,1,1,0,0,1,0]
 => [[3,3,2,1],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 3
[1,0,1,1,0,0,1,1,0,1,0,0]
 => [[4,2,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,0,0,1,1,1,0,0,0]
 => [[3,3,2,1],[1,1]]
 => [1,1]
 => [1,0,1,1,0,0]
 => 2
[1,0,1,1,0,1,0,0,1,0,1,0]
 => [[3,3,3,1],[2,2]]
 => [2,2]
 => [1,1,0,0,1,1,0,0]
 => 2
[1,0,1,1,0,1,0,0,1,1,0,0]
 => [[4,3,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,1,0,1,0,1,0,0,1,0]
 => [[4,4,1],[3]]
 => [3]
 => [1,1,1,0,0,0,1,0]
 => 2
[1,0,1,1,0,1,0,1,0,1,0,0]
 => [[5,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,0,1,1,0,0,0]
 => [[4,4,1],[2]]
 => [2]
 => [1,1,0,0,1,0]
 => 2
[1,0,1,1,0,1,1,0,0,0,1,0]
 => [[3,3,3,1],[2,1]]
 => [2,1]
 => [1,0,1,0,1,0]
 => 3
[1,0,1,1,0,1,1,0,0,1,0,0]
 => [[4,3,1],[1]]
 => [1]
 => [1,0,1,0]
 => 2
[1,0,1,1,1,0,0,1,0,1,0,0]
 => [[4,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,0,1,0,0]
 => [[3,2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,1,0,0,0]
 => [[2,2,2,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,1,0,0,0,0]
 => [[3,3,2,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,0,0,0,1,0,0]
 => [[4,3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,0,1,0,0,0,0]
 => [[4,4,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,1,0,0,0,0,0]
 => [[3,3,3,1],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,0,1,0,1,0,1,0,1,0,0]
 => [[6],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,1,0,0,1,0,1,0,1,0,0]
 => [[5,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,1,0,1,0,0,1,0,1,0,0]
 => [[4,2,2],[]]
 => []
 => []
 => ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
Description
The depth of a Dyck path. That is the depth of the corresponding Nakayama algebra with a linear quiver.
Matching statistic: St000260
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 40% ●values known / values provided: 66%●distinct values known / distinct values provided: 40%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 40% ●values known / values provided: 66%●distinct values known / distinct values provided: 40%
Values
[1,0]
 => [2,1] => ([],2)
 => ([],2)
 => ? = 0
[1,0,1,0]
 => [3,1,2] => ([(1,2)],3)
 => ([(1,2)],3)
 => ? ∊ {1,1}
[1,1,0,0]
 => [2,3,1] => ([(1,2)],3)
 => ([(1,2)],3)
 => ? ∊ {1,1}
[1,0,1,0,1,0]
 => [4,1,2,3] => ([(1,2),(2,3)],4)
 => ([(1,3),(2,3)],4)
 => ? ∊ {2,2,2}
[1,0,1,1,0,0]
 => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
 => ([(0,3),(1,2),(2,3)],4)
 => 2
[1,1,0,0,1,0]
 => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
 => ([(0,3),(1,2),(2,3)],4)
 => 2
[1,1,0,1,0,0]
 => [4,3,1,2] => ([(2,3)],4)
 => ([(2,3)],4)
 => ? ∊ {2,2,2}
[1,1,1,0,0,0]
 => [2,3,4,1] => ([(1,2),(2,3)],4)
 => ([(1,3),(2,3)],4)
 => ? ∊ {2,2,2}
[1,0,1,0,1,0,1,0]
 => [5,1,2,3,4] => ([(1,4),(3,2),(4,3)],5)
 => ([(1,4),(2,3),(3,4)],5)
 => ? ∊ {2,2,2,2,2,2}
[1,0,1,0,1,1,0,0]
 => [4,1,2,5,3] => ([(0,4),(1,2),(2,3),(2,4)],5)
 => ([(0,4),(1,4),(2,3),(3,4)],5)
 => 2
[1,0,1,1,0,0,1,0]
 => [3,1,5,2,4] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
 => 2
[1,0,1,1,0,1,0,0]
 => [5,1,4,2,3] => ([(1,3),(1,4),(4,2)],5)
 => ([(1,4),(2,3),(3,4)],5)
 => ? ∊ {2,2,2,2,2,2}
[1,0,1,1,1,0,0,0]
 => [3,1,4,5,2] => ([(0,4),(1,2),(1,4),(4,3)],5)
 => ([(0,4),(1,4),(2,3),(3,4)],5)
 => 2
[1,1,0,0,1,0,1,0]
 => [2,5,1,3,4] => ([(0,4),(1,2),(1,4),(4,3)],5)
 => ([(0,4),(1,4),(2,3),(3,4)],5)
 => 2
[1,1,0,0,1,1,0,0]
 => [2,4,1,5,3] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
 => 2
[1,1,0,1,0,0,1,0]
 => [5,3,1,2,4] => ([(1,4),(2,3),(3,4)],5)
 => ([(1,4),(2,3),(3,4)],5)
 => ? ∊ {2,2,2,2,2,2}
[1,1,0,1,0,1,0,0]
 => [5,4,1,2,3] => ([(2,3),(3,4)],5)
 => ([(2,4),(3,4)],5)
 => ? ∊ {2,2,2,2,2,2}
[1,1,0,1,1,0,0,0]
 => [4,3,1,5,2] => ([(0,4),(1,4),(2,3),(2,4)],5)
 => ([(0,4),(1,4),(2,3),(3,4)],5)
 => 2
[1,1,1,0,0,0,1,0]
 => [2,3,5,1,4] => ([(0,4),(1,2),(2,3),(2,4)],5)
 => ([(0,4),(1,4),(2,3),(3,4)],5)
 => 2
[1,1,1,0,0,1,0,0]
 => [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(1,4)],5)
 => ([(0,4),(1,4),(2,3),(3,4)],5)
 => 2
[1,1,1,0,1,0,0,0]
 => [5,3,4,1,2] => ([(1,4),(2,3)],5)
 => ([(1,4),(2,3)],5)
 => ? ∊ {2,2,2,2,2,2}
[1,1,1,1,0,0,0,0]
 => [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
 => ([(1,4),(2,3),(3,4)],5)
 => ? ∊ {2,2,2,2,2,2}
[1,0,1,0,1,0,1,0,1,0]
 => [6,1,2,3,4,5] => ([(1,5),(3,4),(4,2),(5,3)],6)
 => ([(1,5),(2,4),(3,4),(3,5)],6)
 => ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[1,0,1,0,1,0,1,1,0,0]
 => [5,1,2,3,6,4] => ([(0,5),(1,3),(3,4),(4,2),(4,5)],6)
 => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
 => 2
[1,0,1,0,1,1,0,0,1,0]
 => [4,1,2,6,3,5] => ([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6)
 => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
 => 2
[1,0,1,0,1,1,0,1,0,0]
 => [6,1,2,5,3,4] => ([(1,5),(4,3),(5,2),(5,4)],6)
 => ([(1,5),(2,5),(3,4),(4,5)],6)
 => ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[1,0,1,0,1,1,1,0,0,0]
 => [4,1,2,5,6,3] => ([(0,5),(1,4),(4,2),(4,5),(5,3)],6)
 => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
 => 2
[1,0,1,1,0,0,1,0,1,0]
 => [3,1,6,2,4,5] => ([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6)
 => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
 => 2
[1,0,1,1,0,0,1,1,0,0]
 => [3,1,5,2,6,4] => ([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
 => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
 => 2
[1,0,1,1,0,1,0,0,1,0]
 => [6,1,4,2,3,5] => ([(1,3),(1,4),(2,5),(3,5),(4,2)],6)
 => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
 => ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[1,0,1,1,0,1,0,1,0,0]
 => [6,1,5,2,3,4] => ([(1,3),(1,5),(4,2),(5,4)],6)
 => ([(1,5),(2,4),(3,4),(3,5)],6)
 => ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[1,0,1,1,0,1,1,0,0,0]
 => [5,1,4,2,6,3] => ([(0,5),(1,3),(1,4),(3,5),(4,2),(4,5)],6)
 => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
 => 2
[1,0,1,1,1,0,0,0,1,0]
 => [3,1,4,6,2,5] => ([(0,4),(1,2),(1,4),(2,5),(4,3),(4,5)],6)
 => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
 => 2
[1,0,1,1,1,0,0,1,0,0]
 => [3,1,6,5,2,4] => ([(0,2),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3)],6)
 => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
 => 2
[1,0,1,1,1,0,1,0,0,0]
 => [6,1,4,5,2,3] => ([(1,4),(1,5),(4,3),(5,2)],6)
 => ([(1,5),(2,4),(3,4),(3,5)],6)
 => ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[1,0,1,1,1,1,0,0,0,0]
 => [3,1,4,5,6,2] => ([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
 => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
 => 2
[1,1,0,0,1,0,1,0,1,0]
 => [2,6,1,3,4,5] => ([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
 => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
 => 2
[1,1,0,0,1,0,1,1,0,0]
 => [2,5,1,3,6,4] => ([(0,4),(1,2),(1,4),(2,5),(4,3),(4,5)],6)
 => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
 => 2
[1,1,0,0,1,1,0,0,1,0]
 => [2,4,1,6,3,5] => ([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
 => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
 => 2
[1,1,0,0,1,1,0,1,0,0]
 => [2,6,1,5,3,4] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(5,2)],6)
 => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
 => 2
[1,1,0,0,1,1,1,0,0,0]
 => [2,4,1,5,6,3] => ([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6)
 => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
 => 2
[1,1,0,1,0,0,1,0,1,0]
 => [6,3,1,2,4,5] => ([(1,5),(2,3),(3,5),(5,4)],6)
 => ([(1,5),(2,5),(3,4),(4,5)],6)
 => ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[1,1,0,1,0,0,1,1,0,0]
 => [5,3,1,2,6,4] => ([(0,5),(1,4),(1,5),(2,3),(3,4),(3,5)],6)
 => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
 => 2
[1,1,0,1,0,1,0,0,1,0]
 => [6,4,1,2,3,5] => ([(1,5),(2,3),(3,4),(4,5)],6)
 => ([(1,5),(2,4),(3,4),(3,5)],6)
 => ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[1,1,0,1,0,1,0,1,0,0]
 => [5,6,1,2,3,4] => ([(0,5),(1,3),(4,2),(5,4)],6)
 => ([(0,1),(2,5),(3,4),(4,5)],6)
 => ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[1,1,0,1,0,1,1,0,0,0]
 => [5,4,1,2,6,3] => ([(0,5),(1,5),(2,3),(3,4),(3,5)],6)
 => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
 => 2
[1,1,0,1,1,0,0,0,1,0]
 => [4,3,1,6,2,5] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6)
 => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
 => 2
[1,1,0,1,1,0,0,1,0,0]
 => [6,3,1,5,2,4] => ([(1,4),(1,5),(2,3),(2,4),(3,5)],6)
 => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
 => ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[1,1,0,1,1,0,1,0,0,0]
 => [6,4,1,5,2,3] => ([(1,5),(2,3),(2,5),(3,4)],6)
 => ([(1,5),(2,4),(3,4),(3,5)],6)
 => ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[1,1,0,1,1,1,0,0,0,0]
 => [4,3,1,5,6,2] => ([(0,5),(1,5),(2,3),(2,5),(5,4)],6)
 => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
 => 2
[1,1,1,0,0,0,1,0,1,0]
 => [2,3,6,1,4,5] => ([(0,5),(1,4),(4,2),(4,5),(5,3)],6)
 => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
 => 2
[1,1,1,0,0,0,1,1,0,0]
 => [2,3,5,1,6,4] => ([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6)
 => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
 => 2
[1,1,1,0,0,1,0,0,1,0]
 => [2,6,4,1,3,5] => ([(0,4),(1,2),(1,3),(1,4),(3,5),(4,5)],6)
 => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
 => 2
[1,1,1,0,0,1,0,1,0,0]
 => [2,6,5,1,3,4] => ([(0,5),(1,2),(1,3),(1,5),(5,4)],6)
 => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
 => 2
[1,1,1,0,0,1,1,0,0,0]
 => [2,5,4,1,6,3] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,5),(3,5)],6)
 => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
 => 2
[1,1,1,0,1,0,0,0,1,0]
 => [6,3,4,1,2,5] => ([(1,4),(2,3),(3,5),(4,5)],6)
 => ([(1,5),(2,4),(3,4),(3,5)],6)
 => ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[1,1,1,0,1,0,0,1,0,0]
 => [6,3,5,1,2,4] => ([(1,4),(2,3),(2,5),(4,5)],6)
 => ([(1,5),(2,4),(3,4),(3,5)],6)
 => ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[1,1,1,0,1,0,1,0,0,0]
 => [6,5,4,1,2,3] => ([(3,4),(4,5)],6)
 => ([(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[1,1,1,0,1,1,0,0,0,0]
 => [5,3,4,1,6,2] => ([(0,5),(1,4),(2,3),(2,5),(4,5)],6)
 => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
 => 2
[1,1,1,1,0,0,0,0,1,0]
 => [2,3,4,6,1,5] => ([(0,5),(1,3),(3,4),(4,2),(4,5)],6)
 => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
 => 2
[1,1,1,1,0,0,0,1,0,0]
 => [2,3,6,5,1,4] => ([(0,5),(1,4),(4,2),(4,3),(4,5)],6)
 => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
 => 2
[1,1,1,1,0,0,1,0,0,0]
 => [2,6,4,5,1,3] => ([(0,5),(1,3),(1,4),(1,5),(4,2)],6)
 => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
 => 2
[1,1,1,1,0,1,0,0,0,0]
 => [6,3,4,5,1,2] => ([(1,3),(2,4),(4,5)],6)
 => ([(1,2),(3,5),(4,5)],6)
 => ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[1,1,1,1,1,0,0,0,0,0]
 => [2,3,4,5,6,1] => ([(1,5),(3,4),(4,2),(5,3)],6)
 => ([(1,5),(2,4),(3,4),(3,5)],6)
 => ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[1,0,1,0,1,0,1,0,1,0,1,0]
 => [7,1,2,3,4,5,6] => ([(1,6),(3,5),(4,3),(5,2),(6,4)],7)
 => ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
 => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,0,1,1,0,0]
 => [6,1,2,3,4,7,5] => ([(0,6),(1,4),(3,5),(4,3),(5,2),(5,6)],7)
 => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
 => 3
[1,0,1,0,1,0,1,1,0,0,1,0]
 => [5,1,2,3,7,4,6] => ([(0,5),(0,6),(1,3),(2,6),(3,4),(4,2),(4,5)],7)
 => ([(0,5),(1,2),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
 => 2
[1,0,1,0,1,0,1,1,0,1,0,0]
 => [7,1,2,3,6,4,5] => ([(1,5),(4,3),(5,6),(6,2),(6,4)],7)
 => ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
 => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,0,1,1,1,0,0,0]
 => [5,1,2,3,6,7,4] => ([(0,6),(1,4),(4,5),(5,2),(5,6),(6,3)],7)
 => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
 => 2
[1,0,1,0,1,1,0,0,1,0,1,0]
 => [4,1,2,7,3,5,6] => ([(0,5),(0,6),(1,4),(3,6),(4,3),(4,5),(6,2)],7)
 => ([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7)
 => 2
[1,0,1,0,1,1,0,0,1,1,0,0]
 => [4,1,2,6,3,7,5] => ([(0,2),(1,5),(1,6),(2,3),(2,6),(3,4),(3,5),(6,4)],7)
 => ([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
 => 2
[1,0,1,0,1,1,0,1,0,0,1,0]
 => [7,1,2,5,3,4,6] => ([(1,5),(2,6),(3,6),(4,3),(5,2),(5,4)],7)
 => ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
 => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,1,0,1,0,0]
 => [7,1,2,6,3,4,5] => ([(1,6),(4,5),(5,3),(6,2),(6,4)],7)
 => ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
 => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,0,1,1,0,0,0]
 => [6,1,2,5,3,7,4] => ([(0,6),(1,5),(3,6),(4,2),(4,6),(5,3),(5,4)],7)
 => ([(0,4),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
 => 2
[1,0,1,0,1,1,1,0,0,0,1,0]
 => [4,1,2,5,7,3,6] => ([(0,6),(1,4),(3,5),(4,3),(4,6),(6,2),(6,5)],7)
 => ([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
 => 2
[1,0,1,0,1,1,1,0,0,1,0,0]
 => [4,1,2,7,6,3,5] => ([(0,3),(1,4),(1,5),(1,6),(2,6),(3,2),(3,4),(3,5)],7)
 => ([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
 => 2
[1,0,1,0,1,1,1,0,1,0,0,0]
 => [7,1,2,5,6,3,4] => ([(1,6),(4,3),(5,2),(6,4),(6,5)],7)
 => ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
 => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,0,1,1,1,1,0,0,0,0]
 => [4,1,2,5,6,7,3] => ([(0,6),(1,4),(4,3),(4,6),(5,2),(6,5)],7)
 => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
 => 2
[1,0,1,1,0,0,1,0,1,0,1,0]
 => [3,1,7,2,4,5,6] => ([(0,5),(0,6),(1,3),(1,6),(3,5),(4,2),(5,4)],7)
 => ([(0,5),(1,2),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
 => 2
[1,0,1,1,0,0,1,0,1,1,0,0]
 => [3,1,6,2,4,7,5] => ([(0,3),(0,6),(1,5),(1,6),(3,5),(5,2),(5,4),(6,4)],7)
 => ([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
 => 2
[1,0,1,1,0,0,1,1,0,0,1,0]
 => [3,1,5,2,7,4,6] => ([(0,2),(0,6),(1,5),(1,6),(2,4),(2,5),(5,3),(6,3),(6,4)],7)
 => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7)
 => 2
[1,0,1,1,0,0,1,1,0,1,0,0]
 => [3,1,7,2,6,4,5] => ([(0,3),(0,6),(1,4),(1,5),(1,6),(3,4),(3,5),(5,2)],7)
 => ([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
 => 2
[1,0,1,1,0,1,0,0,1,0,1,0]
 => [7,1,4,2,3,5,6] => ([(1,3),(1,5),(2,6),(3,6),(5,2),(6,4)],7)
 => ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
 => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,0,1,0,0,1,0]
 => [7,1,5,2,3,4,6] => ([(1,3),(1,5),(2,6),(3,6),(4,2),(5,4)],7)
 => ([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7)
 => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,1,0,0,1,0,0]
 => [7,1,4,2,6,3,5] => ([(1,3),(1,4),(2,5),(3,5),(3,6),(4,2),(4,6)],7)
 => ([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
 => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,0,1,1,0,1,0,0,0]
 => [7,1,5,2,6,3,4] => ([(1,3),(1,5),(3,6),(4,2),(5,4),(5,6)],7)
 => ([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
 => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,0,0,1,0]
 => [7,1,4,5,2,3,6] => ([(1,4),(1,5),(2,6),(3,6),(4,3),(5,2)],7)
 => ([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7)
 => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,0,1,0,0]
 => [7,1,4,6,2,3,5] => ([(1,4),(1,5),(3,6),(4,3),(5,2),(5,6)],7)
 => ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
 => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,1,0,0,0]
 => [7,1,6,5,2,3,4] => ([(1,3),(1,4),(1,6),(5,2),(6,5)],7)
 => ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
 => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,0,1,1,1,1,0,1,0,0,0,0]
 => [7,1,4,5,6,2,3] => ([(1,5),(1,6),(4,3),(5,4),(6,2)],7)
 => ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
 => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,0,1,0,0,1,0,1,0,1,0]
 => [7,3,1,2,4,5,6] => ([(1,6),(2,3),(3,6),(4,5),(6,4)],7)
 => ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
 => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,0,1,0,0,1,1,0,1,0,0]
 => [7,3,1,2,6,4,5] => ([(1,5),(1,6),(2,4),(4,5),(4,6),(6,3)],7)
 => ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
 => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,0,1,0,1,0,0,1,0,1,0]
 => [7,4,1,2,3,5,6] => ([(1,6),(2,3),(3,5),(5,6),(6,4)],7)
 => ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
 => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,0,1,0,1,0,1,0,1,0,0]
 => [7,6,1,2,3,4,5] => ([(2,6),(4,5),(5,3),(6,4)],7)
 => ([(2,6),(3,5),(4,5),(4,6)],7)
 => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,0,1,0,1,1,0,0,1,0,0]
 => [7,4,1,2,6,3,5] => ([(1,5),(1,6),(2,3),(3,4),(3,6),(4,5)],7)
 => ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
 => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,0,1,1,0,0,1,0,0,1,0]
 => [7,3,1,5,2,4,6] => ([(1,4),(1,6),(2,3),(2,4),(3,6),(4,5),(6,5)],7)
 => ([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
 => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,0,1,1,0,0,1,0,1,0,0]
 => [7,3,1,6,2,4,5] => ([(1,5),(1,6),(2,3),(2,5),(3,6),(6,4)],7)
 => ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
 => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,0,1,1,0,1,0,0,0,1,0]
 => [7,4,1,5,2,3,6] => ([(1,5),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
 => ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
 => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,0,1,1,0,1,0,0,1,0,0]
 => [7,4,1,6,2,3,5] => ([(1,5),(1,6),(2,3),(2,5),(3,4),(4,6)],7)
 => ([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7)
 => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,1,0,1,1,0,1,0,1,0,0,0]
 => [6,7,1,5,2,3,4] => ([(0,4),(1,3),(1,6),(5,2),(6,5)],7)
 => ([(0,1),(2,5),(3,4),(4,6),(5,6)],7)
 => ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
The following 47 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St000842The breadth of a permutation. St001060The distinguishing index of a graph. St001570The minimal number of edges to add to make a graph Hamiltonian. St000259The diameter of a connected graph. St001726The number of visible inversions of a permutation. St000474Dyson's crank of a partition. St000993The multiplicity of the largest part of an integer partition. St001280The number of parts of an integer partition that are at least two. St001498The normalised height of a Nakayama algebra with magnitude 1. St001571The Cartan determinant of the integer partition. St001933The largest multiplicity of a part in an integer partition. St001432The order dimension of the partition. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000460The hook length of the last cell along the main diagonal of an integer partition. St000477The weight of a partition according to Alladi. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000667The greatest common divisor of the parts of the partition. St000668The least common multiple of the parts of the partition. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000870The product of the hook lengths of the diagonal cells in an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St001279The sum of the parts of an integer partition that are at least two. St001360The number of covering relations in Young's lattice below a partition. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001389The number of partitions of the same length below the given integer partition. St001527The cyclic permutation representation number of an integer partition. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001611The number of multiset partitions such that the multiplicities of elements are given by a partition. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001985The sum of the greatest common divisors of all subsets of the parts of an integer partition. St000455The second largest eigenvalue of a graph if it is integral. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000264The girth of a graph, which is not a tree. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001569The maximal modular displacement of a permutation. St000793The length of the longest partition in the vacillating tableau corresponding to a set partition. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001875The number of simple modules with projective dimension at most 1. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!