searching the database
Your data matches 205 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000674
(load all 36 compositions to match this statistic)
(load all 36 compositions to match this statistic)
St000674: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> 2
[1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> 0
[1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> 2
[1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,1,0,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> 0
[1,1,1,0,1,0,0,0]
=> 0
[1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> 2
Description
The number of hills of a Dyck path.
A hill is a peak with up step starting and down step ending at height zero.
Matching statistic: St000247
(load all 22 compositions to match this statistic)
(load all 22 compositions to match this statistic)
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00151: Permutations —to cycle type⟶ Set partitions
St000247: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00151: Permutations —to cycle type⟶ Set partitions
St000247: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [2,1] => {{1,2}}
=> 0
[1,1,0,0]
=> [1,2] => {{1},{2}}
=> 2
[1,0,1,0,1,0]
=> [2,3,1] => {{1,2,3}}
=> 0
[1,0,1,1,0,0]
=> [2,1,3] => {{1,2},{3}}
=> 1
[1,1,0,0,1,0]
=> [1,3,2] => {{1},{2,3}}
=> 1
[1,1,0,1,0,0]
=> [3,1,2] => {{1,2,3}}
=> 0
[1,1,1,0,0,0]
=> [1,2,3] => {{1},{2},{3}}
=> 3
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => {{1,2,3,4}}
=> 0
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => {{1,2,3},{4}}
=> 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => {{1,2},{3,4}}
=> 0
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => {{1,2,3,4}}
=> 0
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => {{1,2},{3},{4}}
=> 2
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => {{1},{2,3,4}}
=> 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => {{1},{2,3},{4}}
=> 2
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => {{1,2,3,4}}
=> 0
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => {{1,3},{2,4}}
=> 0
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => {{1,2,3},{4}}
=> 1
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => {{1},{2},{3,4}}
=> 2
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => {{1},{2,3,4}}
=> 1
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => {{1,2,3,4}}
=> 0
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => {{1},{2},{3},{4}}
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => {{1,2,3,4,5}}
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => {{1,2,3,4},{5}}
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => {{1,2,3},{4,5}}
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => {{1,2,3,4,5}}
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => {{1,2,3},{4},{5}}
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => {{1,2},{3,4,5}}
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => {{1,2},{3,4},{5}}
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => {{1,2,3,4,5}}
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => {{1,2,4},{3,5}}
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => {{1,2,3,4},{5}}
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => {{1,2},{3},{4,5}}
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => {{1,2},{3,4,5}}
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => {{1,2,3,4,5}}
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => {{1,2},{3},{4},{5}}
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => {{1},{2,3,4,5}}
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => {{1},{2,3,4},{5}}
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => {{1},{2,3},{4,5}}
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => {{1},{2,3,4,5}}
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => {{1,2,3,4,5}}
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => {{1,2,3,4},{5}}
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => {{1,3},{2,4,5}}
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => {{1,2,3,4,5}}
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => {{1,3},{2,4},{5}}
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => {{1,2,3},{4,5}}
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => {{1,2,3,4,5}}
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => {{1,3},{2,4,5}}
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => {{1,2,3},{4},{5}}
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => {{1},{2},{3,4,5}}
=> 2
Description
The number of singleton blocks of a set partition.
Matching statistic: St000475
(load all 10 compositions to match this statistic)
(load all 10 compositions to match this statistic)
Mp00024: Dyck paths —to 321-avoiding permutation⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
St000475: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00108: Permutations —cycle type⟶ Integer partitions
St000475: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [2,1] => [2]
=> 0
[1,1,0,0]
=> [1,2] => [1,1]
=> 2
[1,0,1,0,1,0]
=> [2,1,3] => [2,1]
=> 1
[1,0,1,1,0,0]
=> [2,3,1] => [3]
=> 0
[1,1,0,0,1,0]
=> [3,1,2] => [3]
=> 0
[1,1,0,1,0,0]
=> [1,3,2] => [2,1]
=> 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,1,1]
=> 3
[1,0,1,0,1,0,1,0]
=> [2,1,4,3] => [2,2]
=> 0
[1,0,1,0,1,1,0,0]
=> [2,4,1,3] => [4]
=> 0
[1,0,1,1,0,0,1,0]
=> [2,1,3,4] => [2,1,1]
=> 2
[1,0,1,1,0,1,0,0]
=> [2,3,1,4] => [3,1]
=> 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [4]
=> 0
[1,1,0,0,1,0,1,0]
=> [3,1,4,2] => [4]
=> 0
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [2,2]
=> 0
[1,1,0,1,0,0,1,0]
=> [3,1,2,4] => [3,1]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,3,2,4] => [2,1,1]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,3,4,2] => [3,1]
=> 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [4]
=> 0
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [3,1]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,2,4,3] => [2,1,1]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,1,1,1]
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,5] => [2,2,1]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,5] => [4,1]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3] => [3,2]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,5,3] => [5]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [2,4,5,1,3] => [3,2]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,5,3,4] => [3,2]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [2,5,1,3,4] => [5]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,4] => [2,2,1]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [2,3,1,5,4] => [3,2]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [5]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,4,5] => [2,1,1,1]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,4,5] => [3,1,1]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,1,5] => [4,1]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [3,1,4,2,5] => [4,1]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [3,4,1,2,5] => [2,2,1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [3,1,4,5,2] => [5]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [3,4,1,5,2] => [3,2]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [5]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,5,2,4] => [5]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [3,5,1,2,4] => [3,2]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [3,1,2,5,4] => [3,2]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [1,3,2,5,4] => [2,2,1]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [4,1]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,4,5] => [3,1,1]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,3,2,4,5] => [2,1,1,1]
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> [1,3,4,2,5] => [3,1,1]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,3,4,5,2] => [4,1]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [4,1,5,2,3] => [3,2]
=> 0
Description
The number of parts equal to 1 in a partition.
Matching statistic: St000248
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00151: Permutations —to cycle type⟶ Set partitions
Mp00221: Set partitions —conjugate⟶ Set partitions
St000248: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00151: Permutations —to cycle type⟶ Set partitions
Mp00221: Set partitions —conjugate⟶ Set partitions
St000248: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,2] => {{1},{2}}
=> {{1,2}}
=> 2
[1,1,0,0]
=> [2,1] => {{1,2}}
=> {{1},{2}}
=> 0
[1,0,1,0,1,0]
=> [1,2,3] => {{1},{2},{3}}
=> {{1,2,3}}
=> 3
[1,0,1,1,0,0]
=> [1,3,2] => {{1},{2,3}}
=> {{1,3},{2}}
=> 1
[1,1,0,0,1,0]
=> [2,1,3] => {{1,2},{3}}
=> {{1,2},{3}}
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => {{1,2,3}}
=> {{1},{2},{3}}
=> 0
[1,1,1,0,0,0]
=> [3,1,2] => {{1,2,3}}
=> {{1},{2},{3}}
=> 0
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => {{1},{2},{3},{4}}
=> {{1,2,3,4}}
=> 4
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => {{1},{2},{3,4}}
=> {{1,3,4},{2}}
=> 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => {{1},{2,3},{4}}
=> {{1,2,4},{3}}
=> 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => {{1},{2,3,4}}
=> {{1,4},{2},{3}}
=> 1
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => {{1},{2,3,4}}
=> {{1,4},{2},{3}}
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => {{1,2},{3},{4}}
=> {{1,2,3},{4}}
=> 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => {{1,2},{3,4}}
=> {{1,3},{2},{4}}
=> 0
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => {{1,2,3},{4}}
=> {{1,2},{3},{4}}
=> 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => {{1,2,3,4}}
=> {{1},{2},{3},{4}}
=> 0
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => {{1,2,3,4}}
=> {{1},{2},{3},{4}}
=> 0
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => {{1,2,3},{4}}
=> {{1,2},{3},{4}}
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => {{1,2,3,4}}
=> {{1},{2},{3},{4}}
=> 0
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => {{1,3},{2,4}}
=> {{1,3},{2,4}}
=> 0
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => {{1,2,3,4}}
=> {{1},{2},{3},{4}}
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => {{1},{2},{3},{4},{5}}
=> {{1,2,3,4,5}}
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> {{1,3,4,5},{2}}
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => {{1},{2},{3,4},{5}}
=> {{1,2,4,5},{3}}
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => {{1},{2},{3,4,5}}
=> {{1,4,5},{2},{3}}
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => {{1},{2},{3,4,5}}
=> {{1,4,5},{2},{3}}
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> {{1,2,3,5},{4}}
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => {{1},{2,3},{4,5}}
=> {{1,3,5},{2},{4}}
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => {{1},{2,3,4},{5}}
=> {{1,2,5},{3},{4}}
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => {{1},{2,3,4,5}}
=> {{1,5},{2},{3},{4}}
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => {{1},{2,3,4,5}}
=> {{1,5},{2},{3},{4}}
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => {{1},{2,3,4},{5}}
=> {{1,2,5},{3},{4}}
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => {{1},{2,3,4,5}}
=> {{1,5},{2},{3},{4}}
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => {{1},{2,4},{3,5}}
=> {{1,3,5},{2,4}}
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => {{1},{2,3,4,5}}
=> {{1,5},{2},{3},{4}}
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => {{1,2},{3},{4},{5}}
=> {{1,2,3,4},{5}}
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => {{1,2},{3},{4,5}}
=> {{1,3,4},{2},{5}}
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => {{1,2},{3,4},{5}}
=> {{1,2,4},{3},{5}}
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => {{1,2},{3,4,5}}
=> {{1,4},{2},{3},{5}}
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => {{1,2},{3,4,5}}
=> {{1,4},{2},{3},{5}}
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => {{1,2,3},{4},{5}}
=> {{1,2,3},{4},{5}}
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => {{1,2,3},{4,5}}
=> {{1,3},{2},{4},{5}}
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => {{1,2,3,4},{5}}
=> {{1,2},{3},{4},{5}}
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => {{1,2,3,4,5}}
=> {{1},{2},{3},{4},{5}}
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => {{1,2,3,4,5}}
=> {{1},{2},{3},{4},{5}}
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => {{1,2,3,4},{5}}
=> {{1,2},{3},{4},{5}}
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => {{1,2,3,4,5}}
=> {{1},{2},{3},{4},{5}}
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => {{1,2,4},{3,5}}
=> {{1,3},{2,4},{5}}
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => {{1,2,3,4,5}}
=> {{1},{2},{3},{4},{5}}
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => {{1,2,3},{4},{5}}
=> {{1,2,3},{4},{5}}
=> 2
Description
The number of anti-singletons of a set partition.
An anti-singleton of a set partition $S$ is an index $i$ such that $i$ and $i+1$ (considered cyclically) are both in the same block of $S$.
For noncrossing set partitions, this is also the number of singletons of the image of $S$ under the Kreweras complement.
Matching statistic: St000445
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000445: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00066: Permutations —inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000445: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,2] => [1,2] => [1,0,1,0]
=> 2
[1,1,0,0]
=> [2,1] => [2,1] => [1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,1,2] => [1,1,1,0,0,0]
=> 0
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 0
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,1,3,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 2
Description
The number of rises of length 1 of a Dyck path.
Matching statistic: St001126
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St001126: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St001126: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,1,0,0]
=> [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 2
[1,0,1,0,1,0]
=> [3,2,1] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,1,0,1,0,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
Description
Number of simple module that are 1-regular in the corresponding Nakayama algebra.
Matching statistic: St000986
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000986: Graphs ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000986: Graphs ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1] => [2] => ([],2)
=> 2
[1,1,0,0]
=> [2] => [1,1] => ([(0,1)],2)
=> 0
[1,0,1,0,1,0]
=> [1,1,1] => [3] => ([],3)
=> 3
[1,0,1,1,0,0]
=> [1,2] => [1,2] => ([(1,2)],3)
=> 1
[1,1,0,0,1,0]
=> [2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[1,1,0,1,0,0]
=> [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[1,1,1,0,0,0]
=> [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => ([],4)
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,3] => ([(2,3)],4)
=> 2
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[1,0,1,1,0,1,0,0]
=> [1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 1
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,1,0,1,0,0,1,0]
=> [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,1,0,1,0,0]
=> [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,1,0,1,1,0,0,0]
=> [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,1,1,0,0,0,1,0]
=> [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,0,0,1,0,0]
=> [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,1,1,0,1,0,0,0]
=> [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => ([],5)
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,4] => ([(3,4)],5)
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,3] => ([(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1}
[1,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> [3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1}
[1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> [3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1}
[1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1}
Description
The multiplicity of the eigenvalue zero of the adjacency matrix of the graph.
Matching statistic: St001691
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001691: Graphs ⟶ ℤResult quality: 94% ●values known / values provided: 94%●distinct values known / distinct values provided: 100%
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001691: Graphs ⟶ ℤResult quality: 94% ●values known / values provided: 94%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,2] => [1,2] => ([],2)
=> 2
[1,1,0,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 0
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => ([],3)
=> 3
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => ([(1,2)],3)
=> 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> 4
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => ([(2,3)],4)
=> 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> 0
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(3,4)],5)
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [2,3,1,5,6,7,4] => [3,2,1,7,5,6,4] => ([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,0,1,0,0,1,1,0,1,1,0,0,0]
=> [2,3,1,5,7,6,4] => [3,2,1,7,6,5,4] => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,0,1,0,0,1,1,1,0,0,1,0,0]
=> [2,3,1,6,5,7,4] => [3,2,1,7,5,6,4] => ([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,0,1,0,0,1,1,1,0,1,0,0,0]
=> [2,3,1,6,7,5,4] => [3,2,1,7,6,5,4] => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [2,3,1,7,6,5,4] => [3,2,1,7,6,5,4] => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [2,3,4,1,6,7,5] => [4,2,3,1,7,6,5] => ([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,0,1,0,1,0,0,1,1,1,0,0,0]
=> [2,3,4,1,7,6,5] => [4,2,3,1,7,6,5] => ([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,4,6,7,5,1] => [7,2,3,6,5,4,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,4,7,6,5,1] => [7,2,3,6,5,4,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [2,3,5,6,4,7,1] => [7,2,5,4,3,6,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,4,7,1] => [7,2,5,4,3,6,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> [2,4,3,1,6,7,5] => [4,3,2,1,7,6,5] => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,0,1,1,0,0,0,1,1,1,0,0,0]
=> [2,4,3,1,7,6,5] => [4,3,2,1,7,6,5] => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [2,4,5,3,6,7,1] => [7,4,3,2,5,6,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [2,5,4,3,6,7,1] => [7,4,3,2,5,6,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,1,0,0,0,1,1,0,1,0,1,0,0]
=> [3,2,1,5,6,7,4] => [3,2,1,7,5,6,4] => ([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [3,2,1,5,7,6,4] => [3,2,1,7,6,5,4] => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [3,2,1,6,5,7,4] => [3,2,1,7,5,6,4] => ([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> [3,2,1,6,7,5,4] => [3,2,1,7,6,5,4] => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [3,2,1,7,6,5,4] => [3,2,1,7,6,5,4] => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,1,0,0,1,0,0,1,1,0,1,0,0]
=> [3,2,4,1,6,7,5] => [4,2,3,1,7,6,5] => ([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,1,0,0,1,0,0,1,1,1,0,0,0]
=> [3,2,4,1,7,6,5] => [4,2,3,1,7,6,5] => ([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [3,2,4,6,7,5,1] => [7,2,3,6,5,4,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [3,2,4,7,6,5,1] => [7,2,3,6,5,4,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [3,2,5,6,4,7,1] => [7,2,5,4,3,6,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [3,2,6,5,4,7,1] => [7,2,5,4,3,6,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,1,0,1,0,0,0,1,1,0,1,0,0]
=> [3,4,2,1,6,7,5] => [4,3,2,1,7,6,5] => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,1,0,1,0,0,0,1,1,1,0,0,0]
=> [3,4,2,1,7,6,5] => [4,3,2,1,7,6,5] => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [3,4,5,2,6,7,1] => [7,4,3,2,5,6,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [3,5,4,2,6,7,1] => [7,4,3,2,5,6,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,1,1,0,0,0,0,1,1,0,1,0,0]
=> [4,3,2,1,6,7,5] => [4,3,2,1,7,6,5] => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [4,3,2,1,7,6,5] => [4,3,2,1,7,6,5] => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> [4,3,5,2,6,7,1] => [7,4,3,2,5,6,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [4,5,3,2,6,7,1] => [7,4,3,2,5,6,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
[1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [5,4,3,2,6,7,1] => [7,4,3,2,5,6,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
Description
The number of kings in a graph.
A vertex of a graph is a king, if all its neighbours have smaller degree. In particular, an isolated vertex is a king.
Matching statistic: St000160
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00024: Dyck paths —to 321-avoiding permutation⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
St000160: Integer partitions ⟶ ℤResult quality: 90% ●values known / values provided: 90%●distinct values known / distinct values provided: 100%
Mp00024: Dyck paths —to 321-avoiding permutation⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
St000160: Integer partitions ⟶ ℤResult quality: 90% ●values known / values provided: 90%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,3,2] => [2,1]
=> 1 = 0 + 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => [1,1,1]
=> 3 = 2 + 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,3,2,4] => [2,1,1]
=> 2 = 1 + 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,3,4,2] => [3,1]
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [3,1]
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,2,4,3] => [2,1,1]
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,1,1,1]
=> 4 = 3 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,3,2,5,4] => [2,2,1]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [4,1]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,3,2,4,5] => [2,1,1,1]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,3,4,2,5] => [3,1,1]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,3,4,5,2] => [4,1]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,4,2,5,3] => [4,1]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,4,5,2,3] => [2,2,1]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,4,2,3,5] => [3,1,1]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,2,4,3,5] => [2,1,1,1]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,2,4,5,3] => [3,1,1]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,5,2,3,4] => [4,1]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,2,5,3,4] => [3,1,1]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,2,3,5,4] => [2,1,1,1]
=> 3 = 2 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,1,1,1,1]
=> 5 = 4 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,2,5,4,6] => [2,2,1,1]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,3,5,2,4,6] => [4,1,1]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,3,2,5,6,4] => [3,2,1]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,3,5,2,6,4] => [5,1]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,3,5,6,2,4] => [3,2,1]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,3,2,6,4,5] => [3,2,1]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,3,6,2,4,5] => [5,1]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,3,2,4,6,5] => [2,2,1,1]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,3,4,2,6,5] => [3,2,1]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,3,4,6,2,5] => [5,1]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,3,2,4,5,6] => [2,1,1,1,1]
=> 4 = 3 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,3,4,2,5,6] => [3,1,1,1]
=> 3 = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,3,4,5,2,6] => [4,1,1]
=> 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,3,4,5,6,2] => [5,1]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,4,2,5,3,6] => [4,1,1]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,4,5,2,3,6] => [2,2,1,1]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,4,2,5,6,3] => [5,1]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,4,5,2,6,3] => [3,2,1]
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,4,5,6,2,3] => [5,1]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,4,2,6,3,5] => [5,1]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,4,6,2,3,5] => [3,2,1]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,4,2,3,6,5] => [3,2,1]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,2,4,3,6,5] => [2,2,1,1]
=> 2 = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,2,4,6,3,5] => [4,1,1]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,4,2,3,5,6] => [3,1,1,1]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,2,4,3,5,6] => [2,1,1,1,1]
=> 4 = 3 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,2,4,5,3,6] => [3,1,1,1]
=> 3 = 2 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,2,4,5,6,3] => [4,1,1]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,5,2,6,3,4] => [3,2,1]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,3,5,2,4,7,8,6] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,3,2,5,7,4,8,6] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,3,2,5,4,6,8,7] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,3,2,5,6,8,4,7] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [1,3,5,2,6,4,7,8] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,3,5,2,6,7,8,4] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,3,5,6,7,2,8,4] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [1,3,6,7,2,4,5,8] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [1,3,2,6,4,7,8,5] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [1,3,6,7,2,8,4,5] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [1,3,6,2,8,4,5,7] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,1,0,0,0,0]
=> [1,3,6,8,2,4,5,7] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [1,3,2,6,4,5,8,7] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> [1,3,4,2,6,8,5,7] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,3,4,6,2,8,5,7] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> [1,3,4,2,6,5,7,8] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,3,2,4,6,7,5,8] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [1,3,4,6,2,7,8,5] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,3,4,6,7,8,2,5] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,3,2,7,8,4,5,6] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> [1,3,2,7,4,5,8,6] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,0,1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [1,3,4,7,2,8,5,6] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> [1,3,2,4,7,5,6,8] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> [1,3,4,2,7,5,6,8] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,3,4,5,7,2,6,8] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,3,4,5,7,2,8,6] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [1,3,4,5,2,6,8,7] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,4,2,5,3,7,8,6] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,4,5,7,2,8,3,6] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,4,2,5,8,3,6,7] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,4,5,8,2,3,6,7] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,1,0,0,0]
=> [1,4,5,2,3,6,8,7] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,1,0,0]
=> [1,4,2,5,6,3,8,7] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,1,0,0,0,0]
=> [1,4,5,6,2,3,8,7] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,4,2,5,6,8,3,7] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,4,5,6,2,8,3,7] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,4,2,5,6,3,7,8] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,4,5,6,2,7,8,3] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,4,6,2,3,7,5,8] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,1,0,0]
=> [1,4,2,6,3,7,8,5] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,1,0,0]
=> [1,4,2,6,7,3,8,5] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,1,0,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,1,0,0,0,0]
=> [1,4,6,7,2,3,8,5] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,4,2,3,6,8,5,7] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,1,0,0,0,0]
=> [1,2,4,6,3,7,5,8] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,2,4,6,7,3,5,8] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,1,0,0,1,0,0,0,0]
=> [1,2,4,6,3,7,8,5] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,1,0,1,0,0,0,0,0]
=> [1,2,4,6,7,3,8,5] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,1,0,0,0]
=> [1,2,4,3,7,5,8,6] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,2,4,5,7,3,8,6] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
[1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,1,0,0,1,0,0,0,0]
=> [1,2,4,5,3,6,8,7] => ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,4} + 1
Description
The multiplicity of the smallest part of a partition.
This counts the number of occurrences of the smallest part $spt(\lambda)$ of a partition $\lambda$.
The sum $spt(n) = \sum_{\lambda \vdash n} spt(\lambda)$ satisfies the congruences
\begin{align*}
spt(5n+4) &\equiv 0\quad \pmod{5}\\\
spt(7n+5) &\equiv 0\quad \pmod{7}\\\
spt(13n+6) &\equiv 0\quad \pmod{13},
\end{align*}
analogous to those of the counting function of partitions, see [1] and [2].
Matching statistic: St000678
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
St000678: Dyck paths ⟶ ℤResult quality: 85% ●values known / values provided: 85%●distinct values known / distinct values provided: 100%
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
St000678: Dyck paths ⟶ ℤResult quality: 85% ●values known / values provided: 85%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6 = 5 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 4 = 3 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> 4 = 3 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,1,0,1,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,1,1,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0,1,1,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0,1,1,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
[1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3} + 1
Description
The number of up steps after the last double rise of a Dyck path.
The following 195 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000011The number of touch points (or returns) of a Dyck path. St000288The number of ones in a binary word. St000312The number of leaves in a graph. St000439The position of the first down step of a Dyck path. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St001176The size of a partition minus its first part. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St000675The number of centered multitunnels of a Dyck path. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000461The rix statistic of a permutation. St000022The number of fixed points of a permutation. St000925The number of topologically connected components of a set partition. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St001280The number of parts of an integer partition that are at least two. St001525The number of symmetric hooks on the diagonal of a partition. St001939The number of parts that are equal to their multiplicity in the integer partition. St000010The length of the partition. St000053The number of valleys of the Dyck path. St000147The largest part of an integer partition. St000306The bounce count of a Dyck path. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000331The number of upper interactions of a Dyck path. St000369The dinv deficit of a Dyck path. St000378The diagonal inversion number of an integer partition. St000384The maximal part of the shifted composition of an integer partition. St000548The number of different non-empty partial sums of an integer partition. St000784The maximum of the length and the largest part of the integer partition. St000954Number of times the corresponding LNakayama algebra has $Ext^i(D(A),A)=0$ for $i>0$. St001008Number of indecomposable injective modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001010Number of indecomposable injective modules with projective dimension g-1 when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra. St001139The number of occurrences of hills of size 2 in a Dyck path. St001142The projective dimension of the socle of the regular module as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001189The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path. St001197The global dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001205The number of non-simple indecomposable projective-injective modules of the algebra $eAe$ in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001506Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St000137The Grundy value of an integer partition. St001175The size of a partition minus the hook length of the base cell. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001587Half of the largest even part of an integer partition. St001657The number of twos in an integer partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000873The aix statistic of a permutation. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000929The constant term of the character polynomial of an integer partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St000941The number of characters of the symmetric group whose value on the partition is even. St001651The Frankl number of a lattice. St000215The number of adjacencies of a permutation, zero appended. St000895The number of ones on the main diagonal of an alternating sign matrix. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000376The bounce deficit of a Dyck path. St000442The maximal area to the right of an up step of a Dyck path. St000476The sum of the semi-lengths of tunnels before a valley of a Dyck path. St000658The number of rises of length 2 of a Dyck path. St000932The number of occurrences of the pattern UDU in a Dyck path. St000946The sum of the skew hook positions in a Dyck path. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001502The global dimension minus the dominant dimension of magnitude 1 Nakayama algebras. St000693The modular (standard) major index of a standard tableau. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001498The normalised height of a Nakayama algebra with magnitude 1. St000225Difference between largest and smallest parts in a partition. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001432The order dimension of the partition. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001570The minimal number of edges to add to make a graph Hamiltonian. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St001877Number of indecomposable injective modules with projective dimension 2. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001571The Cartan determinant of the integer partition. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000567The sum of the products of all pairs of parts. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000936The number of even values of the symmetric group character corresponding to the partition. St000944The 3-degree of an integer partition. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001383The BG-rank of an integer partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001561The value of the elementary symmetric function evaluated at 1. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St001961The sum of the greatest common divisors of all pairs of parts. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000502The number of successions of a set partitions. St000117The number of centered tunnels of a Dyck path. St000221The number of strong fixed points of a permutation. St000241The number of cyclical small excedances. St000164The number of short pairs. St000234The number of global ascents of a permutation. St000315The number of isolated vertices of a graph. St001479The number of bridges of a graph. St000025The number of initial rises of a Dyck path. St001826The maximal number of leaves on a vertex of a graph. St001672The restrained domination number of a graph. St000237The number of small exceedances. St000460The hook length of the last cell along the main diagonal of an integer partition. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001593This is the number of standard Young tableaux of the given shifted shape. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St001933The largest multiplicity of a part in an integer partition. St000441The number of successions of a permutation. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001342The number of vertices in the center of a graph. St001368The number of vertices of maximal degree in a graph. St000717The number of ordinal summands of a poset. St000546The number of global descents of a permutation. St000007The number of saliances of the permutation. St000907The number of maximal antichains of minimal length in a poset. St000260The radius of a connected graph. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000214The number of adjacencies of a permutation. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001568The smallest positive integer that does not appear twice in the partition. St000153The number of adjacent cycles of a permutation. St000894The trace of an alternating sign matrix. St001461The number of topologically connected components of the chord diagram of a permutation. St000681The Grundy value of Chomp on Ferrers diagrams. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000937The number of positive values of the symmetric group character corresponding to the partition. St000993The multiplicity of the largest part of an integer partition. St001631The number of simple modules $S$ with $dim Ext^1(S,A)=1$ in the incidence algebra $A$ of the poset. St001801Half the number of preimage-image pairs of different parity in a permutation. St000843The decomposition number of a perfect matching. St000884The number of isolated descents of a permutation. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000313The number of degree 2 vertices of a graph. St000504The cardinality of the first block of a set partition. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St000239The number of small weak excedances. St000056The decomposition (or block) number of a permutation. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001948The number of augmented double ascents of a permutation. St000061The number of nodes on the left branch of a binary tree. St000084The number of subtrees. St000287The number of connected components of a graph. St000314The number of left-to-right-maxima of a permutation. St000553The number of blocks of a graph. St000991The number of right-to-left minima of a permutation. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St000648The number of 2-excedences of a permutation. St000455The second largest eigenvalue of a graph if it is integral. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000654The first descent of a permutation. St001060The distinguishing index of a graph. St001465The number of adjacent transpositions in the cycle decomposition of a permutation. St001964The interval resolution global dimension of a poset. St001637The number of (upper) dissectors of a poset. St001903The number of fixed points of a parking function. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra St000732The number of double deficiencies of a permutation. St000989The number of final rises of a permutation. St001552The number of inversions between excedances and fixed points of a permutation. St001810The number of fixed points of a permutation smaller than its largest moved point.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!