Processing math: 100%

Your data matches 91 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000969: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> 2
[1,0,1,0]
=> 3
[1,1,0,0]
=> 2
[1,0,1,0,1,0]
=> 4
[1,0,1,1,0,0]
=> 3
[1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> 3
[1,1,1,0,0,0]
=> 2
[1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,1,0,0]
=> 4
[1,0,1,1,0,0,1,0]
=> 3
[1,0,1,1,0,1,0,0]
=> 4
[1,0,1,1,1,0,0,0]
=> 3
[1,1,0,0,1,0,1,0]
=> 3
[1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,0]
=> 4
[1,1,0,1,1,0,0,0]
=> 3
[1,1,1,0,0,0,1,0]
=> 2
[1,1,1,0,0,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> 6
[1,0,1,0,1,0,1,1,0,0]
=> 5
[1,0,1,0,1,1,0,0,1,0]
=> 4
[1,0,1,0,1,1,0,1,0,0]
=> 5
[1,0,1,0,1,1,1,0,0,0]
=> 4
[1,0,1,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> 5
[1,0,1,1,0,1,0,1,0,0]
=> 5
[1,0,1,1,0,1,1,0,0,0]
=> 4
[1,0,1,1,1,0,0,0,1,0]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> 5
[1,1,0,1,0,0,1,1,0,0]
=> 4
[1,1,0,1,0,1,0,0,1,0]
=> 5
[1,1,0,1,0,1,0,1,0,0]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> 3
Description
We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) [c0,c1,...,cn1] by adding c0 to cn1. Then we calculate the global dimension of that CNakayama algebra.
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00118: Dyck paths swap returns and last descentDyck paths
St000684: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 3
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 4
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 3
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 4
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 3
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 5
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> 4
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> 4
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> 4
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> 4
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 5
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4
Description
The global dimension of the LNakayama algebra associated to a Dyck path. An n-LNakayama algebra is a quiver algebra with a directed line as a connected quiver with n points for n2. Number those points from the left to the right by 0,1,,n1. The algebra is then uniquely determined by the dimension ci of the projective indecomposable modules at point i. Such algebras are then uniquely determined by lists of the form [c0,c1,...,cn1] with the conditions: cn1=1 and ci1ci+1 for all i. The number of such algebras is then the n1-st Catalan number Cn1. One can get also an interpretation with Dyck paths by associating the top boundary of the Auslander-Reiten quiver (which is a Dyck path) to those algebras. Example: [3,4,3,3,2,1] corresponds to the Dyck path [1,1,0,1,1,0,0,1,0,0]. Conjecture: that there is an explicit bijection between n-LNakayama algebras with global dimension bounded by m and Dyck paths with height at most m. Examples: * For m=2, the number of Dyck paths with global dimension at most m starts for n2 with 1,2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192. * For m=3, the number of Dyck paths with global dimension at most m starts for n2 with 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946, 28657, 75025, 196418.
Matching statistic: St000306
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00132: Dyck paths switch returns and last double riseDyck paths
Mp00327: Dyck paths inverse Kreweras complementDyck paths
St000306: Dyck paths ⟶ ℤResult quality: 70% values known / values provided: 70%distinct values known / distinct values provided: 83%
Values
[1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 2 - 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 3 - 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2 = 3 - 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1 = 2 - 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3 = 4 - 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2 = 3 - 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2 = 3 - 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1 = 2 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> 2 = 3 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> 2 = 3 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 1 = 2 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> 3 = 4 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> 3 = 4 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> 3 = 4 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6,6,7} - 1
Description
The bounce count of a Dyck path. For a Dyck path D of length 2n, this is the number of points (i,i) for 1i<n that are touching points of the [[Mp00099|bounce path]] of D.
Matching statistic: St001012
Mp00233: Dyck paths skew partitionSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St001012: Dyck paths ⟶ ℤResult quality: 67% values known / values provided: 68%distinct values known / distinct values provided: 67%
Values
[1,0]
=> [[1],[]]
=> []
=> []
=> ? = 2
[1,0,1,0]
=> [[1,1],[]]
=> []
=> []
=> ? ∊ {2,3}
[1,1,0,0]
=> [[2],[]]
=> []
=> []
=> ? ∊ {2,3}
[1,0,1,0,1,0]
=> [[1,1,1],[]]
=> []
=> []
=> ? ∊ {2,2,3,4}
[1,0,1,1,0,0]
=> [[2,1],[]]
=> []
=> []
=> ? ∊ {2,2,3,4}
[1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,0,1,0,0]
=> [[3],[]]
=> []
=> []
=> ? ∊ {2,2,3,4}
[1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> []
=> ? ∊ {2,2,3,4}
[1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,3,4,4,5}
[1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,3,4,4,5}
[1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,3,4,4,5}
[1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,3,4,4,5}
[1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 4
[1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,0]
=> [[4],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,3,4,4,5}
[1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,3,4,4,5}
[1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,3,4,4,5}
[1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,3,4,4,5}
[1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 4
[1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 5
[1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 4
[1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 4
[1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 5
[1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 5
[1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 4
[1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 4
[1,1,1,0,0,1,0,1,0,0]
=> [[4,2],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 4
[1,1,1,1,0,0,0,1,0,0]
=> [[4,3],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,5,5,5,5,5,5,5,6,6,6,6,7}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,5,5,5,5,5,5,5,6,6,6,6,7}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,5,5,5,5,5,5,5,6,6,6,6,7}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,5,5,5,5,5,5,5,6,6,6,6,7}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1,1],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 4
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1,1],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 4
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [[4,1,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,5,5,5,5,5,5,5,6,6,6,6,7}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,5,5,5,5,5,5,5,6,6,6,6,7}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,5,5,5,5,5,5,5,6,6,6,6,7}
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,5,5,5,5,5,5,5,6,6,6,6,7}
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 5
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2,1],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 4
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2,1],[2,1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [[4,2,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2,1],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 4
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3,1],[2,2]]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 5
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [[4,3,1],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [[4,4,1],[3]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 5
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [[5,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,5,5,5,5,5,5,5,6,6,6,6,7}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [[4,4,1],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3,1],[2,1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> 3
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [[4,3,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [[4,2,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,5,5,5,5,5,5,5,6,6,6,6,7}
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,5,5,5,5,5,5,5,6,6,6,6,7}
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,5,5,5,5,5,5,5,6,6,6,6,7}
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,5,5,5,5,5,5,5,6,6,6,6,7}
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [[4,3,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,5,5,5,5,5,5,5,6,6,6,6,7}
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [[4,4,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,5,5,5,5,5,5,5,6,6,6,6,7}
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,5,5,5,5,5,5,5,6,6,6,6,7}
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [[6],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,5,5,5,5,5,5,5,6,6,6,6,7}
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [[5,2],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,5,5,5,5,5,5,5,6,6,6,6,7}
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [[4,2,2],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,5,5,5,5,5,5,5,6,6,6,6,7}
Description
Number of simple modules with projective dimension at most 2 in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St001179
Mp00233: Dyck paths skew partitionSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St001179: Dyck paths ⟶ ℤResult quality: 67% values known / values provided: 68%distinct values known / distinct values provided: 67%
Values
[1,0]
=> [[1],[]]
=> []
=> []
=> ? = 2
[1,0,1,0]
=> [[1,1],[]]
=> []
=> []
=> ? ∊ {2,3}
[1,1,0,0]
=> [[2],[]]
=> []
=> []
=> ? ∊ {2,3}
[1,0,1,0,1,0]
=> [[1,1,1],[]]
=> []
=> []
=> ? ∊ {2,2,3,4}
[1,0,1,1,0,0]
=> [[2,1],[]]
=> []
=> []
=> ? ∊ {2,2,3,4}
[1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,0,1,0,0]
=> [[3],[]]
=> []
=> []
=> ? ∊ {2,2,3,4}
[1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> []
=> ? ∊ {2,2,3,4}
[1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,3,4,4,5}
[1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,3,4,4,5}
[1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,3,4,4,5}
[1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,3,4,4,5}
[1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 4
[1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,0]
=> [[4],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,3,4,4,5}
[1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,3,4,4,5}
[1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,3,4,4,5}
[1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,3,4,4,5}
[1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 4
[1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 5
[1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 4
[1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 4
[1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 5
[1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 5
[1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 4
[1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 4
[1,1,1,0,0,1,0,1,0,0]
=> [[4,2],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 4
[1,1,1,1,0,0,0,1,0,0]
=> [[4,3],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,6}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1,1],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 4
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1,1],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 4
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [[4,1,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7}
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7}
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 5
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2,1],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 4
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2,1],[2,1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [[4,2,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2,1],[1,1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 4
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3,1],[2,2]]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 5
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [[4,3,1],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [[4,4,1],[3]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 5
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [[5,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [[4,4,1],[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3,1],[2,1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> 3
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [[4,3,1],[1]]
=> [1]
=> [1,0,1,0]
=> 3
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [[4,2,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7}
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7}
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7}
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7}
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [[4,3,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7}
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [[4,4,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7}
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3,1],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7}
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [[6],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7}
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [[5,2],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7}
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [[4,2,2],[]]
=> []
=> []
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7}
Description
Number of indecomposable injective modules with projective dimension at most 2 in the corresponding Nakayama algebra.
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00024: Dyck paths to 321-avoiding permutationPermutations
Mp00239: Permutations CorteelPermutations
St001061: Permutations ⟶ ℤResult quality: 66% values known / values provided: 66%distinct values known / distinct values provided: 83%
Values
[1,0]
=> [1,1,0,0]
=> [1,2] => [1,2] => 0 = 2 - 2
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,3,2] => [1,3,2] => 1 = 3 - 2
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => 0 = 2 - 2
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,3,2,4] => [1,3,2,4] => 1 = 3 - 2
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,3,4,2] => [1,4,3,2] => 2 = 4 - 2
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,4,2,3] => 0 = 2 - 2
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,2,4,3] => [1,2,4,3] => 1 = 3 - 2
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 0 = 2 - 2
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 2 = 4 - 2
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,5,3,2,4] => 1 = 3 - 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => 1 = 3 - 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => 2 = 4 - 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => 2 = 4 - 2
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,4,2,5,3] => [1,5,2,4,3] => 1 = 3 - 2
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,4,5,2,3] => [1,5,4,3,2] => 3 = 5 - 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,4,2,3,5] => [1,4,2,3,5] => 0 = 2 - 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => 1 = 3 - 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => 2 = 4 - 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,5,2,3,4] => [1,5,2,3,4] => 0 = 2 - 2
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,2,5,3,4] => [1,2,5,3,4] => 0 = 2 - 2
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => 1 = 3 - 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0 = 2 - 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,2,5,4,6] => [1,3,2,5,4,6] => 2 = 4 - 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,3,5,2,4,6] => [1,5,3,2,4,6] => 1 = 3 - 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,3,2,5,6,4] => [1,3,2,6,5,4] => 3 = 5 - 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,3,5,2,6,4] => [1,6,3,2,5,4] => 2 = 4 - 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,3,5,6,2,4] => [1,6,3,5,4,2] => 3 = 5 - 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,3,2,6,4,5] => [1,3,2,6,4,5] => 1 = 3 - 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,3,6,2,4,5] => [1,6,3,2,4,5] => 1 = 3 - 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,3,2,4,6,5] => [1,3,2,4,6,5] => 2 = 4 - 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,3,4,2,6,5] => [1,4,3,2,6,5] => 3 = 5 - 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,3,4,6,2,5] => [1,6,3,4,2,5] => 1 = 3 - 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,3,2,4,5,6] => [1,3,2,4,5,6] => 1 = 3 - 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,3,4,2,5,6] => [1,4,3,2,5,6] => 2 = 4 - 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,3,4,5,2,6] => [1,5,3,4,2,6] => 2 = 4 - 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,3,4,5,6,2] => [1,6,3,4,5,2] => 2 = 4 - 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,4,2,5,3,6] => [1,5,2,4,3,6] => 1 = 3 - 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,4,5,2,3,6] => [1,5,4,3,2,6] => 3 = 5 - 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,4,2,5,6,3] => [1,6,2,4,5,3] => 1 = 3 - 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,4,5,2,6,3] => [1,6,4,3,5,2] => 3 = 5 - 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,4,5,6,2,3] => [1,6,5,4,3,2] => 4 = 6 - 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,4,2,6,3,5] => [1,6,2,4,3,5] => 0 = 2 - 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,4,6,2,3,5] => [1,6,4,3,2,5] => 2 = 4 - 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,4,2,3,6,5] => [1,4,2,3,6,5] => 1 = 3 - 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,2,4,3,6,5] => [1,2,4,3,6,5] => 2 = 4 - 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,2,4,6,3,5] => [1,2,6,4,3,5] => 1 = 3 - 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,4,2,3,5,6] => [1,4,2,3,5,6] => 0 = 2 - 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,2,4,3,5,6] => [1,2,4,3,5,6] => 1 = 3 - 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,2,4,5,3,6] => [1,2,5,4,3,6] => 2 = 4 - 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,2,4,5,6,3] => [1,2,6,4,5,3] => 2 = 4 - 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,3,5,2,4,7,6] => [1,5,3,2,4,7,6] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,3,5,2,7,4,6] => [1,7,3,2,5,4,6] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,3,5,7,2,4,6] => [1,7,3,5,4,2,6] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,3,5,2,4,6,7] => [1,5,3,2,4,6,7] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,3,5,2,6,4,7] => [1,6,3,2,5,4,7] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,3,5,6,2,4,7] => [1,6,3,5,4,2,7] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,3,5,2,6,7,4] => [1,7,3,2,5,6,4] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,3,5,6,2,7,4] => [1,7,3,5,4,6,2] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,3,5,6,7,2,4] => [1,7,3,6,5,4,2] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,3,6,2,4,7,5] => [1,7,3,2,4,6,5] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [1,3,6,2,7,4,5] => [1,7,3,2,6,5,4] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,3,6,7,2,4,5] => [1,7,3,6,4,5,2] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [1,3,6,2,4,5,7] => [1,6,3,2,4,5,7] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [1,3,4,6,2,5,7] => [1,6,3,4,2,5,7] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,3,4,6,2,7,5] => [1,7,3,4,2,6,5] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,3,4,6,7,2,5] => [1,7,3,4,6,5,2] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,3,7,2,4,5,6] => [1,7,3,2,4,5,6] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,3,4,7,2,5,6] => [1,7,3,4,2,5,6] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [1,3,4,5,2,7,6] => [1,5,3,4,2,7,6] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,3,4,5,7,2,6] => [1,7,3,4,5,2,6] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,3,4,5,2,6,7] => [1,5,3,4,2,6,7] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,3,4,5,6,2,7] => [1,6,3,4,5,2,7] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,3,4,5,6,7,2] => [1,7,3,4,5,6,2] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,4,2,5,3,7,6] => [1,5,2,4,3,7,6] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,4,5,2,3,7,6] => [1,5,4,3,2,7,6] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,4,2,5,7,3,6] => [1,7,2,4,5,3,6] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [1,4,5,2,7,3,6] => [1,7,4,3,5,2,6] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [1,4,5,7,2,3,6] => [1,7,5,4,3,2,6] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [1,4,2,5,3,6,7] => [1,5,2,4,3,6,7] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,4,5,2,3,6,7] => [1,5,4,3,2,6,7] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [1,4,2,5,6,3,7] => [1,6,2,4,5,3,7] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [1,4,5,2,6,3,7] => [1,6,4,3,5,2,7] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [1,4,5,6,2,3,7] => [1,6,5,4,3,2,7] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [1,4,2,5,6,7,3] => [1,7,2,4,5,6,3] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,0]
=> [1,4,5,2,6,7,3] => [1,7,4,3,5,6,2] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [1,4,5,6,2,7,3] => [1,7,5,4,3,6,2] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,4,5,6,7,2,3] => [1,7,6,4,5,3,2] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,4,2,6,3,7,5] => [1,7,2,4,3,6,5] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> [1,4,6,2,3,7,5] => [1,7,4,3,2,6,5] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,0]
=> [1,4,2,6,7,3,5] => [1,7,2,4,6,5,3] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [1,4,6,2,7,3,5] => [1,7,4,3,6,5,2] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,1,0,0,0,0]
=> [1,4,6,7,2,3,5] => [1,7,6,4,3,5,2] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [1,4,2,6,3,5,7] => [1,6,2,4,3,5,7] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> [1,4,6,2,3,5,7] => [1,6,4,3,2,5,7] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,4,2,7,3,5,6] => [1,7,2,4,3,5,6] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,1,0,0,0]
=> [1,4,7,2,3,5,6] => [1,7,4,3,2,5,6] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,5,2,6,3,7,4] => [1,7,2,5,4,6,3] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,5,6,2,3,7,4] => [1,7,5,3,4,6,2] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,5,2,6,7,3,4] => [1,7,2,6,5,4,3] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
[1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> [1,5,6,2,7,3,4] => [1,7,6,3,5,4,2] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7} - 2
Description
The number of indices that are both descents and recoils of a permutation.
Mp00201: Dyck paths RingelPermutations
Mp00175: Permutations inverse Foata bijectionPermutations
Mp00160: Permutations graph of inversionsGraphs
St000259: Graphs ⟶ ℤResult quality: 51% values known / values provided: 51%distinct values known / distinct values provided: 83%
Values
[1,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1 = 2 - 1
[1,0,1,0]
=> [3,1,2] => [1,3,2] => ([(1,2)],3)
=> ? = 2 - 1
[1,1,0,0]
=> [2,3,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,0,1,0,1,0]
=> [4,1,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {2,2,4} - 1
[1,0,1,1,0,0]
=> [3,1,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,4} - 1
[1,1,0,0,1,0]
=> [2,4,1,3] => [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,1,0,1,0,0]
=> [4,3,1,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,4} - 1
[1,1,1,0,0,0]
=> [2,3,4,1] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {2,2,2,2,3,4,4,4} - 1
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,3,4,4,4} - 1
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 5 - 1
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,3,4,4,4} - 1
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,3,4,4,4} - 1
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,3,4,4,4} - 1
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {2,2,2,2,3,4,4,4} - 1
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,3,4,4,4} - 1
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,3,4,4,4} - 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [5,2,3,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [1,2,3,4,6,5] => ([(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,6} - 1
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [1,2,3,5,6,4] => ([(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,6} - 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [4,1,2,6,3,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4 = 5 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [1,6,2,3,5,4] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,6} - 1
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [1,2,4,5,6,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,6} - 1
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [1,6,3,2,4,5] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,6} - 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [3,1,5,6,2,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 4 = 5 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [1,4,2,3,6,5] => ([(1,2),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,6} - 1
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [1,2,6,3,5,4] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,6} - 1
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [1,5,2,4,6,3] => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,6} - 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [6,1,3,4,2,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [6,3,1,5,2,4] => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [6,1,4,2,5,3] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [1,3,4,5,6,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,6} - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [2,1,3,6,4,5] => ([(1,2),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,6} - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [2,1,5,6,3,4] => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,6} - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [4,6,2,1,3,5] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3 = 4 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [6,2,1,5,3,4] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [4,2,5,6,1,3] => ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> 2 = 3 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [1,3,2,4,6,5] => ([(2,5),(3,4)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,6} - 1
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [1,3,2,5,6,4] => ([(1,2),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,6} - 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,2,4,3,6,5] => ([(2,5),(3,4)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,6} - 1
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,2,5,3,6,4] => ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,6} - 1
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [1,2,5,4,6,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,6} - 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [4,3,1,6,2,5] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> 4 = 5 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [3,1,6,2,5,4] => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> 4 = 5 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [4,1,2,6,5,3] => ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [1,4,3,5,6,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,6} - 1
[1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [2,6,3,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [5,2,3,6,1,4] => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [6,2,1,4,3,5] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [2,1,6,5,3,4] => ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,6} - 1
[1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [5,4,2,6,1,3] => ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [3,1,4,2,6,5] => ([(0,1),(2,5),(3,4),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,6} - 1
[1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [1,6,3,2,5,4] => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,6} - 1
[1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => [1,2,6,5,4,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,5,5,6} - 1
[1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => [3,1,5,4,6,2] => ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => [6,2,3,4,1,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => [6,5,2,3,1,4] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => [4,6,5,2,1,3] => ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => [3,4,1,6,5,2] => ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => [1,2,3,4,5,7,6] => ([(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7} - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => [1,2,3,4,6,7,5] => ([(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7} - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => [5,1,2,3,7,4,6] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 4 = 5 - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => [1,7,2,3,4,6,5] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7} - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => [1,2,3,5,6,7,4] => ([(3,6),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7} - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => [1,4,2,7,3,5,6] => ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7} - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [4,1,2,6,7,3,5] => ([(0,6),(1,6),(2,3),(2,4),(3,5),(4,5),(5,6)],7)
=> 4 = 5 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,1,2,5,3,4,6] => [1,5,2,3,4,7,6] => ([(1,2),(3,6),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7} - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => [1,2,7,3,4,6,5] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7} - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [6,1,2,5,3,7,4] => [1,6,2,3,5,7,4] => ([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7} - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => [7,1,2,4,5,3,6] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,1,2,7,6,3,5] => [7,4,1,2,6,3,5] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [7,1,2,5,6,3,4] => [7,1,5,2,3,6,4] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => [1,2,4,5,6,7,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7} - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => [1,3,2,7,4,5,6] => ([(1,2),(3,6),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7} - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [3,1,6,2,4,7,5] => [1,6,3,7,2,4,5] => ([(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7} - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => [3,5,1,7,2,4,6] => ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> 4 = 5 - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [3,1,7,2,6,4,5] => [3,1,7,6,2,4,5] => ([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> 4 = 5 - 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => [3,1,5,6,7,2,4] => ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7)
=> 4 = 5 - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => [1,4,2,3,5,7,6] => ([(2,3),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7} - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,1,4,2,3,7,5] => [1,4,2,3,6,7,5] => ([(1,6),(2,6),(3,5),(4,5)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7} - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,1,5,2,3,4,6] => [1,2,5,3,4,7,6] => ([(2,3),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7} - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => [1,2,6,3,4,7,5] => ([(2,6),(3,6),(4,5),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7} - 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [6,1,5,2,3,7,4] => [1,2,6,3,5,7,4] => ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7} - 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,1,4,2,7,3,6] => [5,4,1,2,7,3,6] => ([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> 4 = 5 - 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [7,1,4,2,6,3,5] => [4,1,7,2,3,6,5] => ([(0,5),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 4 = 5 - 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [7,1,5,2,6,3,4] => [7,1,2,5,3,6,4] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [5,1,4,2,6,7,3] => [1,5,2,4,6,7,3] => ([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,7} - 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => [3,7,1,4,2,5,6] => ([(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> 3 = 4 - 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => [6,1,3,4,7,2,5] => ([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 4 - 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [3,1,7,5,2,4,6] => [3,1,7,5,2,4,6] => ([(0,6),(1,2),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4 = 5 - 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [3,1,6,5,2,7,4] => [6,3,1,5,7,2,4] => ([(0,4),(0,6),(1,3),(1,5),(2,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 4 - 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => [6,1,4,2,5,7,3] => ([(0,6),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 4 - 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => [7,1,3,4,5,2,6] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [3,1,4,7,6,2,5] => [7,6,1,3,4,2,5] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => [3,7,5,1,6,2,4] => ([(0,3),(0,5),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 4 - 1
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Mp00102: Dyck paths rise compositionInteger compositions
Mp00172: Integer compositions rotate back to frontInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000771: Graphs ⟶ ℤResult quality: 50% values known / values provided: 50%distinct values known / distinct values provided: 83%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 1 = 2 - 1
[1,0,1,0]
=> [1,1] => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[1,1,0,0]
=> [2] => [2] => ([],2)
=> ? = 3 - 1
[1,0,1,0,1,0]
=> [1,1,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,0,1,1,0,0]
=> [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[1,1,0,0,1,0]
=> [2,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {2,3,4} - 1
[1,1,0,1,0,0]
=> [2,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {2,3,4} - 1
[1,1,1,0,0,0]
=> [3] => [3] => ([],3)
=> ? ∊ {2,3,4} - 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,3,4,4,4,5} - 1
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,3,3,4,4,4,5} - 1
[1,0,1,1,1,0,0,0]
=> [1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {2,3,3,3,4,4,4,5} - 1
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[1,1,0,1,1,0,0,0]
=> [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {2,3,3,3,4,4,4,5} - 1
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {2,3,3,3,4,4,4,5} - 1
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {2,3,3,3,4,4,4,5} - 1
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {2,3,3,3,4,4,4,5} - 1
[1,1,1,1,0,0,0,0]
=> [4] => [4] => ([],4)
=> ? ∊ {2,3,3,3,4,4,4,5} - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6} - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6} - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6} - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6} - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6} - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6} - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6} - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6} - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6} - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6} - 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6} - 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6} - 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6} - 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6} - 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6} - 1
[1,1,1,0,0,1,0,0,1,0]
=> [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6} - 1
[1,1,1,0,1,0,0,0,1,0]
=> [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,1,0,1,0,0,1,0,0]
=> [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6} - 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [1,4] => ([(3,4)],5)
=> ? ∊ {2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6} - 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,1] => [1,4] => ([(3,4)],5)
=> ? ∊ {2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6} - 1
[1,1,1,1,0,0,1,0,0,0]
=> [4,1] => [1,4] => ([(3,4)],5)
=> ? ∊ {2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6} - 1
[1,1,1,1,0,1,0,0,0,0]
=> [4,1] => [1,4] => ([(3,4)],5)
=> ? ∊ {2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6} - 1
[1,1,1,1,1,0,0,0,0,0]
=> [5] => [5] => ([],5)
=> ? ∊ {2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6} - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 5 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7} - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,2,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7} - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7} - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,2,1,1] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,2,1,1] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,2,2] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7} - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7} - 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,3,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7} - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,3,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7} - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,4] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,1,1,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7} - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7} - 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,3] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7} - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,1,1,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,1,1,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,1,1,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7} - 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7} - 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7} - 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,3] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7} - 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,3,1,1] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,3,2] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7} - 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,3,1,1] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,3,1,1] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,3,2] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7} - 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,3,1,1] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,3,1,1] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,3,1,1] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums 0, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian (4121141221411214). Its eigenvalues are 0,4,4,6, so the statistic is 2. The path on four vertices has eigenvalues 0,4.7,6,9.2 and therefore statistic 1.
Mp00146: Dyck paths to tunnel matchingPerfect matchings
Mp00058: Perfect matchings to permutationPermutations
Mp00159: Permutations Demazure product with inversePermutations
St000374: Permutations ⟶ ℤResult quality: 49% values known / values provided: 49%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [(1,2)]
=> [2,1] => [2,1] => 1 = 2 - 1
[1,0,1,0]
=> [(1,2),(3,4)]
=> [2,1,4,3] => [2,1,4,3] => 2 = 3 - 1
[1,1,0,0]
=> [(1,4),(2,3)]
=> [4,3,2,1] => [4,3,2,1] => 1 = 2 - 1
[1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => [2,1,4,3,6,5] => 3 = 4 - 1
[1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,6,5,4,3] => [2,1,6,5,4,3] => 2 = 3 - 1
[1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [4,3,2,1,6,5] => [4,3,2,1,6,5] => 2 = 3 - 1
[1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> [6,3,2,5,4,1] => [6,5,3,4,2,1] => 1 = 2 - 1
[1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => 1 = 2 - 1
[1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => 4 = 5 - 1
[1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,8,7,6,5] => [2,1,4,3,8,7,6,5] => 3 = 4 - 1
[1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,6,5,4,3,8,7] => [2,1,6,5,4,3,8,7] => 3 = 4 - 1
[1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,8,5,4,7,6,3] => [2,1,8,7,5,6,4,3] => ? ∊ {2,2,3,3,4} - 1
[1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,8,7,6,5,4,3] => [2,1,8,7,6,5,4,3] => 2 = 3 - 1
[1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [4,3,2,1,6,5,8,7] => [4,3,2,1,6,5,8,7] => 3 = 4 - 1
[1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [4,3,2,1,8,7,6,5] => [4,3,2,1,8,7,6,5] => 2 = 3 - 1
[1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [6,3,2,5,4,1,8,7] => [6,5,3,4,2,1,8,7] => ? ∊ {2,2,3,3,4} - 1
[1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => [8,7,3,5,4,6,2,1] => ? ∊ {2,2,3,3,4} - 1
[1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [8,3,2,7,6,5,4,1] => [8,7,3,6,5,4,2,1] => ? ∊ {2,2,3,3,4} - 1
[1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [6,5,4,3,2,1,8,7] => [6,5,4,3,2,1,8,7] => 2 = 3 - 1
[1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [8,5,4,3,2,7,6,1] => [8,7,5,4,3,6,2,1] => ? ∊ {2,2,3,3,4} - 1
[1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [8,7,4,3,6,5,2,1] => [8,7,6,5,4,3,2,1] => 1 = 2 - 1
[1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [8,7,6,5,4,3,2,1] => [8,7,6,5,4,3,2,1] => 1 = 2 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> [2,1,4,3,6,5,10,9,8,7] => [2,1,4,3,6,5,10,9,8,7] => 4 = 5 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,8,7,6,5,10,9] => [2,1,4,3,8,7,6,5,10,9] => 4 = 5 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> [2,1,4,3,10,7,6,9,8,5] => [2,1,4,3,10,9,7,8,6,5] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> [2,1,4,3,10,9,8,7,6,5] => [2,1,4,3,10,9,8,7,6,5] => 3 = 4 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10)]
=> [2,1,6,5,4,3,8,7,10,9] => [2,1,6,5,4,3,8,7,10,9] => 4 = 5 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> [2,1,6,5,4,3,10,9,8,7] => [2,1,6,5,4,3,10,9,8,7] => 3 = 4 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [2,1,8,5,4,7,6,3,10,9] => [2,1,8,7,5,6,4,3,10,9] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,10,5,4,7,6,9,8,3] => [2,1,10,9,5,7,6,8,4,3] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> [2,1,10,5,4,9,8,7,6,3] => [2,1,10,9,5,8,7,6,4,3] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [2,1,8,7,6,5,4,3,10,9] => [2,1,8,7,6,5,4,3,10,9] => 3 = 4 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [2,1,10,7,6,5,4,9,8,3] => [2,1,10,9,7,6,5,8,4,3] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> [2,1,10,9,6,5,8,7,4,3] => [2,1,10,9,8,7,6,5,4,3] => 2 = 3 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> [2,1,10,9,8,7,6,5,4,3] => [2,1,10,9,8,7,6,5,4,3] => 2 = 3 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [4,3,2,1,6,5,8,7,10,9] => [4,3,2,1,6,5,8,7,10,9] => 4 = 5 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> [4,3,2,1,6,5,10,9,8,7] => [4,3,2,1,6,5,10,9,8,7] => 3 = 4 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> [4,3,2,1,8,7,6,5,10,9] => [4,3,2,1,8,7,6,5,10,9] => 3 = 4 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> [4,3,2,1,10,7,6,9,8,5] => [4,3,2,1,10,9,7,8,6,5] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> [4,3,2,1,10,9,8,7,6,5] => [4,3,2,1,10,9,8,7,6,5] => 2 = 3 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [6,3,2,5,4,1,8,7,10,9] => [6,5,3,4,2,1,8,7,10,9] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> [6,3,2,5,4,1,10,9,8,7] => [6,5,3,4,2,1,10,9,8,7] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [8,3,2,5,4,7,6,1,10,9] => [8,7,3,5,4,6,2,1,10,9] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,1,0,1,0,1,0,1,0,0]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [10,3,2,5,4,7,6,9,8,1] => [10,9,3,5,4,7,6,8,2,1] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,1,0,1,0,1,1,0,0,0]
=> [(1,10),(2,3),(4,5),(6,9),(7,8)]
=> [10,3,2,5,4,9,8,7,6,1] => [10,9,3,5,4,8,7,6,2,1] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [8,3,2,7,6,5,4,1,10,9] => [8,7,3,6,5,4,2,1,10,9] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,1,0,1,1,0,0,1,0,0]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [10,3,2,7,6,5,4,9,8,1] => [10,9,3,7,6,5,4,8,2,1] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,1,0,1,1,0,1,0,0,0]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> [10,3,2,9,6,5,8,7,4,1] => [10,9,3,8,7,6,5,4,2,1] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,1,0,1,1,1,0,0,0,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> [10,3,2,9,8,7,6,5,4,1] => [10,9,3,8,7,6,5,4,2,1] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [6,5,4,3,2,1,8,7,10,9] => [6,5,4,3,2,1,8,7,10,9] => 3 = 4 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> [6,5,4,3,2,1,10,9,8,7] => [6,5,4,3,2,1,10,9,8,7] => 2 = 3 - 1
[1,1,1,0,0,1,0,0,1,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10)]
=> [8,5,4,3,2,7,6,1,10,9] => [8,7,5,4,3,6,2,1,10,9] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> [10,5,4,3,2,7,6,9,8,1] => [10,9,5,4,3,7,6,8,2,1] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,1,1,0,0,1,1,0,0,0]
=> [(1,10),(2,5),(3,4),(6,9),(7,8)]
=> [10,5,4,3,2,9,8,7,6,1] => [10,9,5,4,3,8,7,6,2,1] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,1,1,0,1,0,0,0,1,0]
=> [(1,8),(2,7),(3,4),(5,6),(9,10)]
=> [8,7,4,3,6,5,2,1,10,9] => [8,7,6,5,4,3,2,1,10,9] => 2 = 3 - 1
[1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> [10,7,4,3,6,5,2,9,8,1] => [10,9,7,6,5,4,3,8,2,1] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,1,1,0,1,0,1,0,0,0]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [10,9,4,3,6,5,8,7,2,1] => [10,9,8,7,6,5,4,3,2,1] => 1 = 2 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> [10,9,4,3,8,7,6,5,2,1] => [10,9,8,7,6,5,4,3,2,1] => 1 = 2 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> [8,7,6,5,4,3,2,1,10,9] => [8,7,6,5,4,3,2,1,10,9] => 2 = 3 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [(1,10),(2,7),(3,6),(4,5),(8,9)]
=> [10,7,6,5,4,3,2,9,8,1] => [10,9,7,6,5,4,3,8,2,1] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,1,1,1,0,0,1,0,0,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8)]
=> [10,9,6,5,4,3,8,7,2,1] => [10,9,8,7,6,5,4,3,2,1] => 1 = 2 - 1
[1,1,1,1,0,1,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,5),(6,7)]
=> [10,9,8,5,4,7,6,3,2,1] => [10,9,8,7,6,5,4,3,2,1] => 1 = 2 - 1
[1,1,1,1,1,0,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> [10,9,8,7,6,5,4,3,2,1] => [10,9,8,7,6,5,4,3,2,1] => 1 = 2 - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]
=> [2,1,4,3,6,5,8,7,10,9,12,11] => [2,1,4,3,6,5,8,7,10,9,12,11] => 6 = 7 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)]
=> [2,1,4,3,6,5,8,7,12,11,10,9] => [2,1,4,3,6,5,8,7,12,11,10,9] => 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)]
=> [2,1,4,3,6,5,10,9,8,7,12,11] => [2,1,4,3,6,5,10,9,8,7,12,11] => 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)]
=> [2,1,4,3,6,5,12,9,8,11,10,7] => [2,1,4,3,6,5,12,11,9,10,8,7] => ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)]
=> [2,1,4,3,6,5,12,11,10,9,8,7] => [2,1,4,3,6,5,12,11,10,9,8,7] => 4 = 5 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)]
=> [2,1,4,3,8,7,6,5,10,9,12,11] => [2,1,4,3,8,7,6,5,10,9,12,11] => 5 = 6 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)]
=> [2,1,4,3,8,7,6,5,12,11,10,9] => [2,1,4,3,8,7,6,5,12,11,10,9] => 4 = 5 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)]
=> [2,1,4,3,10,7,6,9,8,5,12,11] => [2,1,4,3,10,9,7,8,6,5,12,11] => ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)]
=> [2,1,4,3,12,7,6,9,8,11,10,5] => [2,1,4,3,12,11,7,9,8,10,6,5] => ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)]
=> [2,1,4,3,12,7,6,11,10,9,8,5] => [2,1,4,3,12,11,7,10,9,8,6,5] => ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)]
=> [2,1,4,3,10,9,8,7,6,5,12,11] => [2,1,4,3,10,9,8,7,6,5,12,11] => 4 = 5 - 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)]
=> [2,1,4,3,12,9,8,7,6,11,10,5] => [2,1,4,3,12,11,9,8,7,10,6,5] => ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)]
=> [2,1,4,3,12,11,8,7,10,9,6,5] => [2,1,4,3,12,11,10,9,8,7,6,5] => 3 = 4 - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)]
=> [2,1,4,3,12,11,10,9,8,7,6,5] => [2,1,4,3,12,11,10,9,8,7,6,5] => 3 = 4 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10),(11,12)]
=> [2,1,6,5,4,3,8,7,10,9,12,11] => [2,1,6,5,4,3,8,7,10,9,12,11] => 5 = 6 - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,12),(10,11)]
=> [2,1,6,5,4,3,8,7,12,11,10,9] => [2,1,6,5,4,3,8,7,12,11,10,9] => 4 = 5 - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [(1,2),(3,6),(4,5),(7,12),(8,9),(10,11)]
=> [2,1,6,5,4,3,12,9,8,11,10,7] => [2,1,6,5,4,3,12,11,9,10,8,7] => ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10),(11,12)]
=> [2,1,8,5,4,7,6,3,10,9,12,11] => [2,1,8,7,5,6,4,3,10,9,12,11] => ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,12),(10,11)]
=> [2,1,8,5,4,7,6,3,12,11,10,9] => [2,1,8,7,5,6,4,3,12,11,10,9] => ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9),(11,12)]
=> [2,1,10,5,4,7,6,9,8,3,12,11] => [2,1,10,9,5,7,6,8,4,3,12,11] => ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,9),(10,11)]
=> [2,1,12,5,4,7,6,9,8,11,10,3] => [2,1,12,11,5,7,6,9,8,10,4,3] => ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,11),(9,10)]
=> [2,1,12,5,4,7,6,11,10,9,8,3] => [2,1,12,11,5,7,6,10,9,8,4,3] => ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8),(11,12)]
=> [2,1,10,5,4,9,8,7,6,3,12,11] => [2,1,10,9,5,8,7,6,4,3,12,11] => ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,9),(7,8),(10,11)]
=> [2,1,12,5,4,9,8,7,6,11,10,3] => [2,1,12,11,5,9,8,7,6,10,4,3] => ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [(1,2),(3,12),(4,5),(6,11),(7,8),(9,10)]
=> [2,1,12,5,4,11,8,7,10,9,6,3] => [2,1,12,11,5,10,9,8,7,6,4,3] => ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [(1,2),(3,12),(4,5),(6,11),(7,10),(8,9)]
=> [2,1,12,5,4,11,10,9,8,7,6,3] => [2,1,12,11,5,10,9,8,7,6,4,3] => ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9),(11,12)]
=> [2,1,10,7,6,5,4,9,8,3,12,11] => [2,1,10,9,7,6,5,8,4,3,12,11] => ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,7),(5,6),(8,9),(10,11)]
=> [2,1,12,7,6,5,4,9,8,11,10,3] => [2,1,12,11,7,6,5,9,8,10,4,3] => ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [(1,2),(3,12),(4,7),(5,6),(8,11),(9,10)]
=> [2,1,12,7,6,5,4,11,10,9,8,3] => [2,1,12,11,7,6,5,10,9,8,4,3] => ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [(1,2),(3,12),(4,9),(5,6),(7,8),(10,11)]
=> [2,1,12,9,6,5,8,7,4,11,10,3] => [2,1,12,11,9,8,7,6,5,10,4,3] => ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [(1,2),(3,12),(4,9),(5,8),(6,7),(10,11)]
=> [2,1,12,9,8,7,6,5,4,11,10,3] => [2,1,12,11,9,8,7,6,5,10,4,3] => ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,6),(7,12),(8,9),(10,11)]
=> [4,3,2,1,6,5,12,9,8,11,10,7] => [4,3,2,1,6,5,12,11,9,10,8,7] => ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9),(11,12)]
=> [4,3,2,1,10,7,6,9,8,5,12,11] => [4,3,2,1,10,9,7,8,6,5,12,11] => ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [(1,4),(2,3),(5,12),(6,7),(8,9),(10,11)]
=> [4,3,2,1,12,7,6,9,8,11,10,5] => [4,3,2,1,12,11,7,9,8,10,6,5] => ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [(1,4),(2,3),(5,12),(6,7),(8,11),(9,10)]
=> [4,3,2,1,12,7,6,11,10,9,8,5] => [4,3,2,1,12,11,7,10,9,8,6,5] => ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [(1,4),(2,3),(5,12),(6,9),(7,8),(10,11)]
=> [4,3,2,1,12,9,8,7,6,11,10,5] => [4,3,2,1,12,11,9,8,7,10,6,5] => ? ∊ {2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
Description
The number of exclusive right-to-left minima of a permutation. This is the number of right-to-left minima that are not left-to-right maxima. This is also the number of non weak exceedences of a permutation that are also not mid-points of a decreasing subsequence of length 3. Given a permutation π=[π1,,πn], this statistic counts the number of position j such that πj<j and there do not exist indices i,k with i<j<k and πi>πj>πk. See also [[St000213]] and [[St000119]].
Mp00146: Dyck paths to tunnel matchingPerfect matchings
Mp00058: Perfect matchings to permutationPermutations
Mp00159: Permutations Demazure product with inversePermutations
St000742: Permutations ⟶ ℤResult quality: 49% values known / values provided: 49%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [(1,2)]
=> [2,1] => [2,1] => 1 = 2 - 1
[1,0,1,0]
=> [(1,2),(3,4)]
=> [2,1,4,3] => [2,1,4,3] => 2 = 3 - 1
[1,1,0,0]
=> [(1,4),(2,3)]
=> [4,3,2,1] => [4,3,2,1] => 1 = 2 - 1
[1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => [2,1,4,3,6,5] => 3 = 4 - 1
[1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,6,5,4,3] => [2,1,6,5,4,3] => 2 = 3 - 1
[1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [4,3,2,1,6,5] => [4,3,2,1,6,5] => 2 = 3 - 1
[1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> [6,3,2,5,4,1] => [6,5,3,4,2,1] => 1 = 2 - 1
[1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => 1 = 2 - 1
[1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => 4 = 5 - 1
[1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,8,7,6,5] => [2,1,4,3,8,7,6,5] => 3 = 4 - 1
[1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,6,5,4,3,8,7] => [2,1,6,5,4,3,8,7] => 3 = 4 - 1
[1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,8,5,4,7,6,3] => [2,1,8,7,5,6,4,3] => ? ∊ {2,2,3,3,4} - 1
[1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,8,7,6,5,4,3] => [2,1,8,7,6,5,4,3] => 2 = 3 - 1
[1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [4,3,2,1,6,5,8,7] => [4,3,2,1,6,5,8,7] => 3 = 4 - 1
[1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [4,3,2,1,8,7,6,5] => [4,3,2,1,8,7,6,5] => 2 = 3 - 1
[1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [6,3,2,5,4,1,8,7] => [6,5,3,4,2,1,8,7] => ? ∊ {2,2,3,3,4} - 1
[1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => [8,7,3,5,4,6,2,1] => ? ∊ {2,2,3,3,4} - 1
[1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [8,3,2,7,6,5,4,1] => [8,7,3,6,5,4,2,1] => ? ∊ {2,2,3,3,4} - 1
[1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [6,5,4,3,2,1,8,7] => [6,5,4,3,2,1,8,7] => 2 = 3 - 1
[1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [8,5,4,3,2,7,6,1] => [8,7,5,4,3,6,2,1] => ? ∊ {2,2,3,3,4} - 1
[1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [8,7,4,3,6,5,2,1] => [8,7,6,5,4,3,2,1] => 1 = 2 - 1
[1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [8,7,6,5,4,3,2,1] => [8,7,6,5,4,3,2,1] => 1 = 2 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> [2,1,4,3,6,5,10,9,8,7] => [2,1,4,3,6,5,10,9,8,7] => 4 = 5 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,8,7,6,5,10,9] => [2,1,4,3,8,7,6,5,10,9] => 4 = 5 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> [2,1,4,3,10,7,6,9,8,5] => [2,1,4,3,10,9,7,8,6,5] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> [2,1,4,3,10,9,8,7,6,5] => [2,1,4,3,10,9,8,7,6,5] => 3 = 4 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10)]
=> [2,1,6,5,4,3,8,7,10,9] => [2,1,6,5,4,3,8,7,10,9] => 4 = 5 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> [2,1,6,5,4,3,10,9,8,7] => [2,1,6,5,4,3,10,9,8,7] => 3 = 4 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [2,1,8,5,4,7,6,3,10,9] => [2,1,8,7,5,6,4,3,10,9] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,10,5,4,7,6,9,8,3] => [2,1,10,9,5,7,6,8,4,3] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> [2,1,10,5,4,9,8,7,6,3] => [2,1,10,9,5,8,7,6,4,3] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [2,1,8,7,6,5,4,3,10,9] => [2,1,8,7,6,5,4,3,10,9] => 3 = 4 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [2,1,10,7,6,5,4,9,8,3] => [2,1,10,9,7,6,5,8,4,3] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> [2,1,10,9,6,5,8,7,4,3] => [2,1,10,9,8,7,6,5,4,3] => 2 = 3 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> [2,1,10,9,8,7,6,5,4,3] => [2,1,10,9,8,7,6,5,4,3] => 2 = 3 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [4,3,2,1,6,5,8,7,10,9] => [4,3,2,1,6,5,8,7,10,9] => 4 = 5 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> [4,3,2,1,6,5,10,9,8,7] => [4,3,2,1,6,5,10,9,8,7] => 3 = 4 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> [4,3,2,1,8,7,6,5,10,9] => [4,3,2,1,8,7,6,5,10,9] => 3 = 4 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> [4,3,2,1,10,7,6,9,8,5] => [4,3,2,1,10,9,7,8,6,5] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> [4,3,2,1,10,9,8,7,6,5] => [4,3,2,1,10,9,8,7,6,5] => 2 = 3 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [6,3,2,5,4,1,8,7,10,9] => [6,5,3,4,2,1,8,7,10,9] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> [6,3,2,5,4,1,10,9,8,7] => [6,5,3,4,2,1,10,9,8,7] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [8,3,2,5,4,7,6,1,10,9] => [8,7,3,5,4,6,2,1,10,9] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,1,0,1,0,1,0,1,0,0]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [10,3,2,5,4,7,6,9,8,1] => [10,9,3,5,4,7,6,8,2,1] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,1,0,1,0,1,1,0,0,0]
=> [(1,10),(2,3),(4,5),(6,9),(7,8)]
=> [10,3,2,5,4,9,8,7,6,1] => [10,9,3,5,4,8,7,6,2,1] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [8,3,2,7,6,5,4,1,10,9] => [8,7,3,6,5,4,2,1,10,9] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,1,0,1,1,0,0,1,0,0]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [10,3,2,7,6,5,4,9,8,1] => [10,9,3,7,6,5,4,8,2,1] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,1,0,1,1,0,1,0,0,0]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> [10,3,2,9,6,5,8,7,4,1] => [10,9,3,8,7,6,5,4,2,1] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,1,0,1,1,1,0,0,0,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> [10,3,2,9,8,7,6,5,4,1] => [10,9,3,8,7,6,5,4,2,1] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [6,5,4,3,2,1,8,7,10,9] => [6,5,4,3,2,1,8,7,10,9] => 3 = 4 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> [6,5,4,3,2,1,10,9,8,7] => [6,5,4,3,2,1,10,9,8,7] => 2 = 3 - 1
[1,1,1,0,0,1,0,0,1,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10)]
=> [8,5,4,3,2,7,6,1,10,9] => [8,7,5,4,3,6,2,1,10,9] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> [10,5,4,3,2,7,6,9,8,1] => [10,9,5,4,3,7,6,8,2,1] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,1,1,0,0,1,1,0,0,0]
=> [(1,10),(2,5),(3,4),(6,9),(7,8)]
=> [10,5,4,3,2,9,8,7,6,1] => [10,9,5,4,3,8,7,6,2,1] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,1,1,0,1,0,0,0,1,0]
=> [(1,8),(2,7),(3,4),(5,6),(9,10)]
=> [8,7,4,3,6,5,2,1,10,9] => [8,7,6,5,4,3,2,1,10,9] => 2 = 3 - 1
[1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> [10,7,4,3,6,5,2,9,8,1] => [10,9,7,6,5,4,3,8,2,1] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,1,1,0,1,0,1,0,0,0]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [10,9,4,3,6,5,8,7,2,1] => [10,9,8,7,6,5,4,3,2,1] => 1 = 2 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> [10,9,4,3,8,7,6,5,2,1] => [10,9,8,7,6,5,4,3,2,1] => 1 = 2 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> [8,7,6,5,4,3,2,1,10,9] => [8,7,6,5,4,3,2,1,10,9] => 2 = 3 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [(1,10),(2,7),(3,6),(4,5),(8,9)]
=> [10,7,6,5,4,3,2,9,8,1] => [10,9,7,6,5,4,3,8,2,1] => ? ∊ {2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5} - 1
[1,1,1,1,0,0,1,0,0,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8)]
=> [10,9,6,5,4,3,8,7,2,1] => [10,9,8,7,6,5,4,3,2,1] => 1 = 2 - 1
[1,1,1,1,0,1,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,5),(6,7)]
=> [10,9,8,5,4,7,6,3,2,1] => [10,9,8,7,6,5,4,3,2,1] => 1 = 2 - 1
[1,1,1,1,1,0,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> [10,9,8,7,6,5,4,3,2,1] => [10,9,8,7,6,5,4,3,2,1] => 1 = 2 - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]
=> [2,1,4,3,6,5,8,7,10,9,12,11] => [2,1,4,3,6,5,8,7,10,9,12,11] => 6 = 7 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)]
=> [2,1,4,3,6,5,8,7,12,11,10,9] => [2,1,4,3,6,5,8,7,12,11,10,9] => 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)]
=> [2,1,4,3,6,5,10,9,8,7,12,11] => [2,1,4,3,6,5,10,9,8,7,12,11] => 5 = 6 - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)]
=> [2,1,4,3,6,5,12,9,8,11,10,7] => [2,1,4,3,6,5,12,11,9,10,8,7] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)]
=> [2,1,4,3,6,5,12,11,10,9,8,7] => [2,1,4,3,6,5,12,11,10,9,8,7] => 4 = 5 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)]
=> [2,1,4,3,8,7,6,5,10,9,12,11] => [2,1,4,3,8,7,6,5,10,9,12,11] => 5 = 6 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)]
=> [2,1,4,3,8,7,6,5,12,11,10,9] => [2,1,4,3,8,7,6,5,12,11,10,9] => 4 = 5 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)]
=> [2,1,4,3,10,7,6,9,8,5,12,11] => [2,1,4,3,10,9,7,8,6,5,12,11] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)]
=> [2,1,4,3,12,7,6,9,8,11,10,5] => [2,1,4,3,12,11,7,9,8,10,6,5] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)]
=> [2,1,4,3,12,7,6,11,10,9,8,5] => [2,1,4,3,12,11,7,10,9,8,6,5] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)]
=> [2,1,4,3,10,9,8,7,6,5,12,11] => [2,1,4,3,10,9,8,7,6,5,12,11] => 4 = 5 - 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)]
=> [2,1,4,3,12,9,8,7,6,11,10,5] => [2,1,4,3,12,11,9,8,7,10,6,5] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)]
=> [2,1,4,3,12,11,8,7,10,9,6,5] => [2,1,4,3,12,11,10,9,8,7,6,5] => 3 = 4 - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)]
=> [2,1,4,3,12,11,10,9,8,7,6,5] => [2,1,4,3,12,11,10,9,8,7,6,5] => 3 = 4 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10),(11,12)]
=> [2,1,6,5,4,3,8,7,10,9,12,11] => [2,1,6,5,4,3,8,7,10,9,12,11] => 5 = 6 - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,12),(10,11)]
=> [2,1,6,5,4,3,8,7,12,11,10,9] => [2,1,6,5,4,3,8,7,12,11,10,9] => 4 = 5 - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [(1,2),(3,6),(4,5),(7,12),(8,9),(10,11)]
=> [2,1,6,5,4,3,12,9,8,11,10,7] => [2,1,6,5,4,3,12,11,9,10,8,7] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10),(11,12)]
=> [2,1,8,5,4,7,6,3,10,9,12,11] => [2,1,8,7,5,6,4,3,10,9,12,11] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,12),(10,11)]
=> [2,1,8,5,4,7,6,3,12,11,10,9] => [2,1,8,7,5,6,4,3,12,11,10,9] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9),(11,12)]
=> [2,1,10,5,4,7,6,9,8,3,12,11] => [2,1,10,9,5,7,6,8,4,3,12,11] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,9),(10,11)]
=> [2,1,12,5,4,7,6,9,8,11,10,3] => [2,1,12,11,5,7,6,9,8,10,4,3] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,11),(9,10)]
=> [2,1,12,5,4,7,6,11,10,9,8,3] => [2,1,12,11,5,7,6,10,9,8,4,3] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8),(11,12)]
=> [2,1,10,5,4,9,8,7,6,3,12,11] => [2,1,10,9,5,8,7,6,4,3,12,11] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,9),(7,8),(10,11)]
=> [2,1,12,5,4,9,8,7,6,11,10,3] => [2,1,12,11,5,9,8,7,6,10,4,3] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [(1,2),(3,12),(4,5),(6,11),(7,8),(9,10)]
=> [2,1,12,5,4,11,8,7,10,9,6,3] => [2,1,12,11,5,10,9,8,7,6,4,3] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [(1,2),(3,12),(4,5),(6,11),(7,10),(8,9)]
=> [2,1,12,5,4,11,10,9,8,7,6,3] => [2,1,12,11,5,10,9,8,7,6,4,3] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9),(11,12)]
=> [2,1,10,7,6,5,4,9,8,3,12,11] => [2,1,10,9,7,6,5,8,4,3,12,11] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,7),(5,6),(8,9),(10,11)]
=> [2,1,12,7,6,5,4,9,8,11,10,3] => [2,1,12,11,7,6,5,9,8,10,4,3] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [(1,2),(3,12),(4,7),(5,6),(8,11),(9,10)]
=> [2,1,12,7,6,5,4,11,10,9,8,3] => [2,1,12,11,7,6,5,10,9,8,4,3] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [(1,2),(3,12),(4,9),(5,6),(7,8),(10,11)]
=> [2,1,12,9,6,5,8,7,4,11,10,3] => [2,1,12,11,9,8,7,6,5,10,4,3] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [(1,2),(3,12),(4,9),(5,8),(6,7),(10,11)]
=> [2,1,12,9,8,7,6,5,4,11,10,3] => [2,1,12,11,9,8,7,6,5,10,4,3] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,6),(7,12),(8,9),(10,11)]
=> [4,3,2,1,6,5,12,9,8,11,10,7] => [4,3,2,1,6,5,12,11,9,10,8,7] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9),(11,12)]
=> [4,3,2,1,10,7,6,9,8,5,12,11] => [4,3,2,1,10,9,7,8,6,5,12,11] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [(1,4),(2,3),(5,12),(6,7),(8,9),(10,11)]
=> [4,3,2,1,12,7,6,9,8,11,10,5] => [4,3,2,1,12,11,7,9,8,10,6,5] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [(1,4),(2,3),(5,12),(6,7),(8,11),(9,10)]
=> [4,3,2,1,12,7,6,11,10,9,8,5] => [4,3,2,1,12,11,7,10,9,8,6,5] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [(1,4),(2,3),(5,12),(6,9),(7,8),(10,11)]
=> [4,3,2,1,12,9,8,7,6,11,10,5] => [4,3,2,1,12,11,9,8,7,10,6,5] => ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6} - 1
Description
The number of big ascents of a permutation after prepending zero. Given a permutation π of {1,,n} we set π(0)=0 and then count the number of indices i{0,,n1} such that π(i+1)π(i)>1. It was shown in [1, Theorem 1.3] and in [2, Corollary 5.7] that this statistic is equidistributed with the number of descents ([[St000021]]). G. Han provided a bijection on permutations sending this statistic to the number of descents [3] using a simple variant of the first fundamental transformation [[Mp00086]]. [[St000646]] is the statistic without the border condition π(0)=0.
The following 81 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000996The number of exclusive left-to-right maxima of a permutation. St000871The number of very big ascents of a permutation. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St000264The girth of a graph, which is not a tree. St000260The radius of a connected graph. St000454The largest eigenvalue of a graph if it is integral. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000680The Grundy value for Hackendot on posets. St000717The number of ordinal summands of a poset. St000906The length of the shortest maximal chain in a poset. St001875The number of simple modules with projective dimension at most 1. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length 3. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000352The Elizalde-Pak rank of a permutation. St001782The order of rowmotion on the set of order ideals of a poset. St000528The height of a poset. St000907The number of maximal antichains of minimal length in a poset. St000911The number of maximal antichains of maximal size in a poset. St001636The number of indecomposable injective modules with projective dimension at most one in the incidence algebra of the poset. St000080The rank of the poset. St001631The number of simple modules S with dimExt1(S,A)=1 in the incidence algebra A of the poset. St001596The number of two-by-two squares inside a skew partition. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St000642The size of the smallest orbit of antichains under Panyushev complementation. St000643The size of the largest orbit of antichains under Panyushev complementation. St001198The number of simple modules in the algebra eAe with projective dimension at most 1 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001206The maximal dimension of an indecomposable projective eAe-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module eA. St000474Dyson's crank of a partition. St001200The number of simple modules in eAe with projective dimension at most 2 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001280The number of parts of an integer partition that are at least two. St001498The normalised height of a Nakayama algebra with magnitude 1. St001933The largest multiplicity of a part in an integer partition. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001060The distinguishing index of a graph. St000383The last part of an integer composition. St000455The second largest eigenvalue of a graph if it is integral. St000451The length of the longest pattern of the form k 1 2. St000237The number of small exceedances. St000725The smallest label of a leaf of the increasing binary tree associated to a permutation. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001618The cardinality of the Frattini sublattice of a lattice. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St000141The maximum drop size of a permutation. St000910The number of maximal chains of minimal length in a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St001870The number of positive entries followed by a negative entry in a signed permutation. St001330The hat guessing number of a graph. St000731The number of double exceedences of a permutation. St000663The number of right floats of a permutation. St001811The Castelnuovo-Mumford regularity of a permutation. St000942The number of critical left to right maxima of the parking functions. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001884The number of borders of a binary word. St000236The number of cyclical small weak excedances. St000239The number of small weak excedances. St000241The number of cyclical small excedances. St000648The number of 2-excedences of a permutation. St000732The number of double deficiencies of a permutation. St001085The number of occurrences of the vincular pattern |21-3 in a permutation. St001273The projective dimension of the first term in an injective coresolution of the regular module. St001297The number of indecomposable non-injective projective modules minus the number of indecomposable non-injective projective modules that have reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001557The number of inversions of the second entry of a permutation. St001730The number of times the path corresponding to a binary word crosses the base line. St001948The number of augmented double ascents of a permutation. St001621The number of atoms of a lattice. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001877Number of indecomposable injective modules with projective dimension 2. St000035The number of left outer peaks of a permutation. St000647The number of big descents of a permutation. St000834The number of right outer peaks of a permutation. St001096The size of the overlap set of a permutation. St000534The number of 2-rises of a permutation. St001115The number of even descents of a permutation.