searching the database
Your data matches 198 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000881
St000881: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,2] => 0
[2,1] => 0
[1,2,3] => 0
[1,3,2] => 0
[2,1,3] => 0
[2,3,1] => 0
[3,1,2] => 0
[3,2,1] => 0
[1,2,3,4] => 0
[1,2,4,3] => 0
[1,3,2,4] => 0
[1,3,4,2] => 0
[1,4,2,3] => 0
[1,4,3,2] => 0
[2,1,3,4] => 0
[2,1,4,3] => 1
[2,3,1,4] => 0
[2,3,4,1] => 0
[2,4,1,3] => 1
[2,4,3,1] => 1
[3,1,2,4] => 0
[3,1,4,2] => 1
[3,2,1,4] => 0
[3,2,4,1] => 1
[3,4,1,2] => 1
[3,4,2,1] => 2
[4,1,2,3] => 0
[4,1,3,2] => 1
[4,2,1,3] => 1
[4,2,3,1] => 4
[4,3,1,2] => 2
[4,3,2,1] => 10
[1,2,3,4,5] => 0
[1,2,3,5,4] => 0
[1,2,4,3,5] => 0
[1,2,4,5,3] => 0
[1,2,5,3,4] => 0
[1,2,5,4,3] => 0
[1,3,2,4,5] => 0
[1,3,2,5,4] => 1
[1,3,4,2,5] => 0
[1,3,4,5,2] => 0
[1,3,5,2,4] => 1
[1,3,5,4,2] => 1
[1,4,2,3,5] => 0
[1,4,2,5,3] => 1
[1,4,3,2,5] => 0
[1,4,3,5,2] => 1
[1,4,5,2,3] => 1
[1,4,5,3,2] => 2
Description
The number of short braid edges in the graph of braid moves of a permutation.
Given a permutation $\pi$, let $\operatorname{Red}(\pi)$ denote the set of reduced words for $\pi$ in terms of simple transpositions $s_i = (i,i+1)$. We now say that two reduced words are connected by a short braid move if they are obtained from each other by a modification of the form $s_i s_j \leftrightarrow s_j s_i$ for $|i-j| > 1$ as a consecutive subword of a reduced word.
For example, the two reduced words $s_1s_3s_2$ and $s_3s_1s_2$ for
$$(1243) = (12)(34)(23) = (34)(12)(23)$$
share an edge because they are obtained from each other by interchanging $s_1s_3 \leftrightarrow s_3s_1$.
This statistic counts the number of such short braid moves among all reduced words.
Matching statistic: St000454
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00223: Permutations —runsort⟶ Permutations
Mp00126: Permutations —cactus evacuation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 12% ●values known / values provided: 38%●distinct values known / distinct values provided: 12%
Mp00126: Permutations —cactus evacuation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 12% ●values known / values provided: 38%●distinct values known / distinct values provided: 12%
Values
[1,2] => [1,2] => [1,2] => ([],2)
=> 0
[2,1] => [1,2] => [1,2] => ([],2)
=> 0
[1,2,3] => [1,2,3] => [1,2,3] => ([],3)
=> 0
[1,3,2] => [1,3,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> ? ∊ {0,0}
[2,1,3] => [1,3,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> ? ∊ {0,0}
[2,3,1] => [1,2,3] => [1,2,3] => ([],3)
=> 0
[3,1,2] => [1,2,3] => [1,2,3] => ([],3)
=> 0
[3,2,1] => [1,2,3] => [1,2,3] => ([],3)
=> 0
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[1,2,4,3] => [1,2,4,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,4,10}
[1,3,2,4] => [1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> 1
[1,3,4,2] => [1,3,4,2] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,4,10}
[1,4,2,3] => [1,4,2,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,4,10}
[1,4,3,2] => [1,4,2,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,4,10}
[2,1,3,4] => [1,3,4,2] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,4,10}
[2,1,4,3] => [1,4,2,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,4,10}
[2,3,1,4] => [1,4,2,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,4,10}
[2,3,4,1] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[2,4,1,3] => [1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> 1
[2,4,3,1] => [1,2,4,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,4,10}
[3,1,2,4] => [1,2,4,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,4,10}
[3,1,4,2] => [1,4,2,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,4,10}
[3,2,1,4] => [1,4,2,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,4,10}
[3,2,4,1] => [1,2,4,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,1,1,1,1,2,2,4,10}
[3,4,1,2] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[3,4,2,1] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[4,1,2,3] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[4,1,3,2] => [1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> 1
[4,2,1,3] => [1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> 1
[4,2,3,1] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[4,3,1,2] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[4,3,2,1] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,2,3,5,4] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,2,4,3,5] => [1,2,4,3,5] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,2,4,5,3] => [1,2,4,5,3] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,2,5,3,4] => [1,2,5,3,4] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,2,5,4,3] => [1,2,5,3,4] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,3,2,4,5] => [1,3,2,4,5] => [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,3,2,5,4] => [1,3,2,5,4] => [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,3,4,2,5] => [1,3,4,2,5] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[1,3,4,5,2] => [1,3,4,5,2] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,3,5,2,4] => [1,3,5,2,4] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,3,5,4,2] => [1,3,5,2,4] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,4,2,3,5] => [1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,4,2,5,3] => [1,4,2,5,3] => [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,4,3,2,5] => [1,4,2,5,3] => [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,4,3,5,2] => [1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,4,5,2,3] => [1,4,5,2,3] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,4,5,3,2] => [1,4,5,2,3] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,5,2,3,4] => [1,5,2,3,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,5,2,4,3] => [1,5,2,4,3] => [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,5,3,2,4] => [1,5,2,4,3] => [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,5,3,4,2] => [1,5,2,3,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,5,4,2,3] => [1,5,2,3,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,5,4,3,2] => [1,5,2,3,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,1,3,4,5] => [1,3,4,5,2] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,1,3,5,4] => [1,3,5,2,4] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,1,4,3,5] => [1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[2,1,4,5,3] => [1,4,5,2,3] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,1,5,3,4] => [1,5,2,3,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,1,5,4,3] => [1,5,2,3,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,3,1,4,5] => [1,4,5,2,3] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,3,1,5,4] => [1,5,2,3,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,3,4,1,5] => [1,5,2,3,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[2,3,5,1,4] => [1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[2,3,5,4,1] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[2,4,1,3,5] => [1,3,5,2,4] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,4,1,5,3] => [1,5,2,4,3] => [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,4,3,1,5] => [1,5,2,4,3] => [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,4,3,5,1] => [1,2,4,3,5] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,4,5,1,3] => [1,3,2,4,5] => [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,4,5,3,1] => [1,2,4,5,3] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,5,1,3,4] => [1,3,4,2,5] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[2,5,1,4,3] => [1,4,2,5,3] => [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,5,3,1,4] => [1,4,2,5,3] => [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,5,3,4,1] => [1,2,5,3,4] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[3,4,5,1,2] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[3,4,5,2,1] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[3,5,1,4,2] => [1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[3,5,2,1,4] => [1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[3,5,4,1,2] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[3,5,4,2,1] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[4,1,2,3,5] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[4,2,3,5,1] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[4,3,5,1,2] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[4,3,5,2,1] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[4,5,1,2,3] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[4,5,2,3,1] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[4,5,3,1,2] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[4,5,3,2,1] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[5,1,2,3,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[5,1,3,4,2] => [1,3,4,2,5] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[5,1,4,2,3] => [1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[5,1,4,3,2] => [1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[5,2,1,3,4] => [1,3,4,2,5] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[5,2,1,4,3] => [1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[5,2,3,1,4] => [1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[5,2,3,4,1] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001232
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00248: Permutations —DEX composition⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 12% ●values known / values provided: 32%●distinct values known / distinct values provided: 12%
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 12% ●values known / values provided: 32%●distinct values known / distinct values provided: 12%
Values
[1,2] => [2] => [2]
=> [1,1,0,0,1,0]
=> 1 = 0 + 1
[2,1] => [2] => [2]
=> [1,1,0,0,1,0]
=> 1 = 0 + 1
[1,2,3] => [3] => [3]
=> [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,3,2] => [1,2] => [2,1]
=> [1,0,1,0,1,0]
=> ? ∊ {0,0} + 1
[2,1,3] => [3] => [3]
=> [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[2,3,1] => [3] => [3]
=> [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[3,1,2] => [3] => [3]
=> [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[3,2,1] => [2,1] => [2,1]
=> [1,0,1,0,1,0]
=> ? ∊ {0,0} + 1
[1,2,3,4] => [4] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,2,4,3] => [2,2] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,3,2,4] => [1,3] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {0,0,0,0,1,1,2,2,4,10} + 1
[1,3,4,2] => [1,3] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {0,0,0,0,1,1,2,2,4,10} + 1
[1,4,2,3] => [1,3] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {0,0,0,0,1,1,2,2,4,10} + 1
[1,4,3,2] => [1,2,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,1,1,2,2,4,10} + 1
[2,1,3,4] => [4] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[2,1,4,3] => [2,2] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[2,3,1,4] => [4] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[2,3,4,1] => [4] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[2,4,1,3] => [4] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[2,4,3,1] => [3,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {0,0,0,0,1,1,2,2,4,10} + 1
[3,1,2,4] => [4] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[3,1,4,2] => [2,2] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[3,2,1,4] => [2,2] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[3,2,4,1] => [2,2] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[3,4,1,2] => [4] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[3,4,2,1] => [3,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {0,0,0,0,1,1,2,2,4,10} + 1
[4,1,2,3] => [4] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[4,1,3,2] => [3,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {0,0,0,0,1,1,2,2,4,10} + 1
[4,2,1,3] => [2,2] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[4,2,3,1] => [3,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {0,0,0,0,1,1,2,2,4,10} + 1
[4,3,1,2] => [1,3] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {0,0,0,0,1,1,2,2,4,10} + 1
[4,3,2,1] => [1,2,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {0,0,0,0,1,1,2,2,4,10} + 1
[1,2,3,4,5] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,2,3,5,4] => [3,2] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,2,4,3,5] => [2,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,2,4,5,3] => [2,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,2,5,3,4] => [2,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,2,5,4,3] => [2,2,1] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,3,2,4,5] => [1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,3,2,5,4] => [1,2,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,3,4,2,5] => [1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,3,4,5,2] => [1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,3,5,2,4] => [1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,3,5,4,2] => [1,3,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,4,2,3,5] => [1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,4,2,5,3] => [1,2,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,4,3,2,5] => [1,2,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,4,3,5,2] => [1,2,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,4,5,2,3] => [1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,4,5,3,2] => [1,3,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,5,2,3,4] => [1,4] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,5,2,4,3] => [1,3,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,5,3,2,4] => [1,2,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,5,3,4,2] => [1,3,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,5,4,2,3] => [1,1,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,5,4,3,2] => [1,1,2,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,1,3,4,5] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[2,1,3,5,4] => [3,2] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,1,4,3,5] => [2,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,1,4,5,3] => [2,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,1,5,3,4] => [2,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,1,5,4,3] => [2,2,1] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,3,1,4,5] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[2,3,1,5,4] => [3,2] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,3,4,1,5] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[2,3,4,5,1] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[2,3,5,1,4] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[2,3,5,4,1] => [4,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,4,1,3,5] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[2,4,1,5,3] => [3,2] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,4,3,1,5] => [3,2] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,4,3,5,1] => [3,2] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,4,5,1,3] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[2,4,5,3,1] => [4,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,5,1,3,4] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[2,5,1,4,3] => [4,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,5,3,1,4] => [3,2] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,5,3,4,1] => [4,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,5,4,1,3] => [2,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,5,4,3,1] => [2,2,1] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[3,1,2,4,5] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[3,1,2,5,4] => [3,2] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[3,1,4,2,5] => [2,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[3,1,4,5,2] => [2,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[3,1,5,2,4] => [2,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[3,4,1,2,5] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[3,4,5,1,2] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[3,5,1,2,4] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[4,1,2,3,5] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[4,3,5,2,1] => [1,3,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[4,5,1,2,3] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[4,5,3,2,1] => [3,1,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[5,1,2,3,4] => [5] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 0 + 1
[5,3,1,4,2] => [1,3,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[5,3,2,4,1] => [1,3,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[5,3,4,2,1] => [1,3,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[5,4,1,3,2] => [1,3,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[5,4,2,3,1] => [1,3,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St001964
(load all 13 compositions to match this statistic)
(load all 13 compositions to match this statistic)
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
St001964: Posets ⟶ ℤResult quality: 8% ●values known / values provided: 29%●distinct values known / distinct values provided: 8%
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
St001964: Posets ⟶ ℤResult quality: 8% ●values known / values provided: 29%●distinct values known / distinct values provided: 8%
Values
[1,2] => [1,0,1,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> 0
[2,1] => [1,1,0,0]
=> [1,1,0,0]
=> ([(0,1)],2)
=> 0
[1,2,3] => [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 0
[1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> 0
[2,1,3] => [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> 0
[2,3,1] => [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> 0
[3,1,2] => [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[3,2,1] => [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,1,2,2,4,10}
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,1,2,2,4,10}
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,1,2,2,4,10}
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,1,2,2,4,10}
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,1,2,2,4,10}
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,1,2,2,4,10}
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,1,2,2,4,10}
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,1,2,2,4,10}
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,4,5,3,1] => [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,5,1,4,3] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,5,3,1,4] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,5,3,4,1] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[3,1,4,2,5] => [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[3,1,5,4,2] => [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[3,2,5,1,4] => [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[3,4,1,5,2] => [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[3,4,2,5,1] => [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
Description
The interval resolution global dimension of a poset.
This is the cardinality of the longest chain of right minimal approximations by interval modules of an indecomposable module over the incidence algebra.
Matching statistic: St001570
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00248: Permutations —DEX composition⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001570: Graphs ⟶ ℤResult quality: 12% ●values known / values provided: 26%●distinct values known / distinct values provided: 12%
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001570: Graphs ⟶ ℤResult quality: 12% ●values known / values provided: 26%●distinct values known / distinct values provided: 12%
Values
[1,2] => [2] => [1] => ([],1)
=> ? ∊ {0,0}
[2,1] => [2] => [1] => ([],1)
=> ? ∊ {0,0}
[1,2,3] => [3] => [1] => ([],1)
=> ? ∊ {0,0,0,0,0,0}
[1,3,2] => [1,2] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0}
[2,1,3] => [3] => [1] => ([],1)
=> ? ∊ {0,0,0,0,0,0}
[2,3,1] => [3] => [1] => ([],1)
=> ? ∊ {0,0,0,0,0,0}
[3,1,2] => [3] => [1] => ([],1)
=> ? ∊ {0,0,0,0,0,0}
[3,2,1] => [2,1] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0}
[1,2,3,4] => [4] => [1] => ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[1,2,4,3] => [2,2] => [2] => ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[1,3,2,4] => [1,3] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[1,3,4,2] => [1,3] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[1,4,2,3] => [1,3] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[1,4,3,2] => [1,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[2,1,3,4] => [4] => [1] => ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[2,1,4,3] => [2,2] => [2] => ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[2,3,1,4] => [4] => [1] => ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[2,3,4,1] => [4] => [1] => ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[2,4,1,3] => [4] => [1] => ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[2,4,3,1] => [3,1] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[3,1,2,4] => [4] => [1] => ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[3,1,4,2] => [2,2] => [2] => ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[3,2,1,4] => [2,2] => [2] => ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[3,2,4,1] => [2,2] => [2] => ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[3,4,1,2] => [4] => [1] => ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[3,4,2,1] => [3,1] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[4,1,2,3] => [4] => [1] => ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[4,1,3,2] => [3,1] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[4,2,1,3] => [2,2] => [2] => ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[4,2,3,1] => [3,1] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[4,3,1,2] => [1,3] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[4,3,2,1] => [1,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[1,2,3,4,5] => [5] => [1] => ([],1)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,2,3,5,4] => [3,2] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,2,4,3,5] => [2,3] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,2,4,5,3] => [2,3] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,2,5,3,4] => [2,3] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,2,5,4,3] => [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[1,3,2,4,5] => [1,4] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,3,2,5,4] => [1,2,2] => [1,2] => ([(1,2)],3)
=> 2
[1,3,4,2,5] => [1,4] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,3,4,5,2] => [1,4] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,3,5,2,4] => [1,4] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,3,5,4,2] => [1,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[1,4,2,3,5] => [1,4] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,4,2,5,3] => [1,2,2] => [1,2] => ([(1,2)],3)
=> 2
[1,4,3,2,5] => [1,2,2] => [1,2] => ([(1,2)],3)
=> 2
[1,4,3,5,2] => [1,2,2] => [1,2] => ([(1,2)],3)
=> 2
[1,4,5,2,3] => [1,4] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,4,5,3,2] => [1,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[1,5,2,3,4] => [1,4] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,5,2,4,3] => [1,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[1,5,3,2,4] => [1,2,2] => [1,2] => ([(1,2)],3)
=> 2
[1,5,3,4,2] => [1,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[1,5,4,2,3] => [1,1,3] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[1,5,4,3,2] => [1,1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[2,1,3,4,5] => [5] => [1] => ([],1)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,1,3,5,4] => [3,2] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,1,4,3,5] => [2,3] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,1,4,5,3] => [2,3] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,1,5,3,4] => [2,3] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,1,5,4,3] => [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[2,3,1,4,5] => [5] => [1] => ([],1)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,3,1,5,4] => [3,2] => [1,1] => ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,3,4,1,5] => [5] => [1] => ([],1)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,5,4,3,1] => [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[3,1,5,4,2] => [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[3,2,1,5,4] => [2,1,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[3,2,5,4,1] => [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[3,5,4,2,1] => [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[4,1,5,3,2] => [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[4,2,1,5,3] => [2,1,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[4,2,5,3,1] => [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[4,3,1,5,2] => [1,2,2] => [1,2] => ([(1,2)],3)
=> 2
[4,3,2,1,5] => [1,2,2] => [1,2] => ([(1,2)],3)
=> 2
[4,3,2,5,1] => [1,2,2] => [1,2] => ([(1,2)],3)
=> 2
[4,3,5,2,1] => [1,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[4,5,3,2,1] => [3,1,1] => [1,2] => ([(1,2)],3)
=> 2
[5,1,4,3,2] => [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[5,2,1,4,3] => [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[5,2,4,3,1] => [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[5,3,1,4,2] => [1,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[5,3,2,1,4] => [1,2,2] => [1,2] => ([(1,2)],3)
=> 2
[5,3,2,4,1] => [1,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[5,3,4,2,1] => [1,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[5,4,1,3,2] => [1,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[5,4,2,1,3] => [1,2,2] => [1,2] => ([(1,2)],3)
=> 2
[5,4,2,3,1] => [1,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[5,4,3,1,2] => [1,2,2] => [1,2] => ([(1,2)],3)
=> 2
[5,4,3,2,1] => [1,2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
Description
The minimal number of edges to add to make a graph Hamiltonian.
A graph is Hamiltonian if it contains a cycle as a subgraph, which contains all vertices.
Matching statistic: St000527
Mp00063: Permutations —to alternating sign matrix⟶ Alternating sign matrices
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St000527: Posets ⟶ ℤResult quality: 12% ●values known / values provided: 26%●distinct values known / distinct values provided: 12%
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St000527: Posets ⟶ ℤResult quality: 12% ●values known / values provided: 26%●distinct values known / distinct values provided: 12%
Values
[1,2] => [[1,0],[0,1]]
=> [[1,1],[2]]
=> ([],1)
=> 1 = 0 + 1
[2,1] => [[0,1],[1,0]]
=> [[1,2],[2]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2,3] => [[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> ([],1)
=> 1 = 0 + 1
[1,3,2] => [[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[2,1,3] => [[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[2,3,1] => [[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[3,1,2] => [[0,1,0],[0,0,1],[1,0,0]]
=> [[1,2,2],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[3,2,1] => [[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 0 + 1
[1,2,3,4] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> ([],1)
=> 1 = 0 + 1
[1,2,4,3] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,3,2,4] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,3,4,2] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,4,2,3] => [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,1],[2,3,3],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,4,3,2] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,2,4,10} + 1
[2,1,3,4] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,3,1,4] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,3,4,1] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,2,4,10} + 1
[2,4,1,3] => [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,3],[2,3,3],[3,4],[4]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2 = 1 + 1
[2,4,3,1] => [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,2,4,10} + 1
[3,1,2,4] => [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,2],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[3,1,4,2] => [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,2],[2,2,4],[3,4],[4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> 3 = 2 + 1
[3,2,1,4] => [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,2,4,10} + 1
[3,2,4,1] => [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,4],[2,2,4],[3,4],[4]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,2,4,10} + 1
[3,4,1,2] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,3],[2,3,4],[3,4],[4]]
=> ([(0,8),(2,11),(2,12),(3,10),(4,9),(5,4),(5,14),(6,3),(6,14),(7,1),(8,5),(8,6),(9,11),(9,13),(10,12),(10,13),(11,15),(12,15),(13,15),(14,2),(14,9),(14,10),(15,7)],16)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,2,4,10} + 1
[3,4,2,1] => [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,4],[2,3,4],[3,4],[4]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,2,4,10} + 1
[4,1,2,3] => [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,2],[2,3,3],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,2,4,10} + 1
[4,1,3,2] => [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,2,4,10} + 1
[4,2,1,3] => [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,3],[2,3,3],[3,4],[4]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,2,4,10} + 1
[4,2,3,1] => [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,4],[2,3,4],[3,4],[4]]
=> ([(0,14),(0,15),(1,19),(2,18),(3,29),(4,30),(5,22),(6,23),(7,24),(7,25),(8,9),(9,7),(9,18),(9,19),(10,5),(11,6),(12,2),(12,29),(13,1),(13,30),(14,16),(14,28),(15,17),(15,28),(16,3),(16,12),(17,4),(17,13),(18,24),(18,27),(19,25),(19,27),(20,26),(21,26),(22,20),(23,21),(24,22),(24,31),(25,23),(25,31),(27,31),(28,8),(29,10),(30,11),(31,20),(31,21)],32)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,2,4,10} + 1
[4,3,1,2] => [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,3],[2,3,4],[3,4],[4]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,2,4,10} + 1
[4,3,2,1] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,2,4,10} + 1
[1,2,3,4,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([],1)
=> 1 = 0 + 1
[1,2,3,5,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2,4,3,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2,4,5,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,5],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,5,3,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,4,4],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,5,4,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,3,2,4,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,3,2,5,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,3,4,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,4,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,3,5,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,4],[3,4,4],[4,5],[5]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2 = 1 + 1
[1,3,5,4,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,5],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,4,2,3,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,3,3],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,4,2,5,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,3,3],[3,3,5],[4,5],[5]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> 3 = 2 + 1
[1,4,3,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,3,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,4,3,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,3,5],[3,3,5],[4,5],[5]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,4,5,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,4,4],[3,4,5],[4,5],[5]]
=> ([(0,8),(2,11),(2,12),(3,10),(4,9),(5,4),(5,14),(6,3),(6,14),(7,1),(8,5),(8,6),(9,11),(9,13),(10,12),(10,13),(11,15),(12,15),(13,15),(14,2),(14,9),(14,10),(15,7)],16)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,4,5,3,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,4,5],[3,4,5],[4,5],[5]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,5,2,3,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,3],[3,4,4],[4,5],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,5,2,4,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,3],[3,4,5],[4,5],[5]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,5,3,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,4],[3,4,4],[4,5],[5]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,5,3,4,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,5],[3,4,5],[4,5],[5]]
=> ([(0,14),(0,15),(1,19),(2,18),(3,29),(4,30),(5,22),(6,23),(7,24),(7,25),(8,9),(9,7),(9,18),(9,19),(10,5),(11,6),(12,2),(12,29),(13,1),(13,30),(14,16),(14,28),(15,17),(15,28),(16,3),(16,12),(17,4),(17,13),(18,24),(18,27),(19,25),(19,27),(20,26),(21,26),(22,20),(23,21),(24,22),(24,31),(25,23),(25,31),(27,31),(28,8),(29,10),(30,11),(31,20),(31,21)],32)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,5,4,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,4,4],[3,4,5],[4,5],[5]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,5,4,3,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,1,3,4,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[2,1,3,5,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,1,4,3,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,1,4,5,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,5],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 2 = 1 + 1
[2,1,5,3,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,4,4],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 2 = 1 + 1
[2,1,5,4,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,4,5],[4,5],[5]]
=> ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,3,1,4,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,3,1,5,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 2 = 1 + 1
[2,3,4,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,4],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,3,4,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,5],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,9),(1,13),(2,14),(4,12),(5,11),(6,1),(6,12),(7,3),(8,5),(8,15),(9,10),(10,4),(10,6),(11,14),(12,8),(12,13),(13,15),(14,7),(15,2),(15,11)],16)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,3,5,1,4] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,4],[2,2,2,4],[3,4,4],[4,5],[5]]
=> ([(0,4),(0,8),(1,11),(3,10),(4,9),(5,2),(6,3),(6,12),(7,5),(8,6),(8,9),(9,12),(10,11),(11,7),(12,1),(12,10)],13)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,3,5,4,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,5],[2,2,2,5],[3,4,5],[4,5],[5]]
=> ([(0,8),(0,16),(1,19),(1,20),(2,21),(3,23),(4,26),(5,24),(6,22),(7,27),(8,18),(9,10),(9,20),(10,4),(10,31),(11,2),(11,30),(12,3),(13,7),(13,29),(14,11),(14,28),(15,6),(15,25),(16,17),(16,18),(17,1),(17,9),(17,33),(18,33),(19,24),(20,13),(20,31),(21,32),(22,32),(24,14),(25,12),(26,28),(27,25),(28,30),(29,15),(29,27),(30,21),(30,22),(31,26),(31,29),(32,23),(33,5),(33,19)],34)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,4,1,3,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,3,3],[3,3,4],[4,4],[5]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2 = 1 + 1
[2,4,1,5,3] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,3,3],[3,3,5],[4,5],[5]]
=> ([(0,6),(0,7),(1,5),(1,15),(2,4),(2,14),(3,13),(4,12),(5,3),(5,16),(6,9),(7,2),(7,9),(9,1),(9,14),(10,11),(11,8),(12,10),(13,8),(14,12),(14,15),(15,10),(15,16),(16,11),(16,13)],17)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,4,3,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,4],[2,2,3,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,4,3,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,5],[2,2,3,5],[3,3,5],[4,5],[5]]
=> ([(0,8),(0,13),(1,19),(2,16),(2,18),(3,21),(4,26),(5,24),(6,16),(6,22),(7,20),(7,23),(8,17),(9,4),(9,18),(10,9),(11,7),(11,30),(12,3),(12,25),(13,14),(13,17),(14,1),(14,15),(15,2),(15,6),(15,19),(16,28),(17,10),(18,26),(18,28),(19,11),(19,22),(20,24),(20,31),(22,30),(23,31),(24,12),(24,27),(25,21),(26,23),(26,29),(27,25),(28,29),(29,31),(30,5),(30,20),(31,27)],32)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,4,5,1,3] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,4],[2,2,4,4],[3,4,5],[4,5],[5]]
=> ([(0,9),(0,10),(1,2),(3,7),(3,23),(4,6),(4,22),(5,15),(6,16),(7,8),(7,24),(8,20),(9,19),(10,4),(10,19),(11,14),(11,18),(12,26),(13,26),(14,25),(15,1),(16,21),(17,13),(17,25),(18,12),(18,25),(19,3),(19,22),(20,12),(20,13),(21,14),(21,17),(22,16),(22,23),(23,11),(23,21),(23,24),(24,17),(24,18),(24,20),(25,5),(25,26),(26,15)],27)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,4,5,3,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,5],[2,2,4,5],[3,4,5],[4,5],[5]]
=> ([(0,17),(0,18),(1,11),(1,12),(2,53),(3,50),(4,33),(5,16),(5,65),(6,13),(6,61),(7,14),(7,62),(8,15),(8,51),(9,25),(9,63),(10,24),(10,52),(11,54),(12,22),(12,23),(12,54),(13,36),(14,35),(15,40),(16,59),(17,1),(17,48),(18,7),(18,48),(19,32),(19,45),(20,29),(20,38),(21,55),(21,58),(22,49),(22,60),(23,42),(23,49),(24,31),(24,46),(25,21),(25,60),(25,64),(27,70),(28,70),(29,67),(30,66),(31,68),(32,3),(32,69),(33,8),(34,39),(35,57),(36,39),(37,32),(37,66),(38,19),(38,37),(38,67),(39,26),(40,26),(41,30),(41,67),(42,52),(43,44),(43,68),(44,28),(44,69),(45,27),(45,69),(46,53),(46,68),(47,61),(48,9),(48,62),(49,5),(49,56),(50,34),(51,40),(52,2),(52,46),(53,6),(53,47),(54,10),(54,42),(55,31),(55,43),(56,43),(56,65),(57,29),(57,41),(58,30),(58,37),(59,27),(59,28),(60,55),(60,56),(61,34),(61,36),(62,35),(62,63),(63,20),(63,57),(63,64),(64,38),(64,41),(64,58),(65,44),(65,45),(65,59),(66,33),(67,4),(67,66),(68,47),(69,50),(69,70),(70,51)],71)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,5,1,3,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,3],[2,3,3,3],[3,4,4],[4,5],[5]]
=> ([(0,4),(0,8),(1,11),(3,10),(4,9),(5,2),(6,3),(6,12),(7,5),(8,6),(8,9),(9,12),(10,11),(11,7),(12,1),(12,10)],13)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,5,1,4,3] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,3],[2,3,3,3],[3,4,5],[4,5],[5]]
=> ([(0,7),(0,8),(0,11),(1,23),(2,5),(2,20),(3,10),(3,21),(4,9),(4,22),(5,6),(5,15),(6,12),(7,4),(7,17),(8,3),(8,16),(9,14),(9,18),(10,13),(10,14),(11,16),(11,17),(13,24),(14,24),(15,12),(16,21),(17,22),(18,23),(18,24),(19,20),(20,15),(21,13),(22,1),(22,18),(23,2),(23,19),(24,19)],25)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,5,3,1,4] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,4],[2,3,3,4],[3,4,4],[4,5],[5]]
=> ([(0,17),(0,18),(1,21),(2,20),(3,28),(4,27),(5,23),(6,24),(7,2),(7,30),(8,1),(8,31),(9,15),(10,16),(11,13),(11,32),(12,14),(12,33),(13,3),(13,22),(14,4),(14,22),(15,5),(15,25),(16,6),(16,26),(17,7),(17,19),(18,8),(18,19),(19,30),(19,31),(20,32),(21,33),(22,27),(22,28),(23,29),(24,29),(25,23),(26,24),(27,25),(28,26),(30,11),(30,20),(31,12),(31,21),(32,9),(33,10)],34)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,5,3,4,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,5],[2,3,3,5],[3,4,5],[4,5],[5]]
=> ([(0,20),(0,21),(1,11),(2,10),(3,27),(3,36),(4,16),(4,34),(5,17),(5,35),(6,26),(6,52),(7,12),(7,53),(8,13),(8,55),(9,15),(9,25),(9,54),(10,51),(11,14),(11,63),(12,38),(13,39),(14,60),(15,19),(15,50),(16,18),(16,64),(17,56),(18,59),(19,22),(19,57),(20,9),(20,58),(21,8),(21,58),(22,47),(22,61),(23,31),(23,46),(24,45),(24,48),(25,37),(25,50),(26,24),(26,49),(26,62),(27,23),(27,61),(27,64),(29,68),(30,68),(31,67),(32,65),(33,69),(34,1),(35,2),(36,6),(37,36),(38,35),(39,34),(40,32),(40,67),(41,51),(41,69),(42,28),(43,28),(44,29),(45,41),(45,66),(46,63),(46,67),(47,52),(48,30),(48,66),(49,48),(49,65),(50,7),(50,57),(51,43),(52,62),(53,5),(53,38),(54,3),(54,37),(55,4),(55,39),(56,33),(56,41),(57,47),(57,53),(58,54),(58,55),(59,32),(59,49),(60,29),(60,30),(61,31),(61,40),(62,45),(62,56),(62,65),(63,44),(63,60),(64,40),(64,46),(64,59),(65,33),(65,66),(66,68),(66,69),(67,44),(68,42),(69,42),(69,43)],70)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,5,4,1,3] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,4],[2,3,4,4],[3,4,5],[4,5],[5]]
=> ([(0,15),(0,16),(0,20),(1,9),(2,13),(2,47),(3,38),(4,14),(4,46),(5,40),(6,10),(6,26),(7,18),(7,45),(8,19),(8,39),(9,25),(10,32),(11,31),(12,44),(13,12),(13,48),(14,11),(14,42),(15,8),(15,28),(16,7),(16,37),(17,24),(17,33),(18,21),(18,36),(19,21),(19,35),(20,28),(20,37),(21,51),(22,49),(23,49),(24,3),(24,50),(26,1),(27,25),(28,39),(29,46),(30,27),(31,30),(32,27),(33,23),(33,50),(34,22),(34,50),(35,40),(35,51),(36,41),(36,51),(37,2),(37,45),(38,43),(39,5),(39,35),(40,4),(40,29),(41,24),(41,34),(42,31),(42,43),(43,30),(43,32),(44,22),(44,23),(45,36),(45,47),(46,38),(46,42),(47,17),(47,41),(47,48),(48,33),(48,34),(48,44),(49,26),(50,6),(50,49),(51,29)],52)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,5,4,3,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,5],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ([(0,21),(0,22),(0,44),(1,103),(2,102),(3,19),(3,105),(4,20),(4,104),(5,40),(5,60),(6,37),(6,101),(7,42),(7,129),(8,36),(8,132),(9,34),(9,126),(10,41),(10,127),(11,38),(11,108),(12,32),(12,107),(13,43),(13,59),(14,35),(14,100),(15,18),(15,33),(15,106),(16,39),(16,128),(17,119),(18,26),(18,27),(18,99),(19,17),(19,130),(20,113),(21,16),(21,97),(22,11),(22,116),(23,78),(23,120),(24,58),(24,74),(25,57),(25,70),(26,98),(26,124),(27,23),(27,98),(27,115),(28,63),(28,117),(29,64),(29,73),(30,93),(30,95),(31,111),(31,118),(32,50),(32,89),(33,88),(33,99),(34,85),(34,87),(35,30),(35,86),(35,122),(36,84),(36,125),(37,55),(37,96),(38,51),(38,90),(39,51),(39,91),(40,49),(40,92),(41,28),(41,121),(41,123),(42,31),(42,124),(42,131),(43,29),(43,120),(43,130),(44,15),(44,97),(44,116),(45,145),(46,135),(47,133),(48,146),(49,134),(50,141),(51,142),(52,139),(53,136),(54,136),(55,138),(56,147),(57,2),(57,143),(58,1),(58,140),(59,14),(60,6),(61,77),(62,49),(62,145),(63,75),(64,84),(64,144),(65,54),(66,57),(66,133),(67,65),(68,53),(69,53),(70,62),(70,143),(71,126),(72,127),(73,121),(73,144),(74,25),(74,66),(74,140),(75,94),(76,52),(76,146),(77,52),(77,134),(78,100),(79,85),(79,147),(80,81),(80,141),(81,45),(81,143),(82,46),(82,144),(83,47),(83,140),(84,61),(85,68),(86,95),(86,135),(87,65),(88,59),(89,104),(89,141),(90,105),(90,142),(91,110),(91,142),(92,94),(92,134),(93,79),(93,137),(94,55),(94,139),(95,48),(95,137),(96,54),(96,138),(97,7),(97,128),(98,8),(98,114),(99,12),(99,115),(100,122),(101,96),(102,67),(103,109),(104,9),(104,71),(105,10),(105,72),(106,13),(106,88),(107,4),(107,89),(108,3),(108,90),(109,75),(109,92),(110,58),(110,83),(111,50),(111,80),(112,76),(112,77),(113,56),(113,79),(114,80),(114,132),(115,78),(115,107),(116,106),(116,108),(117,48),(117,76),(118,47),(118,66),(119,46),(119,86),(120,64),(120,82),(121,112),(121,117),(122,93),(122,113),(122,135),(123,63),(123,109),(124,111),(124,114),(125,45),(125,62),(126,67),(126,87),(127,103),(127,123),(128,91),(128,129),(129,24),(129,110),(129,131),(130,73),(130,82),(130,119),(131,74),(131,83),(131,118),(132,70),(132,81),(132,125),(133,60),(134,139),(135,56),(135,137),(137,146),(137,147),(138,136),(139,138),(140,5),(140,133),(141,71),(142,72),(143,102),(143,145),(144,61),(144,112),(145,101),(146,69),(147,68),(147,69)],148)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[3,1,2,4,5] => [[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,2,2],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[3,1,2,5,4] => [[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,2,2],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 2 = 1 + 1
[3,1,4,2,5] => [[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,2,2],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> 3 = 2 + 1
[3,1,4,5,2] => [[0,1,0,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,2,2],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,1),(1,3),(1,4),(2,5),(2,18),(3,6),(3,19),(4,7),(4,8),(4,19),(5,13),(6,17),(7,12),(7,15),(8,12),(8,14),(10,21),(11,21),(12,2),(12,20),(13,9),(14,10),(14,20),(15,11),(15,20),(16,9),(17,10),(17,11),(18,13),(18,16),(19,14),(19,15),(19,17),(20,18),(20,21),(21,16)],22)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[3,1,5,2,4] => [[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,2,2],[2,2,2,4],[3,4,4],[4,5],[5]]
=> ([(0,6),(0,7),(1,5),(1,15),(2,4),(2,14),(3,13),(4,12),(5,3),(5,16),(6,9),(7,2),(7,9),(9,1),(9,14),(10,11),(11,8),(12,10),(13,8),(14,12),(14,15),(15,10),(15,16),(16,11),(16,13)],17)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[3,1,5,4,2] => [[0,1,0,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,2,2],[2,2,2,5],[3,4,5],[4,5],[5]]
=> ([(0,4),(0,5),(1,10),(1,33),(2,9),(2,34),(3,6),(3,7),(3,38),(4,25),(5,3),(5,8),(5,25),(6,19),(6,30),(7,12),(7,19),(7,37),(8,13),(8,35),(8,38),(9,18),(9,31),(10,11),(10,29),(10,36),(11,26),(11,28),(12,22),(12,29),(13,21),(13,32),(14,45),(15,44),(16,46),(17,41),(18,42),(19,2),(19,39),(20,27),(21,20),(22,17),(22,40),(23,17),(23,46),(24,14),(25,1),(25,35),(26,18),(26,43),(27,15),(27,41),(28,15),(28,43),(29,26),(29,40),(30,16),(30,39),(31,14),(31,42),(32,16),(32,23),(33,20),(33,36),(34,24),(34,31),(35,21),(35,33),(36,27),(36,28),(36,40),(37,22),(37,23),(37,39),(38,30),(38,32),(38,37),(39,34),(39,46),(40,41),(40,43),(41,44),(42,45),(43,42),(43,44),(44,45),(46,24)],47)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[3,2,1,4,5] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,2,3],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[3,2,1,5,4] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,2,3],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[3,2,4,1,5] => [[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,2,4],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[3,2,4,5,1] => [[0,0,0,0,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,2,5],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,11),(0,12),(1,22),(2,19),(3,18),(3,23),(4,14),(4,20),(5,15),(6,15),(6,17),(7,5),(8,1),(8,17),(9,3),(9,21),(9,26),(10,2),(10,16),(11,13),(12,7),(13,6),(13,8),(14,29),(15,24),(16,19),(17,9),(17,22),(17,24),(18,20),(18,28),(20,10),(20,29),(21,23),(21,27),(22,25),(22,26),(23,28),(24,21),(24,25),(25,27),(26,4),(26,18),(26,27),(27,14),(27,28),(28,29),(29,16)],30)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
Description
The width of the poset.
This is the size of the poset's longest antichain, also called Dilworth number.
Matching statistic: St001095
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
Mp00125: Posets —dual poset⟶ Posets
St001095: Posets ⟶ ℤResult quality: 8% ●values known / values provided: 25%●distinct values known / distinct values provided: 8%
Mp00209: Permutations —pattern poset⟶ Posets
Mp00125: Posets —dual poset⟶ Posets
St001095: Posets ⟶ ℤResult quality: 8% ●values known / values provided: 25%●distinct values known / distinct values provided: 8%
Values
[1,2] => [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[2,1] => [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[1,3,2] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[2,1,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[2,3,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[3,1,2] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[3,2,1] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,2,4,3] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,3,2,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,3,4,2] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,4,2,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[1,4,3,2] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[2,1,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[2,1,4,3] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[2,3,1,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[2,3,4,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[2,4,1,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[2,4,3,1] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[3,1,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,1,1,2,2,4,10}
[3,1,4,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,1,1,2,2,4,10}
[3,2,1,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,1,1,2,2,4,10}
[3,2,4,1] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,1,1,2,2,4,10}
[3,4,1,2] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,1,1,2,2,4,10}
[3,4,2,1] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,1,1,2,2,4,10}
[4,1,2,3] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[4,1,3,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,1,1,2,2,4,10}
[4,2,1,3] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[4,2,3,1] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,1,1,2,2,4,10}
[4,3,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,1,1,2,2,4,10}
[4,3,2,1] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,1,1,2,2,4,10}
[1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,3,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,4,3,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,4,5,3] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,5,3,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,2,5,4,3] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,3,2,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,3,2,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,3,4,2,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,3,4,5,2] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,3,5,2,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,3,5,4,2] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,4,2,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,4,2,5,3] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,4,3,2,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,4,3,5,2] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,4,5,2,3] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,4,5,3,2] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,5,2,3,4] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,5,2,4,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,5,3,2,4] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,5,3,4,2] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,5,4,2,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,5,4,3,2] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,1,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[2,1,3,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[2,1,4,3,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[2,1,4,5,3] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[2,1,5,3,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,1,5,4,3] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,3,1,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[2,3,1,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[2,3,4,1,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[2,3,4,5,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[2,3,5,1,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,3,5,4,1] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,4,1,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,4,1,5,3] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,4,3,1,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,4,3,5,1] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,4,5,1,3] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,4,5,3,1] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,5,1,3,4] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,5,1,4,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,5,3,1,4] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,5,3,4,1] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,5,4,1,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,5,4,3,1] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[3,1,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[3,1,2,5,4] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[3,1,4,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(0,2),(0,4),(1,11),(2,5),(2,6),(2,7),(3,1),(3,8),(3,9),(3,10),(4,3),(4,5),(4,6),(4,7),(5,9),(5,10),(6,8),(6,10),(7,8),(7,9),(8,11),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[3,1,4,5,2] => [1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[3,1,5,2,4] => [1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,3),(0,4),(1,8),(1,10),(2,7),(2,9),(3,2),(3,5),(3,6),(4,1),(4,5),(4,6),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,11),(8,11),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[3,1,5,4,2] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,2),(0,3),(1,4),(1,9),(1,10),(1,11),(2,5),(2,6),(2,7),(2,8),(3,1),(3,5),(3,6),(3,7),(3,8),(4,13),(5,11),(5,12),(6,10),(6,12),(7,9),(7,12),(8,4),(8,9),(8,10),(8,11),(8,12),(9,13),(10,13),(11,13),(12,13)],14)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[3,2,1,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[3,2,1,5,4] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
Description
The number of non-isomorphic posets with precisely one further covering relation.
Matching statistic: St001942
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
Mp00125: Posets —dual poset⟶ Posets
St001942: Posets ⟶ ℤResult quality: 8% ●values known / values provided: 25%●distinct values known / distinct values provided: 8%
Mp00209: Permutations —pattern poset⟶ Posets
Mp00125: Posets —dual poset⟶ Posets
St001942: Posets ⟶ ℤResult quality: 8% ●values known / values provided: 25%●distinct values known / distinct values provided: 8%
Values
[1,2] => [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[2,1] => [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,3,2] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[2,1,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[2,3,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[3,1,2] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[3,2,1] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,4,3] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,2,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,4,2] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,4,2,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,4,3,2] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[2,1,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,1,4,3] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,3,1,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,3,4,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,4,1,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[2,4,3,1] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[3,1,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,1,1,2,2,4,10} + 1
[3,1,4,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,1,1,2,2,4,10} + 1
[3,2,1,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,1,1,2,2,4,10} + 1
[3,2,4,1] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,1,1,2,2,4,10} + 1
[3,4,1,2] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,1,1,2,2,4,10} + 1
[3,4,2,1] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,1,1,2,2,4,10} + 1
[4,1,2,3] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[4,1,3,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,1,1,2,2,4,10} + 1
[4,2,1,3] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[4,2,3,1] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,1,1,2,2,4,10} + 1
[4,3,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,1,1,2,2,4,10} + 1
[4,3,2,1] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {0,0,0,0,1,1,2,2,4,10} + 1
[1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,3,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,4,3,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,4,5,3] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,5,3,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,2,5,4,3] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,3,2,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,2,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,4,2,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,4,5,2] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,5,2,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,3,5,4,2] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,4,2,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,4,2,5,3] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,4,3,2,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,4,3,5,2] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,4,5,2,3] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,4,5,3,2] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,5,2,3,4] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,5,2,4,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,5,3,2,4] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,5,3,4,2] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,5,4,2,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,5,4,3,2] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,1,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,1,3,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,1,4,3,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,1,4,5,3] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,1,5,3,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,1,5,4,3] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,3,1,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,3,1,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,3,4,1,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,3,4,5,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,3,5,1,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,3,5,4,1] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,4,1,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,4,1,5,3] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,4,3,1,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,4,3,5,1] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,4,5,1,3] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,4,5,3,1] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,5,1,3,4] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,5,1,4,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,5,3,1,4] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,5,3,4,1] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,5,4,1,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,5,4,3,1] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[3,1,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[3,1,2,5,4] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[3,1,4,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(0,2),(0,4),(1,11),(2,5),(2,6),(2,7),(3,1),(3,8),(3,9),(3,10),(4,3),(4,5),(4,6),(4,7),(5,9),(5,10),(6,8),(6,10),(7,8),(7,9),(8,11),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[3,1,4,5,2] => [1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[3,1,5,2,4] => [1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,3),(0,4),(1,8),(1,10),(2,7),(2,9),(3,2),(3,5),(3,6),(4,1),(4,5),(4,6),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,11),(8,11),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[3,1,5,4,2] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,2),(0,3),(1,4),(1,9),(1,10),(1,11),(2,5),(2,6),(2,7),(2,8),(3,1),(3,5),(3,6),(3,7),(3,8),(4,13),(5,11),(5,12),(6,10),(6,12),(7,9),(7,12),(8,4),(8,9),(8,10),(8,11),(8,12),(9,13),(10,13),(11,13),(12,13)],14)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[3,2,1,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[3,2,1,5,4] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,2),(0,4),(1,8),(2,5),(2,6),(3,1),(3,7),(3,9),(4,3),(4,5),(4,6),(5,9),(6,7),(6,9),(7,8),(9,8)],10)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
Description
The number of loops of the quiver corresponding to the reduced incidence algebra of a poset.
Matching statistic: St000455
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00203: Graphs —cone⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 8% ●values known / values provided: 22%●distinct values known / distinct values provided: 8%
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00203: Graphs —cone⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 8% ●values known / values provided: 22%●distinct values known / distinct values provided: 8%
Values
[1,2] => [1,2] => ([],2)
=> ([(0,2),(1,2)],3)
=> 0
[2,1] => [1,2] => ([],2)
=> ([(0,2),(1,2)],3)
=> 0
[1,2,3] => [1,2,3] => ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[1,3,2] => [1,2,3] => ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[2,1,3] => [1,2,3] => ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[2,3,1] => [1,2,3] => ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[3,1,2] => [1,3,2] => ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0}
[3,2,1] => [1,3,2] => ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0}
[1,2,3,4] => [1,2,3,4] => ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[1,2,4,3] => [1,2,3,4] => ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[1,3,2,4] => [1,2,3,4] => ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[1,3,4,2] => [1,2,3,4] => ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[2,1,3,4] => [1,2,3,4] => ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[2,1,4,3] => [1,2,3,4] => ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[2,3,1,4] => [1,2,3,4] => ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[2,3,4,1] => [1,2,3,4] => ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[3,1,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[3,2,4,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[3,4,2,1] => [1,3,2,4] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[4,1,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[4,1,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[4,2,1,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[4,3,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[4,3,2,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10}
[1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,3,5,4,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,4,2,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,4,3,5,2] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,4,5,3,2] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,5,2,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,5,2,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,5,3,2,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,5,3,4,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,5,4,2,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[1,5,4,3,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[2,1,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,1,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[2,3,5,1,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,3,5,4,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,4,1,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,4,1,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,4,3,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,4,3,5,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,4,5,3,1] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,5,1,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,5,1,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,5,3,1,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,5,3,4,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,5,4,1,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386}
[3,5,1,2,4] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 1
[3,5,1,4,2] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 1
[3,5,2,1,4] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 1
[3,5,2,4,1] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 1
Description
The second largest eigenvalue of a graph if it is integral.
This statistic is undefined if the second largest eigenvalue of the graph is not integral.
Chapter 4 of [1] provides lots of context.
Matching statistic: St000181
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00130: Permutations —descent tops⟶ Binary words
Mp00158: Binary words —alternating inverse⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
St000181: Posets ⟶ ℤResult quality: 4% ●values known / values provided: 22%●distinct values known / distinct values provided: 4%
Mp00158: Binary words —alternating inverse⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
St000181: Posets ⟶ ℤResult quality: 4% ●values known / values provided: 22%●distinct values known / distinct values provided: 4%
Values
[1,2] => 0 => 0 => ([(0,1)],2)
=> 1 = 0 + 1
[2,1] => 1 => 1 => ([(0,1)],2)
=> 1 = 0 + 1
[1,2,3] => 00 => 01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,2] => 01 => 00 => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[2,1,3] => 10 => 11 => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[2,3,1] => 01 => 00 => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[3,1,2] => 01 => 00 => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[3,2,1] => 11 => 10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,3,4] => 000 => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10} + 1
[1,2,4,3] => 001 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10} + 1
[1,3,2,4] => 010 => 000 => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,3,4,2] => 001 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10} + 1
[1,4,2,3] => 001 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10} + 1
[1,4,3,2] => 011 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10} + 1
[2,1,3,4] => 100 => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10} + 1
[2,1,4,3] => 101 => 111 => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,3,1,4] => 010 => 000 => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,3,4,1] => 001 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10} + 1
[2,4,1,3] => 001 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10} + 1
[2,4,3,1] => 011 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10} + 1
[3,1,2,4] => 010 => 000 => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[3,1,4,2] => 011 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10} + 1
[3,2,1,4] => 110 => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10} + 1
[3,2,4,1] => 011 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10} + 1
[3,4,1,2] => 001 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10} + 1
[3,4,2,1] => 101 => 111 => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[4,1,2,3] => 001 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10} + 1
[4,1,3,2] => 011 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10} + 1
[4,2,1,3] => 101 => 111 => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[4,2,3,1] => 011 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10} + 1
[4,3,1,2] => 011 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10} + 1
[4,3,2,1] => 111 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,4,10} + 1
[1,2,3,4,5] => 0000 => 0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,2,3,5,4] => 0001 => 0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,2,4,3,5] => 0010 => 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,2,4,5,3] => 0001 => 0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,2,5,3,4] => 0001 => 0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,2,5,4,3] => 0011 => 0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,3,2,4,5] => 0100 => 0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,3,2,5,4] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,3,4,2,5] => 0010 => 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,3,4,5,2] => 0001 => 0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,3,5,2,4] => 0001 => 0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,3,5,4,2] => 0011 => 0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,4,2,3,5] => 0010 => 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,4,2,5,3] => 0011 => 0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,4,3,2,5] => 0110 => 0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,4,3,5,2] => 0011 => 0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,4,5,2,3] => 0001 => 0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,4,5,3,2] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,5,2,3,4] => 0001 => 0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,5,2,4,3] => 0011 => 0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,5,3,2,4] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,5,3,4,2] => 0011 => 0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,5,4,2,3] => 0011 => 0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[1,5,4,3,2] => 0111 => 0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,1,3,4,5] => 1000 => 1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,1,3,5,4] => 1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,1,4,3,5] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,1,4,5,3] => 1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,1,5,3,4] => 1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,1,5,4,3] => 1011 => 1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,3,1,4,5] => 0100 => 0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,3,1,5,4] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,3,4,1,5] => 0010 => 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,3,4,5,1] => 0001 => 0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,3,5,1,4] => 0001 => 0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,3,5,4,1] => 0011 => 0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,4,1,3,5] => 0010 => 0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,5,5,5,5,5,5,5,5,6,6,7,7,7,7,9,9,9,9,10,10,11,11,11,11,12,12,16,16,16,16,19,19,21,21,24,26,26,26,26,37,37,37,37,46,46,46,46,52,88,88,89,89,89,89,133,133,250,250,366,366,1386} + 1
[2,4,5,3,1] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[2,5,3,1,4] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[3,1,2,5,4] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[3,1,4,5,2] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[3,1,5,2,4] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[3,2,4,5,1] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[3,2,5,1,4] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[3,4,2,1,5] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[4,2,1,3,5] => 1010 => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[4,5,1,3,2] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[4,5,2,3,1] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[4,5,3,1,2] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[5,1,3,2,4] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[5,2,3,1,4] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[5,3,1,2,4] => 0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
Description
The number of connected components of the Hasse diagram for the poset.
The following 188 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001890The maximum magnitude of the Möbius function of a poset. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St000699The toughness times the least common multiple of 1,. St000068The number of minimal elements in a poset. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St000632The jump number of the poset. St001301The first Betti number of the order complex associated with the poset. St001396Number of triples of incomparable elements in a finite poset. St001397Number of pairs of incomparable elements in a finite poset. St001398Number of subsets of size 3 of elements in a poset that form a "v". St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001902The number of potential covers of a poset. St000298The order dimension or Dushnik-Miller dimension of a poset. St000307The number of rowmotion orbits of a poset. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000908The length of the shortest maximal antichain in a poset. St001268The size of the largest ordinal summand in the poset. St001399The distinguishing number of a poset. St001472The permanent of the Coxeter matrix of the poset. St001510The number of self-evacuating linear extensions of a finite poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001533The largest coefficient of the Poincare polynomial of the poset cone. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001645The pebbling number of a connected graph. St001779The order of promotion on the set of linear extensions of a poset. St000093The cardinality of a maximal independent set of vertices of a graph. St001330The hat guessing number of a graph. St000478Another weight of a partition according to Alladi. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000934The 2-degree of an integer partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St000941The number of characters of the symmetric group whose value on the partition is even. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000706The product of the factorials of the multiplicities of an integer partition. St000707The product of the factorials of the parts. St000929The constant term of the character polynomial of an integer partition. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001568The smallest positive integer that does not appear twice in the partition. St001845The number of join irreducibles minus the rank of a lattice. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001624The breadth of a lattice. St001490The number of connected components of a skew partition. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000850The number of 1/2-balanced pairs in a poset. St000022The number of fixed points of a permutation. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. St000731The number of double exceedences of a permutation. St000422The energy of a graph, if it is integral. St000095The number of triangles of a graph. St000096The number of spanning trees of a graph. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000274The number of perfect matchings of a graph. St000276The size of the preimage of the map 'to graph' from Ordered trees to Graphs. St000303The determinant of the product of the incidence matrix and its transpose of a graph divided by $4$. St000310The minimal degree of a vertex of a graph. St000315The number of isolated vertices of a graph. St000322The skewness of a graph. St000447The number of pairs of vertices of a graph with distance 3. St000449The number of pairs of vertices of a graph with distance 4. St001572The minimal number of edges to remove to make a graph bipartite. St001573The minimal number of edges to remove to make a graph triangle-free. St001575The minimal number of edges to add or remove to make a graph edge transitive. St001577The minimal number of edges to add or remove to make a graph a cograph. St001578The minimal number of edges to add or remove to make a graph a line graph. St001690The length of a longest path in a graph such that after removing the paths edges, every vertex of the path has distance two from some other vertex of the path. St001871The number of triconnected components of a graph. St000286The number of connected components of the complement of a graph. St000287The number of connected components of a graph. St000914The sum of the values of the Möbius function of a poset. St001518The number of graphs with the same ordinary spectrum as the given graph. St001765The number of connected components of the friends and strangers graph. St000679The pruning number of an ordered tree. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001545The second Elser number of a connected graph. St001271The competition number of a graph. St001877Number of indecomposable injective modules with projective dimension 2. St001875The number of simple modules with projective dimension at most 1. St000281The size of the preimage of the map 'to poset' from Binary trees to Posets. St000282The size of the preimage of the map 'to poset' from Ordered trees to Posets. St000284The Plancherel distribution on integer partitions. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000668The least common multiple of the parts of the partition. St000681The Grundy value of Chomp on Ferrers diagrams. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000708The product of the parts of an integer partition. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St001098The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for vertex labelled trees. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001128The exponens consonantiae of a partition. St001534The alternating sum of the coefficients of the Poincare polynomial of the poset cone. St001631The number of simple modules $S$ with $dim Ext^1(S,A)=1$ in the incidence algebra $A$ of the poset. St000911The number of maximal antichains of maximal size in a poset. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000642The size of the smallest orbit of antichains under Panyushev complementation. St000907The number of maximal antichains of minimal length in a poset. St001720The minimal length of a chain of small intervals in a lattice. St000717The number of ordinal summands of a poset. St000741The Colin de Verdière graph invariant. St000283The size of the preimage of the map 'to graph' from Binary trees to Graphs. St000312The number of leaves in a graph. St000323The minimal crossing number of a graph. St000351The determinant of the adjacency matrix of a graph. St000368The Altshuler-Steinberg determinant of a graph. St000370The genus of a graph. St000379The number of Hamiltonian cycles in a graph. St000552The number of cut vertices of a graph. St000671The maximin edge-connectivity for choosing a subgraph. St000948The chromatic discriminant of a graph. St001119The length of a shortest maximal path in a graph. St001281The normalized isoperimetric number of a graph. St001307The number of induced stars on four vertices in a graph. St001309The number of four-cliques in a graph. St001310The number of induced diamond graphs in a graph. St001325The minimal number of occurrences of the comparability-pattern in a linear ordering of the vertices of the graph. St001329The minimal number of occurrences of the outerplanar pattern in a linear ordering of the vertices of the graph. St001334The minimal number of occurrences of the 3-colorable pattern in a linear ordering of the vertices of the graph. St001336The minimal number of vertices in a graph whose complement is triangle-free. St001357The maximal degree of a regular spanning subgraph of a graph. St001367The smallest number which does not occur as degree of a vertex in a graph. St001395The number of strictly unfriendly partitions of a graph. St001479The number of bridges of a graph. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001702The absolute value of the determinant of the adjacency matrix of a graph. St001793The difference between the clique number and the chromatic number of a graph. St001794Half the number of sets of vertices in a graph which are dominating and non-blocking. St001795The binary logarithm of the evaluation of the Tutte polynomial of the graph at (x,y) equal to (-1,-1). St001796The absolute value of the quotient of the Tutte polynomial of the graph at (1,1) and (-1,-1). St001797The number of overfull subgraphs of a graph. St001826The maximal number of leaves on a vertex of a graph. St000069The number of maximal elements of a poset. St000553The number of blocks of a graph. St000773The multiplicity of the largest Laplacian eigenvalue in a graph. St000775The multiplicity of the largest eigenvalue in a graph. St001282The number of graphs with the same chromatic polynomial. St001316The domatic number of a graph. St001333The cardinality of a minimal edge-isolating set of a graph. St001335The cardinality of a minimal cycle-isolating set of a graph. St001347The number of pairs of vertices of a graph having the same neighbourhood. St001393The induced matching number of a graph. St001496The number of graphs with the same Laplacian spectrum as the given graph. St001740The number of graphs with the same symmetric edge polytope as the given graph. St001743The discrepancy of a graph. St000097The order of the largest clique of the graph. St000273The domination number of a graph. St000544The cop number of a graph. St000723The maximal cardinality of a set of vertices with the same neighbourhood in a graph. St000774The maximal multiplicity of a Laplacian eigenvalue in a graph. St000917The open packing number of a graph. St001261The Castelnuovo-Mumford regularity of a graph. St001277The degeneracy of a graph. St001322The size of a minimal independent dominating set in a graph. St001339The irredundance number of a graph. St001358The largest degree of a regular subgraph of a graph. St001654The monophonic hull number of a graph. St001716The 1-improper chromatic number of a graph. St001792The arboricity of a graph. St000258The burning number of a graph. St000916The packing number of a graph. St001116The game chromatic number of a graph. St001580The acyclic chromatic number of a graph. St000264The girth of a graph, which is not a tree. St001108The 2-dynamic chromatic number of a graph. St001366The maximal multiplicity of a degree of a vertex of a graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!