Values
([],1) => 0
([],2) => 0
([(0,1)],2) => 0
([],3) => 0
([(0,1),(0,2)],3) => 0
([(0,2),(2,1)],3) => 0
([(0,2),(1,2)],3) => 0
([],4) => 0
([(0,1),(0,2),(0,3)],4) => 1
([(0,2),(0,3),(3,1)],4) => 0
([(0,1),(0,2),(1,3),(2,3)],4) => 0
([(1,2),(2,3)],4) => 0
([(0,3),(3,1),(3,2)],4) => 1
([(1,3),(2,3)],4) => 0
([(0,3),(1,3),(3,2)],4) => 1
([(0,3),(1,3),(2,3)],4) => 1
([(0,3),(1,2),(1,3)],4) => 0
([(0,2),(0,3),(1,2),(1,3)],4) => 2
([(0,3),(2,1),(3,2)],4) => 0
([(0,3),(1,2),(2,3)],4) => 0
([],5) => 0
([(0,1),(0,2),(0,3),(0,4)],5) => 2
([(0,2),(0,3),(0,4),(4,1)],5) => 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5) => 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,3),(0,4),(4,1),(4,2)],5) => 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 1
([(0,3),(0,4),(3,2),(4,1)],5) => 0
([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5) => 2
([(2,3),(3,4)],5) => 0
([(0,4),(4,1),(4,2),(4,3)],5) => 2
([(2,4),(3,4)],5) => 0
([(1,4),(2,4),(4,3)],5) => 1
([(0,4),(1,4),(4,2),(4,3)],5) => 2
([(0,4),(1,4),(2,4),(4,3)],5) => 2
([(0,4),(1,4),(2,4),(3,4)],5) => 2
([(0,4),(1,4),(2,3)],5) => 0
([(0,4),(1,3),(2,3),(2,4)],5) => 0
([(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 3
([(0,4),(1,4),(2,3),(4,2)],5) => 1
([(0,4),(1,3),(2,3),(3,4)],5) => 1
([(0,4),(1,4),(2,3),(2,4)],5) => 1
([(0,4),(1,4),(2,3),(3,4)],5) => 1
([(0,4),(1,2),(1,4),(2,3)],5) => 0
([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5) => 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5) => 2
([(0,4),(1,2),(1,4),(4,3)],5) => 1
([(0,4),(1,2),(1,3),(1,4)],5) => 1
([(0,2),(0,4),(3,1),(4,3)],5) => 0
([(0,4),(1,2),(1,3),(3,4)],5) => 0
([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 1
([(0,3),(0,4),(1,2),(1,4)],5) => 0
([(0,3),(0,4),(1,2),(1,3),(1,4)],5) => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5) => 3
([(0,3),(0,4),(1,2),(1,3),(2,4)],5) => 2
([(0,3),(1,2),(1,4),(3,4)],5) => 0
([(0,3),(0,4),(1,2),(2,3),(2,4)],5) => 2
([(1,4),(3,2),(4,3)],5) => 0
([(0,3),(3,4),(4,1),(4,2)],5) => 1
([(1,4),(2,3),(3,4)],5) => 0
([(0,4),(1,2),(2,4),(4,3)],5) => 1
([(0,3),(1,4),(4,2)],5) => 0
([(0,4),(3,2),(4,1),(4,3)],5) => 1
([(0,4),(1,2),(2,3),(2,4)],5) => 1
([(0,4),(2,3),(3,1),(4,2)],5) => 0
([(0,3),(1,2),(2,4),(3,4)],5) => 0
([(0,4),(1,2),(2,3),(3,4)],5) => 0
([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
([],6) => 0
([(3,4),(4,5)],6) => 0
([(2,3),(3,5),(5,4)],6) => 0
([(3,5),(4,5)],6) => 0
([(2,5),(3,5),(5,4)],6) => 1
([(0,5),(1,5),(2,5),(3,5),(5,4)],6) => 3
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 3
([(0,5),(1,5),(2,5),(3,4),(5,3)],6) => 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 2
([(1,5),(2,5),(3,4)],6) => 0
([(1,5),(2,4),(3,4),(3,5)],6) => 0
([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => 2
([(1,5),(2,5),(3,4),(5,3)],6) => 1
([(1,5),(2,4),(3,4),(4,5)],6) => 1
([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => 2
([(0,5),(1,5),(2,3),(5,4)],6) => 1
([(1,5),(2,5),(3,4),(4,5)],6) => 1
([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => 2
([(0,5),(1,5),(2,3),(3,4)],6) => 0
([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => 1
([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 1
([(0,5),(1,5),(2,4),(3,4)],6) => 0
([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
([(2,5),(3,4),(4,5)],6) => 0
([(1,5),(2,3),(3,5),(5,4)],6) => 1
([(1,3),(2,4),(4,5)],6) => 0
([(1,5),(3,4),(4,2),(5,3)],6) => 0
>>> Load all 116 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The interval resolution global dimension of a poset.
This is the cardinality of the longest chain of right minimal approximations by interval modules of an indecomposable module over the incidence algebra.
This is the cardinality of the longest chain of right minimal approximations by interval modules of an indecomposable module over the incidence algebra.
References
[1] Aoki, T., Escolar, E. G., Tada, S. Summand-injectivity of interval covers and monotonicity of interval resolution global dimensions arXiv:2308.14979
[2] https://github.com/xHoukakun/Interval-Resolution-Global-Dimension/tree/main
[2] https://github.com/xHoukakun/Interval-Resolution-Global-Dimension/tree/main
Created
Mar 07, 2025 at 13:26 by Jannek Müller
Updated
Mar 07, 2025 at 15:43 by Jannek Müller
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!