searching the database
Your data matches 8 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000921
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
St000921: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
0 => 0
1 => 0
00 => 0
01 => 0
10 => 0
11 => 0
000 => 0
001 => 0
010 => 0
011 => 0
100 => 1
101 => 0
110 => 1
111 => 0
0000 => 0
0001 => 0
0010 => 0
0011 => 0
0100 => 1
0101 => 0
0110 => 1
0111 => 0
1000 => 2
1001 => 1
1010 => 2
1011 => 0
1100 => 0
1101 => 1
1110 => 2
1111 => 0
00000 => 0
00001 => 0
00010 => 0
00011 => 0
00100 => 1
00101 => 0
00110 => 1
00111 => 0
01000 => 2
01001 => 1
01010 => 2
01011 => 0
01100 => 0
01101 => 1
01110 => 2
01111 => 0
10000 => 3
10001 => 2
10010 => 3
10011 => 1
Description
The number of internal inversions of a binary word.
Let $\bar w$ be the non-decreasing rearrangement of $w$, that is, $\bar w$ is sorted.
An internal inversion is a pair $i < j$ such that $w_i > w_j$ and $\bar w_i = \bar w_j$. For example, the word $110$ has two inversions, but only the second is internal.
Matching statistic: St001382
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St001382: Integer partitions ⟶ ℤResult quality: 25% ●values known / values provided: 25%●distinct values known / distinct values provided: 100%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St001382: Integer partitions ⟶ ℤResult quality: 25% ●values known / values provided: 25%●distinct values known / distinct values provided: 100%
Values
0 => [2] => [[2],[]]
=> []
=> 0
1 => [1,1] => [[1,1],[]]
=> []
=> 0
00 => [3] => [[3],[]]
=> []
=> 0
01 => [2,1] => [[2,2],[1]]
=> [1]
=> 0
10 => [1,2] => [[2,1],[]]
=> []
=> 0
11 => [1,1,1] => [[1,1,1],[]]
=> []
=> 0
000 => [4] => [[4],[]]
=> []
=> 0
001 => [3,1] => [[3,3],[2]]
=> [2]
=> 1
010 => [2,2] => [[3,2],[1]]
=> [1]
=> 0
011 => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 1
100 => [1,3] => [[3,1],[]]
=> []
=> 0
101 => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 0
110 => [1,1,2] => [[2,1,1],[]]
=> []
=> 0
111 => [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> 0
0000 => [5] => [[5],[]]
=> []
=> 0
0001 => [4,1] => [[4,4],[3]]
=> [3]
=> 2
0010 => [3,2] => [[4,3],[2]]
=> [2]
=> 1
0011 => [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 0
0100 => [2,3] => [[4,2],[1]]
=> [1]
=> 0
0101 => [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 2
0110 => [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 1
0111 => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 2
1000 => [1,4] => [[4,1],[]]
=> []
=> 0
1001 => [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 1
1010 => [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 0
1011 => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
1100 => [1,1,3] => [[3,1,1],[]]
=> []
=> 0
1101 => [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 0
1110 => [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> 0
1111 => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> 0
00000 => [6] => [[6],[]]
=> []
=> 0
00001 => [5,1] => [[5,5],[4]]
=> [4]
=> 3
00010 => [4,2] => [[5,4],[3]]
=> [3]
=> 2
00011 => [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 2
00100 => [3,3] => [[5,3],[2]]
=> [2]
=> 1
00101 => [3,2,1] => [[4,4,3],[3,2]]
=> [3,2]
=> 1
00110 => [3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> 0
00111 => [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 2
01000 => [2,4] => [[5,2],[1]]
=> [1]
=> 0
01001 => [2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> 3
01010 => [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 2
01011 => [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> 1
01100 => [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 1
01101 => [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> 3
01110 => [2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> [1,1,1]
=> 2
01111 => [2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> 3
10000 => [1,5] => [[5,1],[]]
=> []
=> 0
10001 => [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 2
10010 => [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
10011 => [1,3,1,1] => [[3,3,3,1],[2,2]]
=> [2,2]
=> 0
0000010 => [6,2] => [[7,6],[5]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
0000100 => [5,3] => [[7,5],[4]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
0000101 => [5,2,1] => [[6,6,5],[5,4]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
0000110 => [5,1,2] => [[6,5,5],[4,4]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
0010000 => [3,5] => [[7,3],[2]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
0011000 => [3,1,4] => [[6,3,3],[2,2]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
0011110 => [3,1,1,1,2] => [[4,3,3,3,3],[2,2,2,2]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
0100000 => [2,6] => [[7,2],[1]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
0100001 => [2,5,1] => [[6,6,2],[5,1]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
0101000 => [2,2,4] => [[6,3,2],[2,1]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
0110000 => [2,1,5] => [[6,2,2],[1,1]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
0110001 => [2,1,4,1] => [[5,5,2,2],[4,1,1]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
0111000 => [2,1,1,4] => [[5,2,2,2],[1,1,1]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
0111100 => [2,1,1,1,3] => [[4,2,2,2,2],[1,1,1,1]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
1000001 => [1,6,1] => [[6,6,1],[5]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
1000010 => [1,5,2] => [[6,5,1],[4]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
1000011 => [1,5,1,1] => [[5,5,5,1],[4,4]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
1001000 => [1,3,4] => [[6,3,1],[2]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
1001111 => [1,3,1,1,1,1] => [[3,3,3,3,3,1],[2,2,2,2]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
1010000 => [1,2,5] => [[6,2,1],[1]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
1010001 => [1,2,4,1] => [[5,5,2,1],[4,1]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
1011000 => [1,2,1,4] => [[5,2,2,1],[1,1]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
1011100 => [1,2,1,1,3] => [[4,2,2,2,1],[1,1,1]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
1100001 => [1,1,5,1] => [[5,5,1,1],[4]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
1100010 => [1,1,4,2] => [[5,4,1,1],[3]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
1100011 => [1,1,4,1,1] => [[4,4,4,1,1],[3,3]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
1100111 => [1,1,3,1,1,1] => [[3,3,3,3,1,1],[2,2,2]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
1101000 => [1,1,2,4] => [[5,2,1,1],[1]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
1101100 => [1,1,2,1,3] => [[4,2,2,1,1],[1,1]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
1110001 => [1,1,1,4,1] => [[4,4,1,1,1],[3]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
1110011 => [1,1,1,3,1,1] => [[3,3,3,1,1,1],[2,2]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
1110100 => [1,1,1,2,3] => [[4,2,1,1,1],[1]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
1111001 => [1,1,1,1,3,1] => [[3,3,1,1,1,1],[2]]
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
00000010 => [7,2] => [[8,7],[6]]
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8}
00000100 => [6,3] => [[8,6],[5]]
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8}
00000101 => [6,2,1] => [[7,7,6],[6,5]]
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8}
00000110 => [6,1,2] => [[7,6,6],[5,5]]
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8}
00001000 => [5,4] => [[8,5],[4]]
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8}
00001001 => [5,3,1] => [[7,7,5],[6,4]]
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8}
00001010 => [5,2,2] => [[7,6,5],[5,4]]
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8}
00001011 => [5,2,1,1] => [[6,6,6,5],[5,5,4]]
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8}
00001100 => [5,1,3] => [[7,5,5],[4,4]]
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8}
00001101 => [5,1,2,1] => [[6,6,5,5],[5,4,4]]
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8}
00001110 => [5,1,1,2] => [[6,5,5,5],[4,4,4]]
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8}
00010000 => [4,5] => [[8,4],[3]]
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8}
00010001 => [4,4,1] => [[7,7,4],[6,3]]
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8}
00010010 => [4,3,2] => [[7,6,4],[5,3]]
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8}
00010011 => [4,3,1,1] => [[6,6,6,4],[5,5,3]]
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8}
00010100 => [4,2,3] => [[7,5,4],[4,3]]
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8}
00010101 => [4,2,2,1] => [[6,6,5,4],[5,4,3]]
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8}
Description
The number of boxes in the diagram of a partition that do not lie in its Durfee square.
Matching statistic: St000771
Mp00224: Binary words —runsort⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 6% ●values known / values provided: 6%●distinct values known / distinct values provided: 45%
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 6% ●values known / values provided: 6%●distinct values known / distinct values provided: 45%
Values
0 => 0 => [1] => ([],1)
=> 1 = 0 + 1
1 => 1 => [1] => ([],1)
=> 1 = 0 + 1
00 => 00 => [2] => ([],2)
=> ? ∊ {0,0} + 1
01 => 01 => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
10 => 01 => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
11 => 11 => [2] => ([],2)
=> ? ∊ {0,0} + 1
000 => 000 => [3] => ([],3)
=> ? ∊ {0,0,0,1,1} + 1
001 => 001 => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
010 => 001 => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
011 => 011 => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,1,1} + 1
100 => 001 => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
101 => 011 => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,1,1} + 1
110 => 011 => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,1,1} + 1
111 => 111 => [3] => ([],3)
=> ? ∊ {0,0,0,1,1} + 1
0000 => 0000 => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2} + 1
0001 => 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
0010 => 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
0011 => 0011 => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2} + 1
0100 => 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
0101 => 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
0110 => 0011 => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2} + 1
0111 => 0111 => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2} + 1
1000 => 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
1001 => 0011 => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2} + 1
1010 => 0011 => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2} + 1
1011 => 0111 => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2} + 1
1100 => 0011 => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2} + 1
1101 => 0111 => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2} + 1
1110 => 0111 => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2} + 1
1111 => 1111 => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2} + 1
00000 => 00000 => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,3,3,3} + 1
00001 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
00010 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
00011 => 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,3,3,3} + 1
00100 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
00101 => 00101 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
00110 => 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,3,3,3} + 1
00111 => 00111 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,3,3,3} + 1
01000 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
01001 => 00101 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
01010 => 00101 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
01011 => 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,3,3,3} + 1
01100 => 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,3,3,3} + 1
01101 => 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,3,3,3} + 1
01110 => 00111 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,3,3,3} + 1
01111 => 01111 => [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,3,3,3} + 1
10000 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
10001 => 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,3,3,3} + 1
10010 => 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,3,3,3} + 1
10011 => 00111 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,3,3,3} + 1
10100 => 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,3,3,3} + 1
10101 => 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,3,3,3} + 1
10110 => 00111 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,3,3,3} + 1
10111 => 01111 => [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,3,3,3} + 1
11000 => 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,3,3,3} + 1
11001 => 00111 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,3,3,3} + 1
11010 => 00111 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,3,3,3} + 1
11011 => 01111 => [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,3,3,3} + 1
11100 => 00111 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,3,3,3} + 1
11101 => 01111 => [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,3,3,3} + 1
11110 => 01111 => [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,3,3,3} + 1
11111 => 11111 => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,3,3,3} + 1
000000 => 000000 => [6] => ([],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4} + 1
000001 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 3 + 1
000010 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 3 + 1
000011 => 000011 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4} + 1
000100 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 3 + 1
000101 => 000101 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
000110 => 000011 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4} + 1
000111 => 000111 => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4} + 1
001000 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 3 + 1
001001 => 001001 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
001010 => 000101 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
001011 => 001011 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4} + 1
001100 => 000011 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4} + 1
001101 => 001101 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
001110 => 000111 => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4} + 1
001111 => 001111 => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4} + 1
010000 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 3 + 1
010001 => 000101 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
010010 => 000101 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
010011 => 001101 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
010100 => 000101 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
010101 => 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
100000 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 3 + 1
0000001 => 0000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 4 + 1
0000010 => 0000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 4 + 1
0000100 => 0000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 4 + 1
0000101 => 0000101 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
0001000 => 0000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 4 + 1
0001001 => 0001001 => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 1 + 1
0001010 => 0000101 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
0001101 => 0001101 => [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 1 + 1
0010000 => 0000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 4 + 1
0010001 => 0001001 => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 1 + 1
0010010 => 0001001 => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 1 + 1
0010100 => 0000101 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
0010101 => 0010101 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5 = 4 + 1
0011010 => 0001101 => [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 1 + 1
0011101 => 0011101 => [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 1 + 1
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $2$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St000772
Mp00224: Binary words —runsort⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000772: Graphs ⟶ ℤResult quality: 6% ●values known / values provided: 6%●distinct values known / distinct values provided: 45%
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000772: Graphs ⟶ ℤResult quality: 6% ●values known / values provided: 6%●distinct values known / distinct values provided: 45%
Values
0 => 0 => [1] => ([],1)
=> 1 = 0 + 1
1 => 1 => [1] => ([],1)
=> 1 = 0 + 1
00 => 00 => [2] => ([],2)
=> ? ∊ {0,0} + 1
01 => 01 => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
10 => 01 => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
11 => 11 => [2] => ([],2)
=> ? ∊ {0,0} + 1
000 => 000 => [3] => ([],3)
=> ? ∊ {0,0,0,1,1} + 1
001 => 001 => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
010 => 001 => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
011 => 011 => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,1,1} + 1
100 => 001 => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
101 => 011 => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,1,1} + 1
110 => 011 => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,1,1} + 1
111 => 111 => [3] => ([],3)
=> ? ∊ {0,0,0,1,1} + 1
0000 => 0000 => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2} + 1
0001 => 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
0010 => 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
0011 => 0011 => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2} + 1
0100 => 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
0101 => 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
0110 => 0011 => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2} + 1
0111 => 0111 => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2} + 1
1000 => 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
1001 => 0011 => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2} + 1
1010 => 0011 => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2} + 1
1011 => 0111 => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2} + 1
1100 => 0011 => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2} + 1
1101 => 0111 => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2} + 1
1110 => 0111 => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2} + 1
1111 => 1111 => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,2,2} + 1
00000 => 00000 => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3} + 1
00001 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
00010 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
00011 => 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3} + 1
00100 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
00101 => 00101 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
00110 => 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3} + 1
00111 => 00111 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3} + 1
01000 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
01001 => 00101 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
01010 => 00101 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
01011 => 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3} + 1
01100 => 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3} + 1
01101 => 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3} + 1
01110 => 00111 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3} + 1
01111 => 01111 => [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3} + 1
10000 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
10001 => 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3} + 1
10010 => 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3} + 1
10011 => 00111 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3} + 1
10100 => 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3} + 1
10101 => 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3} + 1
10110 => 00111 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3} + 1
10111 => 01111 => [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3} + 1
11000 => 00011 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3} + 1
11001 => 00111 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3} + 1
11010 => 00111 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3} + 1
11011 => 01111 => [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3} + 1
11100 => 00111 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3} + 1
11101 => 01111 => [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3} + 1
11110 => 01111 => [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3} + 1
11111 => 11111 => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3} + 1
000000 => 000000 => [6] => ([],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4} + 1
000001 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 3 + 1
000010 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 3 + 1
000011 => 000011 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4} + 1
000100 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 3 + 1
000101 => 000101 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
000110 => 000011 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4} + 1
000111 => 000111 => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4} + 1
001000 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 3 + 1
001001 => 001001 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
001010 => 000101 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
001011 => 001011 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4} + 1
001100 => 000011 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4} + 1
001101 => 001101 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
001110 => 000111 => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4} + 1
001111 => 001111 => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4} + 1
010000 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 3 + 1
010001 => 000101 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
010010 => 000101 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
010011 => 001101 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
010100 => 000101 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
010101 => 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
100000 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 3 + 1
0000001 => 0000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 4 + 1
0000010 => 0000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 4 + 1
0000100 => 0000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 4 + 1
0000101 => 0000101 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
0001000 => 0000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 4 + 1
0001001 => 0001001 => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 0 + 1
0001010 => 0000101 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
0001101 => 0001101 => [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 0 + 1
0010000 => 0000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 4 + 1
0010001 => 0001001 => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 0 + 1
0010010 => 0001001 => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 0 + 1
0010100 => 0000101 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
0010101 => 0010101 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 0 + 1
0011010 => 0001101 => [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 0 + 1
0011101 => 0011101 => [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 1 + 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $1$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$.
The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Matching statistic: St001327
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
0 => ([(0,1)],2)
=> ([],2)
=> 0
1 => ([(0,1)],2)
=> ([],2)
=> 0
00 => ([(0,2),(2,1)],3)
=> ([],3)
=> 0
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0
11 => ([(0,2),(2,1)],3)
=> ([],3)
=> 0
000 => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 0
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 1
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 0
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 0
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 1
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 0
111 => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2}
0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2}
0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2}
0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2}
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(2,7),(3,6),(4,5)],8)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2}
0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ([(2,5),(3,4),(3,7),(4,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2}
0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2}
1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2}
1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ([(2,5),(3,4),(3,7),(4,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2}
1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(2,7),(3,6),(4,5)],8)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2}
1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2}
1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2}
1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2}
1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2}
1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 0
00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(2,9),(3,8),(4,7),(4,8),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(3,6),(3,11),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,10),(7,9),(7,11),(8,9),(8,11),(9,10),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(2,11),(3,6),(3,10),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,11),(7,9),(7,10),(8,9),(8,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
00100 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ([(2,5),(3,4),(3,10),(4,9),(5,11),(6,9),(6,10),(6,11),(7,8),(7,9),(7,11),(8,10),(8,11),(9,10)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(2,5),(3,6),(3,11),(4,7),(4,9),(5,11),(6,10),(6,11),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
00110 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(2,3),(2,10),(3,12),(4,5),(4,8),(4,12),(5,9),(5,11),(6,8),(6,9),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(2,11),(3,6),(3,10),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,11),(7,9),(7,10),(8,9),(8,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
01000 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(3,6),(3,11),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,10),(7,9),(7,11),(8,9),(8,11),(9,10),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
01001 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(2,5),(3,4),(3,11),(4,9),(5,10),(6,8),(6,9),(6,11),(7,8),(7,10),(7,11),(8,10),(9,10),(9,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(2,9),(3,8),(4,7),(5,6)],10)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(2,5),(3,6),(3,11),(4,7),(4,9),(5,11),(6,10),(6,11),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
01100 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(2,3),(2,10),(3,12),(4,5),(4,8),(4,12),(5,9),(5,11),(6,8),(6,9),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
01101 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(2,5),(3,4),(3,11),(4,9),(5,10),(6,8),(6,9),(6,11),(7,8),(7,10),(7,11),(8,10),(9,10),(9,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
01110 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ([(2,6),(3,6),(3,9),(3,10),(4,5),(4,8),(4,10),(5,7),(5,9),(6,11),(7,8),(7,10),(7,11),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(2,9),(3,8),(4,7),(4,8),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(2,9),(3,8),(4,7),(4,8),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ([(2,6),(3,6),(3,9),(3,10),(4,5),(4,8),(4,10),(5,7),(5,9),(6,11),(7,8),(7,10),(7,11),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(2,5),(3,4),(3,11),(4,9),(5,10),(6,8),(6,9),(6,11),(7,8),(7,10),(7,11),(8,10),(9,10),(9,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
10011 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(2,3),(2,10),(3,12),(4,5),(4,8),(4,12),(5,9),(5,11),(6,8),(6,9),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
10100 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(2,5),(3,6),(3,11),(4,7),(4,9),(5,11),(6,10),(6,11),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(2,9),(3,8),(4,7),(5,6)],10)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
10110 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(2,5),(3,4),(3,11),(4,9),(5,10),(6,8),(6,9),(6,11),(7,8),(7,10),(7,11),(8,10),(9,10),(9,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(3,6),(3,11),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,10),(7,9),(7,11),(8,9),(8,11),(9,10),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(2,11),(3,6),(3,10),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,11),(7,9),(7,10),(8,9),(8,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
11001 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(2,3),(2,10),(3,12),(4,5),(4,8),(4,12),(5,9),(5,11),(6,8),(6,9),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
11010 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(2,5),(3,6),(3,11),(4,7),(4,9),(5,11),(6,10),(6,11),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ([(2,5),(3,4),(3,10),(4,9),(5,11),(6,9),(6,10),(6,11),(7,8),(7,9),(7,11),(8,10),(8,11),(9,10)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(2,11),(3,6),(3,10),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,11),(7,9),(7,10),(8,9),(8,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(3,6),(3,11),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,10),(7,9),(7,11),(8,9),(8,11),(9,10),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(2,9),(3,8),(4,7),(4,8),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 0
000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> 0
000001 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ([(2,11),(3,10),(4,9),(4,10),(5,8),(5,11),(6,7),(6,9),(6,10),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
000010 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ([(2,10),(3,9),(3,14),(4,7),(4,9),(4,12),(4,14),(5,6),(5,10),(5,11),(5,13),(6,12),(6,13),(6,14),(7,11),(7,13),(7,14),(8,11),(8,12),(8,13),(8,14),(9,11),(9,13),(10,12),(10,14),(11,12),(11,14),(12,13),(13,14)],15)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
000011 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ([(2,10),(2,14),(3,9),(3,13),(4,6),(4,9),(4,12),(4,13),(5,7),(5,10),(5,11),(5,14),(6,11),(6,13),(6,14),(7,12),(7,13),(7,14),(8,11),(8,12),(8,13),(8,14),(9,11),(9,14),(10,12),(10,13),(11,12),(11,13),(12,14),(13,14)],15)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
000100 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ([(2,5),(3,4),(3,12),(3,14),(4,13),(4,15),(5,7),(5,15),(6,12),(6,13),(6,14),(6,15),(7,8),(7,10),(7,11),(8,11),(8,14),(8,15),(9,10),(9,11),(9,12),(9,14),(9,15),(10,13),(10,14),(10,15),(11,13),(11,15),(12,13),(12,15),(13,14),(14,15)],16)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
000101 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ([(2,6),(3,4),(3,13),(3,15),(4,12),(4,14),(5,8),(5,11),(5,15),(6,11),(6,15),(7,12),(7,13),(7,14),(7,15),(8,10),(8,11),(8,13),(8,15),(9,10),(9,11),(9,13),(9,14),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(12,13),(12,15),(13,14),(14,15)],16)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
000110 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ([(2,4),(2,13),(3,5),(3,12),(3,16),(4,11),(4,16),(5,10),(5,14),(5,15),(6,10),(6,12),(6,14),(6,15),(6,16),(7,11),(7,13),(7,14),(7,15),(7,16),(8,9),(8,10),(8,13),(8,14),(8,15),(8,16),(9,11),(9,12),(9,14),(9,15),(9,16),(10,11),(10,12),(10,16),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,15),(13,16),(14,16),(15,16)],17)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> 0
Description
The minimal number of occurrences of the split-pattern in a linear ordering of the vertices of the graph.
A graph is a split graph if and only if in any linear ordering of its vertices, there are no three vertices $a < b < c$ such that $(a,b)$ is an edge and $(b,c)$ is not an edge. This statistic is the minimal number of occurrences of this pattern, in the set of all linear orderings of the vertices.
Matching statistic: St001329
Values
0 => ([(0,1)],2)
=> ([(0,1)],2)
=> 0
1 => ([(0,1)],2)
=> ([(0,1)],2)
=> 0
00 => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 0
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 0
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 0
11 => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 0
000 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 0
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 1
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 0
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 0
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 1
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 0
111 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0
0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0
0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2}
0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2}
0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,8),(5,8),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2}
0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2}
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2}
0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ([(0,5),(0,6),(1,7),(1,8),(2,5),(2,6),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2}
0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2}
1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2}
1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ([(0,5),(0,6),(1,7),(1,8),(2,5),(2,6),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2}
1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2}
1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2}
1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,8),(5,8),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2}
1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2}
1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2}
1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0
00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0
00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(0,3),(0,7),(1,2),(1,6),(2,8),(3,9),(4,5),(4,8),(4,9),(5,6),(5,7),(6,8),(7,9)],10)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(0,7),(0,11),(1,5),(1,8),(2,6),(2,8),(3,4),(3,7),(3,11),(4,5),(4,9),(5,10),(6,10),(6,11),(7,9),(8,10),(9,10),(9,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(0,5),(0,9),(1,4),(1,9),(2,6),(2,8),(3,7),(3,8),(4,6),(4,10),(5,7),(5,10),(6,11),(7,11),(8,11),(9,10),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
00100 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ([(0,7),(0,11),(1,5),(1,6),(2,3),(2,4),(2,11),(3,6),(3,9),(4,5),(4,8),(5,10),(6,10),(7,8),(7,9),(8,10),(8,11),(9,10),(9,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(0,5),(0,6),(1,7),(1,10),(2,4),(2,10),(3,6),(3,8),(3,11),(4,5),(4,11),(5,9),(6,9),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
00110 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,11),(0,12),(1,8),(1,12),(2,6),(2,7),(3,4),(3,11),(3,12),(4,5),(4,6),(5,9),(5,11),(6,9),(7,8),(7,9),(8,10),(9,10),(10,11),(10,12)],13)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(0,5),(0,9),(1,4),(1,9),(2,6),(2,8),(3,7),(3,8),(4,6),(4,10),(5,7),(5,10),(6,11),(7,11),(8,11),(9,10),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
01000 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(0,7),(0,11),(1,5),(1,8),(2,6),(2,8),(3,4),(3,7),(3,11),(4,5),(4,9),(5,10),(6,10),(6,11),(7,9),(8,10),(9,10),(9,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
01001 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(0,7),(0,11),(1,5),(1,6),(2,3),(2,10),(2,11),(3,5),(3,8),(4,6),(4,8),(4,9),(5,10),(6,10),(7,8),(7,9),(8,11),(9,10),(9,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,8),(4,9),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(0,5),(0,6),(1,7),(1,10),(2,4),(2,10),(3,6),(3,8),(3,11),(4,5),(4,11),(5,9),(6,9),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
01100 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,11),(0,12),(1,8),(1,12),(2,6),(2,7),(3,4),(3,11),(3,12),(4,5),(4,6),(5,9),(5,11),(6,9),(7,8),(7,9),(8,10),(9,10),(10,11),(10,12)],13)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
01101 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(0,7),(0,11),(1,5),(1,6),(2,3),(2,10),(2,11),(3,5),(3,8),(4,6),(4,8),(4,9),(5,10),(6,10),(7,8),(7,9),(8,11),(9,10),(9,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
01110 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ([(0,9),(0,11),(1,7),(1,8),(2,5),(2,9),(2,11),(3,4),(3,9),(3,11),(4,7),(4,10),(5,8),(5,10),(6,7),(6,8),(6,10),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(0,3),(0,7),(1,2),(1,6),(2,8),(3,9),(4,5),(4,8),(4,9),(5,6),(5,7),(6,8),(7,9)],10)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(0,3),(0,7),(1,2),(1,6),(2,8),(3,9),(4,5),(4,8),(4,9),(5,6),(5,7),(6,8),(7,9)],10)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ([(0,9),(0,11),(1,7),(1,8),(2,5),(2,9),(2,11),(3,4),(3,9),(3,11),(4,7),(4,10),(5,8),(5,10),(6,7),(6,8),(6,10),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(0,7),(0,11),(1,5),(1,6),(2,3),(2,10),(2,11),(3,5),(3,8),(4,6),(4,8),(4,9),(5,10),(6,10),(7,8),(7,9),(8,11),(9,10),(9,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
10011 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,11),(0,12),(1,8),(1,12),(2,6),(2,7),(3,4),(3,11),(3,12),(4,5),(4,6),(5,9),(5,11),(6,9),(7,8),(7,9),(8,10),(9,10),(10,11),(10,12)],13)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
10100 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(0,5),(0,6),(1,7),(1,10),(2,4),(2,10),(3,6),(3,8),(3,11),(4,5),(4,11),(5,9),(6,9),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,8),(4,9),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
10110 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(0,7),(0,11),(1,5),(1,6),(2,3),(2,10),(2,11),(3,5),(3,8),(4,6),(4,8),(4,9),(5,10),(6,10),(7,8),(7,9),(8,11),(9,10),(9,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(0,7),(0,11),(1,5),(1,8),(2,6),(2,8),(3,4),(3,7),(3,11),(4,5),(4,9),(5,10),(6,10),(6,11),(7,9),(8,10),(9,10),(9,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(0,5),(0,9),(1,4),(1,9),(2,6),(2,8),(3,7),(3,8),(4,6),(4,10),(5,7),(5,10),(6,11),(7,11),(8,11),(9,10),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
11001 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,11),(0,12),(1,8),(1,12),(2,6),(2,7),(3,4),(3,11),(3,12),(4,5),(4,6),(5,9),(5,11),(6,9),(7,8),(7,9),(8,10),(9,10),(10,11),(10,12)],13)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
11010 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(0,5),(0,6),(1,7),(1,10),(2,4),(2,10),(3,6),(3,8),(3,11),(4,5),(4,11),(5,9),(6,9),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ([(0,7),(0,11),(1,5),(1,6),(2,3),(2,4),(2,11),(3,6),(3,9),(4,5),(4,8),(5,10),(6,10),(7,8),(7,9),(8,10),(8,11),(9,10),(9,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(0,5),(0,9),(1,4),(1,9),(2,6),(2,8),(3,7),(3,8),(4,6),(4,10),(5,7),(5,10),(6,11),(7,11),(8,11),(9,10),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(0,7),(0,11),(1,5),(1,8),(2,6),(2,8),(3,4),(3,7),(3,11),(4,5),(4,9),(5,10),(6,10),(6,11),(7,9),(8,10),(9,10),(9,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(0,3),(0,7),(1,2),(1,6),(2,8),(3,9),(4,5),(4,8),(4,9),(5,6),(5,7),(6,8),(7,9)],10)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0
000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 0
000001 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ([(0,3),(0,11),(1,2),(1,8),(2,9),(3,10),(4,5),(4,6),(4,8),(5,7),(5,9),(6,7),(6,10),(7,11),(8,9),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
000010 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ([(0,9),(0,14),(1,7),(1,10),(2,8),(2,10),(3,4),(3,9),(3,14),(4,5),(4,11),(5,7),(5,13),(6,8),(6,13),(6,14),(7,12),(8,12),(9,11),(10,12),(11,13),(11,14),(12,13)],15)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
000011 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ([(0,7),(0,11),(1,6),(1,10),(2,8),(2,10),(3,9),(3,11),(4,8),(4,9),(4,14),(5,6),(5,7),(5,14),(6,12),(7,13),(8,12),(9,13),(10,12),(11,13),(12,14),(13,14)],15)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
000100 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ([(0,7),(0,15),(1,5),(1,14),(2,6),(2,8),(3,4),(3,13),(3,15),(4,6),(4,10),(5,12),(5,13),(6,11),(7,8),(7,9),(8,11),(9,11),(9,12),(9,15),(10,11),(10,12),(10,13),(12,14),(13,14),(14,15)],16)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
000101 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ([(0,5),(0,7),(1,6),(1,8),(2,9),(2,14),(3,4),(3,8),(3,13),(4,10),(4,15),(5,6),(5,11),(6,12),(7,11),(7,14),(8,12),(9,10),(9,15),(10,13),(10,14),(11,12),(11,15),(12,13),(13,15),(14,15)],16)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
000110 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ([(0,15),(0,16),(1,7),(1,10),(2,8),(2,9),(3,4),(3,5),(3,6),(4,15),(4,16),(5,11),(5,15),(6,8),(6,11),(7,14),(7,16),(8,13),(9,10),(9,13),(10,14),(11,12),(11,13),(12,14),(12,15),(12,16),(13,14)],17)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 0
Description
The minimal number of occurrences of the outerplanar pattern in a linear ordering of the vertices of the graph.
A graph is outerplanar if and only if in any linear ordering of its vertices, there are no four vertices $a < b < c < d$ such that $(a,c)$ and $(b,d)$ are edges. This statistic is the minimal number of occurrences of this pattern, in the set of all linear orderings of the vertices.
Matching statistic: St001656
Values
0 => ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 0 + 2
1 => ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 0 + 2
00 => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 0 + 2
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 0 + 2
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 0 + 2
11 => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 0 + 2
000 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3 = 1 + 2
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3 = 1 + 2
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
111 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2} + 2
0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2} + 2
0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,8),(5,8),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2} + 2
0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2} + 2
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2} + 2
0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ([(0,5),(0,6),(1,7),(1,8),(2,5),(2,6),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2} + 2
0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2} + 2
1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2} + 2
1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ([(0,5),(0,6),(1,7),(1,8),(2,5),(2,6),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2} + 2
1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2} + 2
1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2} + 2
1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,8),(5,8),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2} + 2
1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2} + 2
1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,2,2,2} + 2
1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(0,3),(0,7),(1,2),(1,6),(2,8),(3,9),(4,5),(4,8),(4,9),(5,6),(5,7),(6,8),(7,9)],10)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3} + 2
00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(0,7),(0,11),(1,5),(1,8),(2,6),(2,8),(3,4),(3,7),(3,11),(4,5),(4,9),(5,10),(6,10),(6,11),(7,9),(8,10),(9,10),(9,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3} + 2
00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(0,5),(0,9),(1,4),(1,9),(2,6),(2,8),(3,7),(3,8),(4,6),(4,10),(5,7),(5,10),(6,11),(7,11),(8,11),(9,10),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3} + 2
00100 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ([(0,7),(0,11),(1,5),(1,6),(2,3),(2,4),(2,11),(3,6),(3,9),(4,5),(4,8),(5,10),(6,10),(7,8),(7,9),(8,10),(8,11),(9,10),(9,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3} + 2
00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(0,5),(0,6),(1,7),(1,10),(2,4),(2,10),(3,6),(3,8),(3,11),(4,5),(4,11),(5,9),(6,9),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3} + 2
00110 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,11),(0,12),(1,8),(1,12),(2,6),(2,7),(3,4),(3,11),(3,12),(4,5),(4,6),(5,9),(5,11),(6,9),(7,8),(7,9),(8,10),(9,10),(10,11),(10,12)],13)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3} + 2
00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(0,5),(0,9),(1,4),(1,9),(2,6),(2,8),(3,7),(3,8),(4,6),(4,10),(5,7),(5,10),(6,11),(7,11),(8,11),(9,10),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3} + 2
01000 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(0,7),(0,11),(1,5),(1,8),(2,6),(2,8),(3,4),(3,7),(3,11),(4,5),(4,9),(5,10),(6,10),(6,11),(7,9),(8,10),(9,10),(9,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3} + 2
01001 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(0,7),(0,11),(1,5),(1,6),(2,3),(2,10),(2,11),(3,5),(3,8),(4,6),(4,8),(4,9),(5,10),(6,10),(7,8),(7,9),(8,11),(9,10),(9,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3} + 2
01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,8),(4,9),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3} + 2
01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(0,5),(0,6),(1,7),(1,10),(2,4),(2,10),(3,6),(3,8),(3,11),(4,5),(4,11),(5,9),(6,9),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3} + 2
01100 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,11),(0,12),(1,8),(1,12),(2,6),(2,7),(3,4),(3,11),(3,12),(4,5),(4,6),(5,9),(5,11),(6,9),(7,8),(7,9),(8,10),(9,10),(10,11),(10,12)],13)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3} + 2
01101 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(0,7),(0,11),(1,5),(1,6),(2,3),(2,10),(2,11),(3,5),(3,8),(4,6),(4,8),(4,9),(5,10),(6,10),(7,8),(7,9),(8,11),(9,10),(9,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3} + 2
01110 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ([(0,9),(0,11),(1,7),(1,8),(2,5),(2,9),(2,11),(3,4),(3,9),(3,11),(4,7),(4,10),(5,8),(5,10),(6,7),(6,8),(6,10),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3} + 2
01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(0,3),(0,7),(1,2),(1,6),(2,8),(3,9),(4,5),(4,8),(4,9),(5,6),(5,7),(6,8),(7,9)],10)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3} + 2
10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(0,3),(0,7),(1,2),(1,6),(2,8),(3,9),(4,5),(4,8),(4,9),(5,6),(5,7),(6,8),(7,9)],10)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3} + 2
10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ([(0,9),(0,11),(1,7),(1,8),(2,5),(2,9),(2,11),(3,4),(3,9),(3,11),(4,7),(4,10),(5,8),(5,10),(6,7),(6,8),(6,10),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3} + 2
10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(0,7),(0,11),(1,5),(1,6),(2,3),(2,10),(2,11),(3,5),(3,8),(4,6),(4,8),(4,9),(5,10),(6,10),(7,8),(7,9),(8,11),(9,10),(9,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3} + 2
10011 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,11),(0,12),(1,8),(1,12),(2,6),(2,7),(3,4),(3,11),(3,12),(4,5),(4,6),(5,9),(5,11),(6,9),(7,8),(7,9),(8,10),(9,10),(10,11),(10,12)],13)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3} + 2
10100 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(0,5),(0,6),(1,7),(1,10),(2,4),(2,10),(3,6),(3,8),(3,11),(4,5),(4,11),(5,9),(6,9),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3} + 2
10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,8),(4,9),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3} + 2
10110 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(0,7),(0,11),(1,5),(1,6),(2,3),(2,10),(2,11),(3,5),(3,8),(4,6),(4,8),(4,9),(5,10),(6,10),(7,8),(7,9),(8,11),(9,10),(9,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3} + 2
10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(0,7),(0,11),(1,5),(1,8),(2,6),(2,8),(3,4),(3,7),(3,11),(4,5),(4,9),(5,10),(6,10),(6,11),(7,9),(8,10),(9,10),(9,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3} + 2
11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(0,5),(0,9),(1,4),(1,9),(2,6),(2,8),(3,7),(3,8),(4,6),(4,10),(5,7),(5,10),(6,11),(7,11),(8,11),(9,10),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3} + 2
11001 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,11),(0,12),(1,8),(1,12),(2,6),(2,7),(3,4),(3,11),(3,12),(4,5),(4,6),(5,9),(5,11),(6,9),(7,8),(7,9),(8,10),(9,10),(10,11),(10,12)],13)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3} + 2
11010 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(0,5),(0,6),(1,7),(1,10),(2,4),(2,10),(3,6),(3,8),(3,11),(4,5),(4,11),(5,9),(6,9),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3} + 2
11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ([(0,7),(0,11),(1,5),(1,6),(2,3),(2,4),(2,11),(3,6),(3,9),(4,5),(4,8),(5,10),(6,10),(7,8),(7,9),(8,10),(8,11),(9,10),(9,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3} + 2
11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(0,5),(0,9),(1,4),(1,9),(2,6),(2,8),(3,7),(3,8),(4,6),(4,10),(5,7),(5,10),(6,11),(7,11),(8,11),(9,10),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3} + 2
11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(0,7),(0,11),(1,5),(1,8),(2,6),(2,8),(3,4),(3,7),(3,11),(4,5),(4,9),(5,10),(6,10),(6,11),(7,9),(8,10),(9,10),(9,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3} + 2
11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(0,3),(0,7),(1,2),(1,6),(2,8),(3,9),(4,5),(4,8),(4,9),(5,6),(5,7),(6,8),(7,9)],10)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3} + 2
11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2 = 0 + 2
000001 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ([(0,3),(0,11),(1,2),(1,8),(2,9),(3,10),(4,5),(4,6),(4,8),(5,7),(5,9),(6,7),(6,10),(7,11),(8,9),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4} + 2
000010 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ([(0,9),(0,14),(1,7),(1,10),(2,8),(2,10),(3,4),(3,9),(3,14),(4,5),(4,11),(5,7),(5,13),(6,8),(6,13),(6,14),(7,12),(8,12),(9,11),(10,12),(11,13),(11,14),(12,13)],15)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4} + 2
000011 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ([(0,7),(0,11),(1,6),(1,10),(2,8),(2,10),(3,9),(3,11),(4,8),(4,9),(4,14),(5,6),(5,7),(5,14),(6,12),(7,13),(8,12),(9,13),(10,12),(11,13),(12,14),(13,14)],15)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4} + 2
000100 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ([(0,7),(0,15),(1,5),(1,14),(2,6),(2,8),(3,4),(3,13),(3,15),(4,6),(4,10),(5,12),(5,13),(6,11),(7,8),(7,9),(8,11),(9,11),(9,12),(9,15),(10,11),(10,12),(10,13),(12,14),(13,14),(14,15)],16)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4} + 2
000101 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ([(0,5),(0,7),(1,6),(1,8),(2,9),(2,14),(3,4),(3,8),(3,13),(4,10),(4,15),(5,6),(5,11),(6,12),(7,11),(7,14),(8,12),(9,10),(9,15),(10,13),(10,14),(11,12),(11,15),(12,13),(13,15),(14,15)],16)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4} + 2
000110 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ([(0,15),(0,16),(1,7),(1,10),(2,8),(2,9),(3,4),(3,5),(3,6),(4,15),(4,16),(5,11),(5,15),(6,8),(6,11),(7,14),(7,16),(8,13),(9,10),(9,13),(10,14),(11,12),(11,13),(12,14),(12,15),(12,16),(13,14)],17)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4} + 2
111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2 = 0 + 2
Description
The monophonic position number of a graph.
A subset $M$ of the vertex set of a graph is a monophonic position set if no three vertices of $M$ lie on a common induced path. The monophonic position number is the size of a largest monophonic position set.
Matching statistic: St000370
Values
0 => ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 0
1 => ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 0
00 => ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
11 => ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
000 => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
111 => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,2,2,2}
0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,2,2,2}
0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,2,2,2}
0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,2,2,2}
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(2,7),(3,6),(4,5)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,2,2,2}
0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ([(2,5),(3,4),(3,7),(4,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,2,2,2}
0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,2,2,2}
1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,2,2,2}
1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ([(2,5),(3,4),(3,7),(4,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,2,2,2}
1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(2,7),(3,6),(4,5)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,2,2,2}
1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,2,2,2}
1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,2,2,2}
1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,2,2,2}
1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,2,2,2}
1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(2,9),(3,8),(4,7),(4,8),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,3),(0,5),(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,8),(1,9),(2,4),(2,6),(2,7),(2,8),(2,9),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(3,6),(3,11),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,10),(7,9),(7,11),(8,9),(8,11),(9,10),(10,11)],12)
=> ([(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,6),(1,8),(1,9),(1,10),(1,11),(2,5),(2,6),(2,8),(2,9),(2,10),(2,11),(3,4),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(2,11),(3,6),(3,10),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,11),(7,9),(7,10),(8,9),(8,10),(9,11),(10,11)],12)
=> ([(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,6),(1,8),(1,10),(1,11),(2,4),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
00100 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ([(2,5),(3,4),(3,10),(4,9),(5,11),(6,9),(6,10),(6,11),(7,8),(7,9),(7,11),(8,10),(8,11),(9,10)],12)
=> ([(0,1),(0,2),(0,6),(0,7),(0,9),(0,10),(0,11),(1,4),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(2,5),(3,6),(3,11),(4,7),(4,9),(5,11),(6,10),(6,11),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11)],12)
=> ([(0,2),(0,8),(0,9),(0,10),(0,11),(1,4),(1,5),(1,6),(1,7),(1,9),(1,10),(1,11),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
00110 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(2,3),(2,10),(3,12),(4,5),(4,8),(4,12),(5,9),(5,11),(6,8),(6,9),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,4),(0,8),(0,10),(0,11),(0,12),(1,3),(1,7),(1,9),(1,10),(1,11),(1,12),(2,3),(2,5),(2,7),(2,8),(2,9),(2,11),(2,12),(3,7),(3,9),(3,10),(3,11),(3,12),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(2,11),(3,6),(3,10),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,11),(7,9),(7,10),(8,9),(8,10),(9,11),(10,11)],12)
=> ([(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,6),(1,8),(1,10),(1,11),(2,4),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
01000 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(3,6),(3,11),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,10),(7,9),(7,11),(8,9),(8,11),(9,10),(10,11)],12)
=> ([(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,6),(1,8),(1,9),(1,10),(1,11),(2,5),(2,6),(2,8),(2,9),(2,10),(2,11),(3,4),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
01001 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(2,5),(3,4),(3,11),(4,9),(5,10),(6,8),(6,9),(6,11),(7,8),(7,10),(7,11),(8,10),(9,10),(9,11)],12)
=> ([(0,1),(0,4),(0,6),(0,7),(0,9),(0,10),(0,11),(1,3),(1,6),(1,8),(1,9),(1,10),(1,11),(2,3),(2,5),(2,7),(2,8),(2,9),(2,10),(2,11),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(2,9),(3,8),(4,7),(5,6)],10)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(2,5),(3,6),(3,11),(4,7),(4,9),(5,11),(6,10),(6,11),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11)],12)
=> ([(0,2),(0,8),(0,9),(0,10),(0,11),(1,4),(1,5),(1,6),(1,7),(1,9),(1,10),(1,11),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
01100 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(2,3),(2,10),(3,12),(4,5),(4,8),(4,12),(5,9),(5,11),(6,8),(6,9),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,4),(0,8),(0,10),(0,11),(0,12),(1,3),(1,7),(1,9),(1,10),(1,11),(1,12),(2,3),(2,5),(2,7),(2,8),(2,9),(2,11),(2,12),(3,7),(3,9),(3,10),(3,11),(3,12),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
01101 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(2,5),(3,4),(3,11),(4,9),(5,10),(6,8),(6,9),(6,11),(7,8),(7,10),(7,11),(8,10),(9,10),(9,11)],12)
=> ([(0,1),(0,4),(0,6),(0,7),(0,9),(0,10),(0,11),(1,3),(1,6),(1,8),(1,9),(1,10),(1,11),(2,3),(2,5),(2,7),(2,8),(2,9),(2,10),(2,11),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
01110 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ([(2,6),(3,6),(3,9),(3,10),(4,5),(4,8),(4,10),(5,7),(5,9),(6,11),(7,8),(7,10),(7,11),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ([(0,5),(0,6),(0,7),(0,9),(0,10),(0,11),(1,4),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,6),(3,8),(3,9),(3,10),(3,11),(4,5),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(2,9),(3,8),(4,7),(4,8),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,3),(0,5),(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,8),(1,9),(2,4),(2,6),(2,7),(2,8),(2,9),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(2,9),(3,8),(4,7),(4,8),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,3),(0,5),(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,8),(1,9),(2,4),(2,6),(2,7),(2,8),(2,9),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ([(2,6),(3,6),(3,9),(3,10),(4,5),(4,8),(4,10),(5,7),(5,9),(6,11),(7,8),(7,10),(7,11),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ([(0,5),(0,6),(0,7),(0,9),(0,10),(0,11),(1,4),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,6),(3,8),(3,9),(3,10),(3,11),(4,5),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(2,5),(3,4),(3,11),(4,9),(5,10),(6,8),(6,9),(6,11),(7,8),(7,10),(7,11),(8,10),(9,10),(9,11)],12)
=> ([(0,1),(0,4),(0,6),(0,7),(0,9),(0,10),(0,11),(1,3),(1,6),(1,8),(1,9),(1,10),(1,11),(2,3),(2,5),(2,7),(2,8),(2,9),(2,10),(2,11),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
10011 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(2,3),(2,10),(3,12),(4,5),(4,8),(4,12),(5,9),(5,11),(6,8),(6,9),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,4),(0,8),(0,10),(0,11),(0,12),(1,3),(1,7),(1,9),(1,10),(1,11),(1,12),(2,3),(2,5),(2,7),(2,8),(2,9),(2,11),(2,12),(3,7),(3,9),(3,10),(3,11),(3,12),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
10100 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(2,5),(3,6),(3,11),(4,7),(4,9),(5,11),(6,10),(6,11),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11)],12)
=> ([(0,2),(0,8),(0,9),(0,10),(0,11),(1,4),(1,5),(1,6),(1,7),(1,9),(1,10),(1,11),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(2,9),(3,8),(4,7),(5,6)],10)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
10110 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(2,5),(3,4),(3,11),(4,9),(5,10),(6,8),(6,9),(6,11),(7,8),(7,10),(7,11),(8,10),(9,10),(9,11)],12)
=> ([(0,1),(0,4),(0,6),(0,7),(0,9),(0,10),(0,11),(1,3),(1,6),(1,8),(1,9),(1,10),(1,11),(2,3),(2,5),(2,7),(2,8),(2,9),(2,10),(2,11),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(3,6),(3,11),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,10),(7,9),(7,11),(8,9),(8,11),(9,10),(10,11)],12)
=> ([(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,6),(1,8),(1,9),(1,10),(1,11),(2,5),(2,6),(2,8),(2,9),(2,10),(2,11),(3,4),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(2,11),(3,6),(3,10),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,11),(7,9),(7,10),(8,9),(8,10),(9,11),(10,11)],12)
=> ([(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,6),(1,8),(1,10),(1,11),(2,4),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
11001 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(2,3),(2,10),(3,12),(4,5),(4,8),(4,12),(5,9),(5,11),(6,8),(6,9),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,4),(0,8),(0,10),(0,11),(0,12),(1,3),(1,7),(1,9),(1,10),(1,11),(1,12),(2,3),(2,5),(2,7),(2,8),(2,9),(2,11),(2,12),(3,7),(3,9),(3,10),(3,11),(3,12),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
11010 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(2,5),(3,6),(3,11),(4,7),(4,9),(5,11),(6,10),(6,11),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11)],12)
=> ([(0,2),(0,8),(0,9),(0,10),(0,11),(1,4),(1,5),(1,6),(1,7),(1,9),(1,10),(1,11),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ([(2,5),(3,4),(3,10),(4,9),(5,11),(6,9),(6,10),(6,11),(7,8),(7,9),(7,11),(8,10),(8,11),(9,10)],12)
=> ([(0,1),(0,2),(0,6),(0,7),(0,9),(0,10),(0,11),(1,4),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(2,11),(3,6),(3,10),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,11),(7,9),(7,10),(8,9),(8,10),(9,11),(10,11)],12)
=> ([(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,6),(1,8),(1,10),(1,11),(2,4),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(3,6),(3,11),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,10),(7,9),(7,11),(8,9),(8,11),(9,10),(10,11)],12)
=> ([(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,6),(1,8),(1,9),(1,10),(1,11),(2,5),(2,6),(2,8),(2,9),(2,10),(2,11),(3,4),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(2,9),(3,8),(4,7),(4,8),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,3),(0,5),(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,8),(1,9),(2,4),(2,6),(2,7),(2,8),(2,9),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3}
11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
000001 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ([(2,11),(3,10),(4,9),(4,10),(5,8),(5,11),(6,7),(6,9),(6,10),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> ([(0,3),(0,5),(0,7),(0,9),(0,10),(0,11),(1,2),(1,4),(1,6),(1,8),(1,10),(1,11),(2,4),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,7),(3,8),(3,9),(3,10),(3,11),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
000010 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ([(2,10),(3,9),(3,14),(4,7),(4,9),(4,12),(4,14),(5,6),(5,10),(5,11),(5,13),(6,12),(6,13),(6,14),(7,11),(7,13),(7,14),(8,11),(8,12),(8,13),(8,14),(9,11),(9,13),(10,12),(10,14),(11,12),(11,14),(12,13),(13,14)],15)
=> ([(0,3),(0,9),(0,10),(0,12),(0,13),(0,14),(1,2),(1,7),(1,8),(1,11),(1,12),(1,13),(1,14),(2,6),(2,7),(2,8),(2,11),(2,12),(2,13),(2,14),(3,5),(3,9),(3,10),(3,11),(3,12),(3,13),(3,14),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,7),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(6,7),(6,8),(6,9),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,11),(8,12),(8,13),(8,14),(9,10),(9,12),(9,13),(9,14),(10,11),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14),(12,13),(12,14),(13,14)],15)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
000011 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ([(2,10),(2,14),(3,9),(3,13),(4,6),(4,9),(4,12),(4,13),(5,7),(5,10),(5,11),(5,14),(6,11),(6,13),(6,14),(7,12),(7,13),(7,14),(8,11),(8,12),(8,13),(8,14),(9,11),(9,14),(10,12),(10,13),(11,12),(11,13),(12,14),(13,14)],15)
=> ([(0,3),(0,8),(0,10),(0,12),(0,13),(0,14),(1,2),(1,7),(1,9),(1,11),(1,13),(1,14),(2,5),(2,7),(2,9),(2,11),(2,12),(2,13),(2,14),(3,6),(3,8),(3,10),(3,11),(3,12),(3,13),(3,14),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,7),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,8),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,11),(9,12),(9,13),(9,14),(10,11),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14),(12,13),(12,14),(13,14)],15)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
000100 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ([(2,5),(3,4),(3,12),(3,14),(4,13),(4,15),(5,7),(5,15),(6,12),(6,13),(6,14),(6,15),(7,8),(7,10),(7,11),(8,11),(8,14),(8,15),(9,10),(9,11),(9,12),(9,14),(9,15),(10,13),(10,14),(10,15),(11,13),(11,15),(12,13),(12,15),(13,14),(14,15)],16)
=> ([(0,2),(0,9),(0,12),(0,13),(0,14),(0,15),(1,5),(1,6),(1,9),(1,10),(1,11),(1,13),(1,14),(1,15),(2,4),(2,8),(2,9),(2,11),(2,12),(2,13),(2,14),(2,15),(3,5),(3,6),(3,7),(3,8),(3,10),(3,11),(3,12),(3,13),(3,14),(3,15),(4,7),(4,8),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(5,6),(5,8),(5,9),(5,10),(5,11),(5,13),(5,14),(5,15),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(6,15),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(7,15),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,10),(9,12),(9,13),(9,14),(9,15),(10,11),(10,13),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
000101 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ([(2,6),(3,4),(3,13),(3,15),(4,12),(4,14),(5,8),(5,11),(5,15),(6,11),(6,15),(7,12),(7,13),(7,14),(7,15),(8,10),(8,11),(8,13),(8,15),(9,10),(9,11),(9,13),(9,14),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(12,13),(12,15),(13,14),(14,15)],16)
=> ([(0,3),(0,4),(0,12),(0,13),(0,14),(0,15),(1,2),(1,7),(1,9),(1,10),(1,11),(1,13),(1,14),(1,15),(2,5),(2,7),(2,9),(2,10),(2,11),(2,13),(2,14),(2,15),(3,4),(3,6),(3,9),(3,11),(3,12),(3,13),(3,14),(3,15),(4,6),(4,8),(4,10),(4,12),(4,13),(4,14),(4,15),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),(6,8),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(6,15),(7,8),(7,9),(7,10),(7,12),(7,13),(7,14),(7,15),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,10),(9,11),(9,12),(9,14),(9,15),(10,11),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
000110 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ([(2,4),(2,13),(3,5),(3,12),(3,16),(4,11),(4,16),(5,10),(5,14),(5,15),(6,10),(6,12),(6,14),(6,15),(6,16),(7,11),(7,13),(7,14),(7,15),(7,16),(8,9),(8,10),(8,13),(8,14),(8,15),(8,16),(9,11),(9,12),(9,14),(9,15),(9,16),(10,11),(10,12),(10,16),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,15),(13,16),(14,16),(15,16)],17)
=> ([(0,4),(0,5),(0,11),(0,14),(0,15),(0,16),(1,2),(1,8),(1,12),(1,13),(1,14),(1,15),(1,16),(2,3),(2,8),(2,12),(2,13),(2,14),(2,15),(2,16),(3,7),(3,8),(3,10),(3,11),(3,12),(3,13),(3,15),(3,16),(4,5),(4,6),(4,9),(4,11),(4,13),(4,14),(4,15),(4,16),(5,6),(5,10),(5,11),(5,12),(5,14),(5,15),(5,16),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(6,15),(6,16),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(7,15),(7,16),(8,9),(8,12),(8,13),(8,14),(8,15),(8,16),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(9,16),(10,11),(10,12),(10,13),(10,14),(10,15),(10,16),(11,13),(11,14),(11,15),(11,16),(12,13),(12,14),(12,15),(12,16),(13,15),(13,16),(14,15),(14,16),(15,16)],17)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4}
111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
Description
The genus of a graph.
This is the smallest genus of an oriented surface on which the graph can be embedded without crossings. One can indeed compute the genus as the sum of the genuses for the connected components.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!