searching the database
Your data matches 476 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001518
(load all 48 compositions to match this statistic)
(load all 48 compositions to match this statistic)
Values
([],1)
=> 1
([],2)
=> 1
([(0,1)],2)
=> 1
([],3)
=> 1
([(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(1,2)],3)
=> 1
([],4)
=> 1
([(2,3)],4)
=> 1
([(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> 1
([(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([],5)
=> 1
([(3,4)],5)
=> 1
([(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
([(1,4),(2,3)],5)
=> 1
([(1,4),(2,3),(3,4)],5)
=> 1
([(0,1),(2,4),(3,4)],5)
=> 1
([(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 1
Description
The number of graphs with the same ordinary spectrum as the given graph.
Matching statistic: St000278
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
St000278: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000278: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> []
=> 1
([],2)
=> []
=> 1
([(0,1)],2)
=> [1]
=> 1
([],3)
=> []
=> 1
([(1,2)],3)
=> [1]
=> 1
([(0,2),(1,2)],3)
=> [2]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([],4)
=> []
=> 1
([(2,3)],4)
=> [1]
=> 1
([(1,3),(2,3)],4)
=> [2]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [3]
=> 1
([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [3]
=> 1
([(1,2),(1,3),(2,3)],4)
=> [3]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> 1
([],5)
=> []
=> 1
([(3,4)],5)
=> [1]
=> 1
([(2,4),(3,4)],5)
=> [2]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [3]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> 1
([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [3]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [2,1]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [4]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [6]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> 1
Description
The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions.
This is the multinomial of the multiplicities of the parts, see [1].
This is the same as mλ(x1,…,xk) evaluated at x1=⋯=xk=1,
where k is the number of parts of λ.
An explicit formula is k!m1(λ)!m2(λ)!⋯mk(λ)!
where mi(λ) is the number of parts of λ equal to i.
Matching statistic: St000785
(load all 46 compositions to match this statistic)
(load all 46 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> 1
([(0,1)],2)
=> ([],1)
=> 1
([],3)
=> ([],3)
=> 1
([(1,2)],3)
=> ([],2)
=> 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> 1
([],4)
=> ([],4)
=> 1
([(2,3)],4)
=> ([],3)
=> 1
([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,3),(1,2)],4)
=> ([],2)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1
([],5)
=> ([],5)
=> 1
([(3,4)],5)
=> ([],4)
=> 1
([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,4),(2,3)],5)
=> ([],3)
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 2
([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 1
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
Description
The number of distinct colouring schemes of a graph.
To any proper colouring with the minimal number of colours possible we associate the integer partition recording how often each colour is used. This statistic records the number of distinct partitions that occur.
For example, the graph on six vertices consisting of a square together with two attached triangles - ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) in the list of values - is three-colourable and admits two colouring schemes, [2,2,2] and [3,2,1].
Matching statistic: St000805
(load all 24 compositions to match this statistic)
(load all 24 compositions to match this statistic)
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
St000805: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000805: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => 1
([],2)
=> [2] => 1
([(0,1)],2)
=> [1,1] => 1
([],3)
=> [3] => 1
([(1,2)],3)
=> [1,2] => 1
([(0,2),(1,2)],3)
=> [1,1,1] => 1
([(0,1),(0,2),(1,2)],3)
=> [2,1] => 1
([],4)
=> [4] => 1
([(2,3)],4)
=> [1,3] => 1
([(1,3),(2,3)],4)
=> [1,1,2] => 1
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => 1
([(0,3),(1,2)],4)
=> [2,2] => 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => 1
([(1,2),(1,3),(2,3)],4)
=> [2,2] => 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => 1
([],5)
=> [5] => 1
([(3,4)],5)
=> [1,4] => 1
([(2,4),(3,4)],5)
=> [1,1,3] => 1
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => 1
([(1,4),(2,3)],5)
=> [2,3] => 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => 1
([(2,3),(2,4),(3,4)],5)
=> [2,3] => 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => 1
Description
The number of peaks of the associated bargraph.
Interpret the composition as the sequence of heights of the bars of a bargraph. This statistic is the number of contiguous subsequences consisting of an up step, a sequence of horizontal steps, and a down step.
Matching statistic: St001272
(load all 42 compositions to match this statistic)
(load all 42 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> 1
([],3)
=> ([],3)
=> 1
([(1,2)],3)
=> ([(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([],4)
=> ([],4)
=> 1
([(2,3)],4)
=> ([(2,3)],4)
=> 1
([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([],5)
=> ([],5)
=> 1
([(3,4)],5)
=> ([(3,4)],5)
=> 1
([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
Description
The number of graphs with the same degree sequence.
The degree sequence of a graph is the sequence of its vertex degrees, in non-increasing order.
Matching statistic: St001282
(load all 16 compositions to match this statistic)
(load all 16 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> 1
([(0,1)],2)
=> ([],1)
=> 1
([],3)
=> ([],3)
=> 1
([(1,2)],3)
=> ([],2)
=> 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> 1
([],4)
=> ([],4)
=> 1
([(2,3)],4)
=> ([],3)
=> 1
([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,3),(1,2)],4)
=> ([],2)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1
([],5)
=> ([],5)
=> 1
([(3,4)],5)
=> ([],4)
=> 1
([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,4),(2,3)],5)
=> ([],3)
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 2
([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 1
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
Description
The number of graphs with the same chromatic polynomial.
Matching statistic: St001740
(load all 25 compositions to match this statistic)
(load all 25 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> 1
([(0,1)],2)
=> ([],1)
=> 1
([],3)
=> ([],3)
=> 1
([(1,2)],3)
=> ([],2)
=> 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> 1
([],4)
=> ([],4)
=> 1
([(2,3)],4)
=> ([],3)
=> 1
([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,3),(1,2)],4)
=> ([],2)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1
([],5)
=> ([],5)
=> 1
([(3,4)],5)
=> ([],4)
=> 1
([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,4),(2,3)],5)
=> ([],3)
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 2
([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 1
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
Description
The number of graphs with the same symmetric edge polytope as the given graph.
The symmetric edge polytope of a graph on n vertices is the polytope in Rn defined as the convex hull of ei−ej and ej−ei for each edge (i,j), where e1,…,en denotes the standard basis.
Matching statistic: St001776
(load all 26 compositions to match this statistic)
(load all 26 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> 1
([(0,1)],2)
=> ([],1)
=> 1
([],3)
=> ([],3)
=> 1
([(1,2)],3)
=> ([],2)
=> 1
([(0,2),(1,2)],3)
=> ([],1)
=> 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([],4)
=> ([],4)
=> 1
([(2,3)],4)
=> ([],3)
=> 1
([(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> 1
([(0,3),(1,2)],4)
=> ([],2)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> 1
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([],5)
=> ([],5)
=> 1
([(3,4)],5)
=> ([],4)
=> 1
([(2,4),(3,4)],5)
=> ([],3)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(1,4),(2,3)],5)
=> ([],3)
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([],2)
=> 1
([(0,1),(2,4),(3,4)],5)
=> ([],2)
=> 1
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 1
Description
The degree of the minimal polynomial of the largest Laplacian eigenvalue of a graph.
Matching statistic: St000807
(load all 23 compositions to match this statistic)
(load all 23 compositions to match this statistic)
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
St000807: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000807: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => 0 = 1 - 1
([],2)
=> [2] => 0 = 1 - 1
([(0,1)],2)
=> [1,1] => 0 = 1 - 1
([],3)
=> [3] => 0 = 1 - 1
([(1,2)],3)
=> [1,2] => 0 = 1 - 1
([(0,2),(1,2)],3)
=> [1,1,1] => 0 = 1 - 1
([(0,1),(0,2),(1,2)],3)
=> [2,1] => 0 = 1 - 1
([],4)
=> [4] => 0 = 1 - 1
([(2,3)],4)
=> [1,3] => 0 = 1 - 1
([(1,3),(2,3)],4)
=> [1,1,2] => 0 = 1 - 1
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => 0 = 1 - 1
([(0,3),(1,2)],4)
=> [2,2] => 0 = 1 - 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => 0 = 1 - 1
([(1,2),(1,3),(2,3)],4)
=> [2,2] => 0 = 1 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => 0 = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => 0 = 1 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => 0 = 1 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => 0 = 1 - 1
([],5)
=> [5] => 0 = 1 - 1
([(3,4)],5)
=> [1,4] => 0 = 1 - 1
([(2,4),(3,4)],5)
=> [1,1,3] => 0 = 1 - 1
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => 0 = 1 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => 0 = 1 - 1
([(1,4),(2,3)],5)
=> [2,3] => 0 = 1 - 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => 0 = 1 - 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => 0 = 1 - 1
([(2,3),(2,4),(3,4)],5)
=> [2,3] => 0 = 1 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => 0 = 1 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => 0 = 1 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => 0 = 1 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => 0 = 1 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 0 = 1 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 0 = 1 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 0 = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => 0 = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => 0 = 1 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => 0 = 1 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 0 = 1 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 0 = 1 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 0 = 1 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => 0 = 1 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => 0 = 1 - 1
Description
The sum of the heights of the valleys of the associated bargraph.
Interpret the composition as the sequence of heights of the bars of a bargraph. A valley is a contiguous subsequence consisting of an up step, a sequence of horizontal steps, and a down step. This statistic is the sum of the heights of the valleys.
Matching statistic: St001214
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
St001214: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001214: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> []
=> 0 = 1 - 1
([],2)
=> []
=> 0 = 1 - 1
([(0,1)],2)
=> [1]
=> 0 = 1 - 1
([],3)
=> []
=> 0 = 1 - 1
([(1,2)],3)
=> [1]
=> 0 = 1 - 1
([(0,2),(1,2)],3)
=> [2]
=> 0 = 1 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> 0 = 1 - 1
([],4)
=> []
=> 0 = 1 - 1
([(2,3)],4)
=> [1]
=> 0 = 1 - 1
([(1,3),(2,3)],4)
=> [2]
=> 0 = 1 - 1
([(0,3),(1,3),(2,3)],4)
=> [3]
=> 0 = 1 - 1
([(0,3),(1,2)],4)
=> [1,1]
=> 0 = 1 - 1
([(0,3),(1,2),(2,3)],4)
=> [3]
=> 0 = 1 - 1
([(1,2),(1,3),(2,3)],4)
=> [3]
=> 0 = 1 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 0 = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 0 = 1 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> 0 = 1 - 1
([],5)
=> []
=> 0 = 1 - 1
([(3,4)],5)
=> [1]
=> 0 = 1 - 1
([(2,4),(3,4)],5)
=> [2]
=> 0 = 1 - 1
([(1,4),(2,4),(3,4)],5)
=> [3]
=> 0 = 1 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> 0 = 1 - 1
([(1,4),(2,3)],5)
=> [1,1]
=> 0 = 1 - 1
([(1,4),(2,3),(3,4)],5)
=> [3]
=> 0 = 1 - 1
([(0,1),(2,4),(3,4)],5)
=> [2,1]
=> 1 = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> [3]
=> 0 = 1 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> 0 = 1 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> 0 = 1 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 0 = 1 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> 0 = 1 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 0 = 1 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 0 = 1 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> 0 = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> 0 = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> 0 = 1 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [4]
=> 0 = 1 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [6]
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> 0 = 1 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> 0 = 1 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> 0 = 1 - 1
Description
The aft of an integer partition.
The aft is the size of the partition minus the length of the first row or column, whichever is larger.
See also [[St000784]].
The following 466 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001309The number of four-cliques in a graph. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001334The minimal number of occurrences of the 3-colorable pattern in a linear ordering of the vertices of the graph. St001398Number of subsets of size 3 of elements in a poset that form a "v". St001588The number of distinct odd parts smaller than the largest even part in an integer partition. St000723The maximal cardinality of a set of vertices with the same neighbourhood in a graph. St000781The number of proper colouring schemes of a Ferrers diagram. St001006Number of simple modules with projective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001011Number of simple modules of projective dimension 2 in the Nakayama algebra corresponding to the Dyck path. St001013Number of indecomposable injective modules with codominant dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001070The absolute value of the derivative of the chromatic polynomial of the graph at 1. St001188The number of simple modules S with grade inf at least two in the Nakayama algebra A corresponding to the Dyck path. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001385The number of conjugacy classes of subgroups with connected subgroups of sizes prescribed by an integer partition. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St001507The sum of projective dimension of simple modules with even projective dimension divided by 2 in the LNakayama algebra corresponding to Dyck paths. St001774The degree of the minimal polynomial of the smallest eigenvalue of a graph. St001820The size of the image of the pop stack sorting operator. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000290The major index of a binary word. St000291The number of descents of a binary word. St000293The number of inversions of a binary word. St000303The determinant of the product of the incidence matrix and its transpose of a graph divided by 4. St000322The skewness of a graph. St000323The minimal crossing number of a graph. St000347The inversion sum of a binary word. St000370The genus of a graph. St000449The number of pairs of vertices of a graph with distance 4. St000552The number of cut vertices of a graph. St000630The length of the shortest palindromic decomposition of a binary word. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St000752The Grundy value for the game 'Couples are forever' on an integer partition. St000768The number of peaks in an integer composition. St000790The number of pairs of centered tunnels, one strictly containing the other, of a Dyck path. St000875The semilength of the longest Dyck word in the Catalan factorisation of a binary word. St000966Number of peaks minus the global dimension of the corresponding LNakayama algebra. St001140Number of indecomposable modules with projective and injective dimension at least two in the corresponding Nakayama algebra. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001193The dimension of Ext_A^1(A/AeA,A) in the corresponding Nakayama algebra A such that eA is a minimal faithful projective-injective module. St001261The Castelnuovo-Mumford regularity of a graph. St001292The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001305The number of induced cycles on four vertices in a graph. St001307The number of induced stars on four vertices in a graph. St001328The minimal number of occurrences of the bipartite-pattern in a linear ordering of the vertices of the graph. St001329The minimal number of occurrences of the outerplanar pattern in a linear ordering of the vertices of the graph. St001347The number of pairs of vertices of a graph having the same neighbourhood. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St001436The index of a given binary word in the lex-order among all its cyclic shifts. St001471The magnitude of a Dyck path. St001485The modular major index of a binary word. St001572The minimal number of edges to remove to make a graph bipartite. St001575The minimal number of edges to add or remove to make a graph edge transitive. St001578The minimal number of edges to add or remove to make a graph a line graph. St001797The number of overfull subgraphs of a graph. St001871The number of triconnected components of a graph. St000003The number of standard Young tableaux of the partition. St000021The number of descents of a permutation. St000035The number of left outer peaks of a permutation. St000047The number of standard immaculate tableaux of a given shape. St000162The number of nontrivial cycles in the cycle decomposition of a permutation. St000306The bounce count of a Dyck path. St000570The Edelman-Greene number of a permutation. St000617The number of global maxima of a Dyck path. St000659The number of rises of length at least 2 of a Dyck path. St000758The length of the longest staircase fitting into an integer composition. St000760The length of the longest strictly decreasing subsequence of parts of an integer composition. St000764The number of strong records in an integer composition. St000816The number of standard composition tableaux of the composition. St000884The number of isolated descents of a permutation. St000897The number of different multiplicities of parts of an integer partition. St000905The number of different multiplicities of parts of an integer composition. St000913The number of ways to refine the partition into singletons. St000994The number of cycle peaks and the number of cycle valleys of a permutation. St001063Numbers of 3-torsionfree simple modules in the corresponding Nakayama algebra. St001064Number of simple modules in the corresponding Nakayama algebra that are 3-syzygy modules. St001196The global dimension of A minus the global dimension of eAe for the corresponding Nakayama algebra with minimal faithful projective-injective module eA. St001197The global dimension of eAe for the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001199The dominant dimension of eAe for the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001256Number of simple reflexive modules that are 2-stable reflexive. St001313The number of Dyck paths above the lattice path given by a binary word. St001476The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,-1). St001483The number of simple module modules that appear in the socle of the regular module but have no nontrivial selfextensions with the regular module. St001591The number of graphs with the given composition of multiplicities of Laplacian eigenvalues. St001665The number of pure excedances of a permutation. St001722The number of minimal chains with small intervals between a binary word and the top element. St001729The number of visible descents of a permutation. St001737The number of descents of type 2 in a permutation. St001775The degree of the minimal polynomial of the largest eigenvalue of a graph. St001859The number of factors of the Stanley symmetric function associated with a permutation. St001928The number of non-overlapping descents in a permutation. St000052The number of valleys of a Dyck path not on the x-axis. St000091The descent variation of a composition. St000125The number of occurrences of the contiguous pattern [.,[[[.,.],.],. St000128The number of occurrences of the contiguous pattern [.,[.,[[.,[.,.]],.]]] in a binary tree. St000129The number of occurrences of the contiguous pattern [.,[.,[[[.,.],.],.]]] in a binary tree. St000130The number of occurrences of the contiguous pattern [.,[[.,.],[[.,.],.]]] in a binary tree. St000132The number of occurrences of the contiguous pattern [[.,.],[.,[[.,.],.]]] in a binary tree. St000233The number of nestings of a set partition. St000252The number of nodes of degree 3 of a binary tree. St000292The number of ascents of a binary word. St000325The width of the tree associated to a permutation. St000348The non-inversion sum of a binary word. St000386The number of factors DDU in a Dyck path. St000405The number of occurrences of the pattern 1324 in a permutation. St000407The number of occurrences of the pattern 2143 in a permutation. St000408The number of occurrences of the pattern 4231 in a permutation. St000440The number of occurrences of the pattern 4132 or of the pattern 4231 in a permutation. St000470The number of runs in a permutation. St000516The number of stretching pairs of a permutation. St000660The number of rises of length at least 3 of a Dyck path. St000664The number of right ropes of a permutation. St000666The number of right tethers of a permutation. St000671The maximin edge-connectivity for choosing a subgraph. St000682The Grundy value of Welter's game on a binary word. St000686The finitistic dominant dimension of a Dyck path. St000687The dimension of Hom(I,P) for the LNakayama algebra of a Dyck path. St000751The number of occurrences of either of the pattern 2143 or 2143 in a permutation. St000761The number of ascents in an integer composition. St000766The number of inversions of an integer composition. St000769The major index of a composition regarded as a word. St000871The number of very big ascents of a permutation. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St001025Number of simple modules with projective dimension 4 in the Nakayama algebra corresponding to the Dyck path. St001033The normalized area of the parallelogram polyomino associated with the Dyck path. St001037The number of inner corners of the upper path of the parallelogram polyomino associated with the Dyck path. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St001198The number of simple modules in the algebra eAe with projective dimension at most 1 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series L=[c_0,c_1,...,c_{n-1}] such that n=c_0 < c_i for all i > 0 a Dyck path as follows:
St001206The maximal dimension of an indecomposable projective eAe-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module eA. St001271The competition number of a graph. St001310The number of induced diamond graphs in a graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St001331The size of the minimal feedback vertex set. St001335The cardinality of a minimal cycle-isolating set of a graph. St001336The minimal number of vertices in a graph whose complement is triangle-free. St001513The number of nested exceedences of a permutation. St001551The number of restricted non-inversions between exceedances where the rightmost exceedance is linked. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001847The number of occurrences of the pattern 1432 in a permutation. St001166Number of indecomposable projective non-injective modules with dominant dimension equal to the global dimension plus the number of indecomposable projective injective modules in the corresponding Nakayama algebra. St000918The 2-limited packing number of a graph. St001325The minimal number of occurrences of the comparability-pattern in a linear ordering of the vertices of the graph. St001783The number of odd automorphisms of a graph. St001793The difference between the clique number and the chromatic number of a graph. St001031The height of the bicoloured Motzkin path associated with the Dyck path. St001286The annihilation number of a graph. St001394The genus of a permutation. St000376The bounce deficit of a Dyck path. St000650The number of 3-rises of a permutation. St000709The number of occurrences of 14-2-3 or 14-3-2. St000791The number of pairs of left tunnels, one strictly containing the other, of a Dyck path. St000862The number of parts of the shifted shape of a permutation. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St000287The number of connected components of a graph. St000315The number of isolated vertices of a graph. St001104The number of descents of the invariant in a tensor power of the adjoint representation of the rank two general linear group. St001703The villainy of a graph. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001200The number of simple modules in eAe with projective dimension at most 2 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St000159The number of distinct parts of the integer partition. St000160The multiplicity of the smallest part of a partition. St000346The number of coarsenings of a partition. St000533The minimum of the number of parts and the size of the first part of an integer partition. St000548The number of different non-empty partial sums of an integer partition. St000618The number of self-evacuating tableaux of given shape. St000810The sum of the entries in the column specified by the partition of the change of basis matrix from powersum symmetric functions to monomial symmetric functions. St000814The sum of the entries in the column specified by the partition of the change of basis matrix from elementary symmetric functions to Schur symmetric functions. St001121The multiplicity of the irreducible representation indexed by the partition in the Kronecker square corresponding to the partition. St001432The order dimension of the partition. St000481The number of upper covers of a partition in dominance order. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St000511The number of invariant subsets when acting with a permutation of given cycle type. St001091The number of parts in an integer partition whose next smaller part has the same size. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series L=[c_0,c_1,...,c_{n−1}] such that n=c_0 < c_i for all i > 0 a special CNakayama algebra. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001913The number of preimages of an integer partition in Bulgarian solitaire. St000182The number of permutations whose cycle type is the given integer partition. St000284The Plancherel distribution on integer partitions. St000390The number of runs of ones in a binary word. St000529The number of permutations whose descent word is the given binary word. St000543The size of the conjugacy class of a binary word. St000626The minimal period of a binary word. St000627The exponent of a binary word. St000655The length of the minimal rise of a Dyck path. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000706The product of the factorials of the multiplicities of an integer partition. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000983The length of the longest alternating subword. St000993The multiplicity of the largest part of an integer partition. St001128The exponens consonantiae of a partition. St001786The number of total orderings of the north steps of a Dyck path such that steps after the k-th east step are not among the first k positions in the order. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001924The number of cells in an integer partition whose arm and leg length coincide. St000567The sum of the products of all pairs of parts. St000929The constant term of the character polynomial of an integer partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001098The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for vertex labelled trees. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St000517The Kreweras number of an integer partition. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000628The balance of a binary word. St000668The least common multiple of the parts of the partition. St000770The major index of an integer partition when read from bottom to top. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St001568The smallest positive integer that does not appear twice in the partition. St001780The order of promotion on the set of standard tableaux of given shape. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St000388The number of orbits of vertices of a graph under automorphisms. St000553The number of blocks of a graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000775The multiplicity of the largest eigenvalue in a graph. St000916The packing number of a graph. St000917The open packing number of a graph. St001496The number of graphs with the same Laplacian spectrum as the given graph. St001562The value of the complete homogeneous symmetric function evaluated at 1. St001563The value of the power-sum symmetric function evaluated at 1. St001564The value of the forgotten symmetric functions when all variables set to 1. St001890The maximum magnitude of the Möbius function of a poset. St001951The number of factors in the disjoint direct product decomposition of the automorphism group of a graph. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000286The number of connected components of the complement of a graph. St001711The number of permutations such that conjugation with a permutation of given cycle type yields the squared permutation. St001716The 1-improper chromatic number of a graph. St001957The number of Hasse diagrams with a given underlying undirected graph. St001420Half the length of a longest factor which is its own reverse-complement of a binary word. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001732The number of peaks visible from the left. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St001881The number of factors of a lattice as a Cartesian product of lattices. St001884The number of borders of a binary word. St000475The number of parts equal to 1 in a partition. St001846The number of elements which do not have a complement in the lattice. St000326The position of the first one in a binary word after appending a 1 at the end. St001267The length of the Lyndon factorization of the binary word. St001437The flex of a binary word. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001929The number of meanders with top half given by the noncrossing matching corresponding to the Dyck path. St000273The domination number of a graph. St000544The cop number of a graph. St001739The number of graphs with the same edge polytope as the given graph. St001829The common independence number of a graph. St000447The number of pairs of vertices of a graph with distance 3. St000312The number of leaves in a graph. St000763The sum of the positions of the strong records of an integer composition. St001597The Frobenius rank of a skew partition. St001695The natural comajor index of a standard Young tableau. St001698The comajor index of a standard tableau minus the weighted size of its shape. St001699The major index of a standard tableau minus the weighted size of its shape. St001712The number of natural descents of a standard Young tableau. St000340The number of non-final maximal constant sub-paths of length greater than one. St000442The maximal area to the right of an up step of a Dyck path. St000675The number of centered multitunnels of a Dyck path. St001038The minimal height of a column in the parallelogram polyomino associated with the Dyck path. St001066The number of simple reflexive modules in the corresponding Nakayama algebra. St000069The number of maximal elements of a poset. St000735The last entry on the main diagonal of a standard tableau. St000667The greatest common divisor of the parts of the partition. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St001389The number of partitions of the same length below the given integer partition. St001571The Cartan determinant of the integer partition. St001322The size of a minimal independent dominating set in a graph. St001333The cardinality of a minimal edge-isolating set of a graph. St001339The irredundance number of a graph. St001340The cardinality of a minimal non-edge isolating set of a graph. St001363The Euler characteristic of a graph according to Knill. St001367The smallest number which does not occur as degree of a vertex in a graph. St001479The number of bridges of a graph. St000053The number of valleys of the Dyck path. St000685The dominant dimension of the LNakayama algebra associated to a Dyck path. St001276The number of 2-regular indecomposable modules in the corresponding Nakayama algebra. St001501The dominant dimension of magnitude 1 Nakayama algebras. St001506Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra. St000079The number of alternating sign matrices for a given Dyck path. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St000955Number of times one has Ext^i(D(A),A)>0 for i>0 for the corresponding LNakayama algebra. St001009Number of indecomposable injective modules with projective dimension g when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001159Number of simple modules with dominant dimension equal to the global dimension in the corresponding Nakayama algebra. St001289The vector space dimension of the n-fold tensor product of D(A), where n is maximal such that this n-fold tensor product is nonzero. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001352The number of internal nodes in the modular decomposition of a graph. St001463The number of distinct columns in the nullspace of a graph. St001964The interval resolution global dimension of a poset. St000268The number of strongly connected orientations of a graph. St000344The number of strongly connected outdegree sequences of a graph. St000450The number of edges minus the number of vertices plus 2 of a graph. St000482The (zero)-forcing number of a graph. St000773The multiplicity of the largest Laplacian eigenvalue in a graph. St000774The maximal multiplicity of a Laplacian eigenvalue in a graph. St000776The maximal multiplicity of an eigenvalue in a graph. St000882The number of connected components of short braid edges in the graph of braid moves of a permutation. St001073The number of nowhere zero 3-flows of a graph. St001189The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001316The domatic number of a graph. St001330The hat guessing number of a graph. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001503The largest distance of a vertex to a vertex in a cycle in the resolution quiver of the corresponding Nakayama algebra. St001593This is the number of standard Young tableaux of the given shifted shape. St001933The largest multiplicity of a part in an integer partition. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St000879The number of long braid edges in the graph of braid moves of a permutation. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000049The number of set partitions whose sorted block sizes correspond to the partition. St000275Number of permutations whose sorted list of non zero multiplicities of the Lehmer code is the given partition. St000783The side length of the largest staircase partition fitting into a partition. St000143The largest repeated part of a partition. St000185The weighted size of a partition. St000225Difference between largest and smallest parts in a partition. St000318The number of addable cells of the Ferrers diagram of an integer partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001498The normalised height of a Nakayama algebra with magnitude 1. St000422The energy of a graph, if it is integral. St000454The largest eigenvalue of a graph if it is integral. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000815The number of semistandard Young tableaux of partition weight of given shape. St000933The number of multipartitions of sizes given by an integer partition. St000762The sum of the positions of the weak records of an integer composition. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001481The minimal height of a peak of a Dyck path. St000331The number of upper interactions of a Dyck path. St001142The projective dimension of the socle of the regular module as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001191Number of simple modules S with Ext_A^i(S,A)=0 for all i=0,1,...,g-1 in the corresponding Nakayama algebra A with global dimension g. St001195The global dimension of the algebra A/AfA of the corresponding Nakayama algebra A with minimal left faithful projective-injective module Af. St001205The number of non-simple indecomposable projective-injective modules of the algebra eAe in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001845The number of join irreducibles minus the rank of a lattice. St000964Gives the dimension of Ext^g(D(A),A) of the corresponding LNakayama algebra, when g denotes the global dimension of that algebra. St000999Number of indecomposable projective module with injective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001192The maximal dimension of Ext_A^2(S,A) for a simple module S over the corresponding Nakayama algebra A. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000968We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) [c_0,c_1,...,c_{n−1}] by adding c_0 to c_{n−1}. St001194The injective dimension of A/AfA in the corresponding Nakayama algebra A when Af is the minimal faithful projective-injective left A-module St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001273The projective dimension of the first term in an injective coresolution of the regular module. St001274The number of indecomposable injective modules with projective dimension equal to two. St001278The number of indecomposable modules that are fixed by \tau \Omega^1 composed with its inverse in the corresponding Nakayama algebra. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001873For a Nakayama algebra corresponding to a Dyck path, we define the matrix C with entries the Hom-spaces between e_i J and e_j J (the radical of the indecomposable projective modules). St001103The number of words with multiplicities of the letters given by the partition, avoiding the consecutive pattern 123. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St000056The decomposition (or block) number of a permutation. St000486The number of cycles of length at least 3 of a permutation. St000694The number of affine bounded permutations that project to a given permutation. St000711The number of big exceedences of a permutation. St000788The number of nesting-similar perfect matchings of a perfect matching. St001081The number of minimal length factorizations of a permutation into star transpositions. St001174The Gorenstein dimension of the algebra A/I when I is the tilting module corresponding to the permutation in the Auslander algebra of K[x]/(x^n). St001208The number of connected components of the quiver of A/T when T is the 1-tilting module corresponding to the permutation in the Auslander algebra A of K[x]/(x^n). St001344The neighbouring number of a permutation. St001461The number of topologically connected components of the chord diagram of a permutation. St001590The crossing number of a perfect matching. St001661Half the permanent of the Identity matrix plus the permutation matrix associated to the permutation. St001830The chord expansion number of a perfect matching. St001832The number of non-crossing perfect matchings in the chord expansion of a perfect matching. St000221The number of strong fixed points of a permutation. St000279The size of the preimage of the map 'cycle-as-one-line notation' from Permutations to Permutations. St000375The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length 3. St000406The number of occurrences of the pattern 3241 in a permutation. St000488The number of cycles of a permutation of length at most 2. St000623The number of occurrences of the pattern 52341 in a permutation. St000787The number of flips required to make a perfect matching noncrossing. St001163The number of simple modules with dominant dimension at least three in the corresponding Nakayama algebra. St001359The number of permutations in the equivalence class of a permutation obtained by taking inverses of cycles. St001381The fertility of a permutation. St001444The rank of the skew-symmetric form which is non-zero on crossing arcs of a perfect matching. St001466The number of transpositions swapping cyclically adjacent numbers in a permutation. St001549The number of restricted non-inversions between exceedances. St001552The number of inversions between excedances and fixed points of a permutation. St001663The number of occurrences of the Hertzsprung pattern 132 in a permutation. St001741The largest integer such that all patterns of this size are contained in the permutation. St001810The number of fixed points of a permutation smaller than its largest moved point. St001811The Castelnuovo-Mumford regularity of a permutation. St001837The number of occurrences of a 312 pattern in the restricted growth word of a perfect matching. St001850The number of Hecke atoms of a permutation. St001906Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation. St001960The number of descents of a permutation minus one if its first entry is not one. St000928The sum of the coefficients of the character polynomial of an integer partition. St000456The monochromatic index of a connected graph. St001281The normalized isoperimetric number of a graph. St001592The maximal number of simple paths between any two different vertices of a graph. St000068The number of minimal elements in a poset. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001599The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St000075The orbit size of a standard tableau under promotion. St000183The side length of the Durfee square of an integer partition. St000212The number of standard Young tableaux for an integer partition such that no two consecutive entries appear in the same row. St000321The number of integer partitions of n that are dominated by an integer partition. St000345The number of refinements of a partition. St000705The number of semistandard tableaux on a given integer partition of n with maximal entry n. St000847The number of standard Young tableaux whose descent set is the binary word. St000935The number of ordered refinements of an integer partition. St000965The sum of the dimension of Ext^i(D(A),A) for i=1,. St001129The product of the squares of the parts of a partition. St001236The dominant dimension of the corresponding Comp-Nakayama algebra. St001595The number of standard Young tableaux of the skew partition. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001371The length of the longest Yamanouchi prefix of a binary word. St001730The number of times the path corresponding to a binary word crosses the base line. St001118The acyclic chromatic index of a graph. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000310The minimal degree of a vertex of a graph. St001765The number of connected components of the friends and strangers graph. St000096The number of spanning trees of a graph. St000274The number of perfect matchings of a graph. St000276The size of the preimage of the map 'to graph' from Ordered trees to Graphs. St000181The number of connected components of the Hasse diagram for the poset. St000908The length of the shortest maximal antichain in a poset. St001301The first Betti number of the order complex associated with the poset. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001601The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on trees. St001628The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple connected graphs. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St001877Number of indecomposable injective modules with projective dimension 2. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000914The sum of the values of the Möbius function of a poset. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000782The indicator function of whether a given perfect matching is an L & P matching.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!