Your data matches 78 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001015: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> 1 = 2 - 1
[1,0,1,0]
=> 1 = 2 - 1
[1,1,0,0]
=> 2 = 3 - 1
[1,0,1,0,1,0]
=> 0 = 1 - 1
[1,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,0]
=> 2 = 3 - 1
[1,1,0,1,0,0]
=> 2 = 3 - 1
[1,1,1,0,0,0]
=> 3 = 4 - 1
[1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> 3 = 4 - 1
[1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,1,0,0,0]
=> 3 = 4 - 1
[1,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[1,1,1,0,0,1,0,0]
=> 3 = 4 - 1
[1,1,1,0,1,0,0,0]
=> 3 = 4 - 1
[1,1,1,1,0,0,0,0]
=> 4 = 5 - 1
[1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[1,0,1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
[1,0,1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,0]
=> 3 = 4 - 1
[1,0,1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,1,0,0,1,0,0]
=> 3 = 4 - 1
[1,0,1,1,1,0,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,1,1,0,0,0,0]
=> 4 = 5 - 1
[1,1,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[1,1,0,0,1,1,0,1,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,1,0,0,0]
=> 4 = 5 - 1
[1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,0,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> 3 = 4 - 1
[1,1,0,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,1,0,1,0,0,0]
=> 3 = 4 - 1
[1,1,0,1,1,1,0,0,0,0]
=> 4 = 5 - 1
Description
Number of indecomposable injective modules with codominant dimension equal to one in the Nakayama algebra corresponding to the Dyck path.
St001016: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> 1 = 2 - 1
[1,0,1,0]
=> 1 = 2 - 1
[1,1,0,0]
=> 2 = 3 - 1
[1,0,1,0,1,0]
=> 0 = 1 - 1
[1,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,0]
=> 2 = 3 - 1
[1,1,0,1,0,0]
=> 2 = 3 - 1
[1,1,1,0,0,0]
=> 3 = 4 - 1
[1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> 3 = 4 - 1
[1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,1,0,0,0]
=> 3 = 4 - 1
[1,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[1,1,1,0,0,1,0,0]
=> 3 = 4 - 1
[1,1,1,0,1,0,0,0]
=> 3 = 4 - 1
[1,1,1,1,0,0,0,0]
=> 4 = 5 - 1
[1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[1,0,1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
[1,0,1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,0]
=> 3 = 4 - 1
[1,0,1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,1,0,0,1,0,0]
=> 3 = 4 - 1
[1,0,1,1,1,0,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,1,1,0,0,0,0]
=> 4 = 5 - 1
[1,1,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[1,1,0,0,1,1,0,1,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,1,0,0,0]
=> 4 = 5 - 1
[1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,0,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> 3 = 4 - 1
[1,1,0,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,1,0,1,0,0,0]
=> 3 = 4 - 1
[1,1,0,1,1,1,0,0,0,0]
=> 4 = 5 - 1
Description
Number of indecomposable injective modules with codominant dimension at most 1 in the Nakayama algebra corresponding to the Dyck path.
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00124: Dyck paths Adin-Bagno-Roichman transformationDyck paths
St001014: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 2
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 2
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 3
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 3
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> 3
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 4
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 4
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 4
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 4
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 5
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 4
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> 4
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> 4
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> 4
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 5
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> 4
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 5
Description
Number of indecomposable injective modules with codominant dimension equal to the dominant dimension of the Nakayama algebra corresponding to the Dyck path.
Mp00242: Dyck paths Hessenberg posetPosets
Mp00074: Posets to graphGraphs
Mp00111: Graphs complementGraphs
St000454: Graphs ⟶ ℤResult quality: 42% values known / values provided: 42%distinct values known / distinct values provided: 83%
Values
[1,0]
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
[1,0,1,0]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0 = 2 - 2
[1,1,0,0]
=> ([],2)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 3 - 2
[1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1 = 3 - 2
[1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1 = 3 - 2
[1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1 = 3 - 2
[1,1,0,1,0,0]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 2
[1,1,1,0,0,0]
=> ([],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 4 - 2
[1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,2,2,2,2,4,4} - 2
[1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
[1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 3 - 2
[1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,2,2,2,2,4,4} - 2
[1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
[1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
[1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 3 - 2
[1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,2,2,2,2,4,4} - 2
[1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,2,2,2,2,4,4} - 2
[1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,4,4} - 2
[1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
[1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,4,4} - 2
[1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,4,4} - 2
[1,1,1,1,0,0,0,0]
=> ([],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 5 - 2
[1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5} - 2
[1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5} - 2
[1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5} - 2
[1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5} - 2
[1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 5 - 2
[1,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5} - 2
[1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,0,1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2 = 4 - 2
[1,0,1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5} - 2
[1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5} - 2
[1,0,1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5} - 2
[1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5} - 2
[1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 5 - 2
[1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5} - 2
[1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 5 - 2
[1,1,0,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5} - 2
[1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5} - 2
[1,1,0,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5} - 2
[1,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5} - 2
[1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2 = 4 - 2
[1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5} - 2
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5} - 2
[1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5} - 2
[1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5} - 2
[1,1,0,1,1,1,0,0,0,0]
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5} - 2
[1,1,1,0,0,0,1,0,1,0]
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 5 - 2
[1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5} - 2
[1,1,1,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5} - 2
[1,1,1,0,0,1,1,0,0,0]
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5} - 2
[1,1,1,0,1,0,0,0,1,0]
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5} - 2
[1,1,1,0,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5} - 2
[1,1,1,0,1,0,1,0,0,0]
=> ([(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5} - 2
[1,1,1,0,1,1,0,0,0,0]
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5} - 2
[1,1,1,1,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 5 - 2
[1,1,1,1,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5} - 2
[1,1,1,1,0,0,1,0,0,0]
=> ([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5} - 2
[1,1,1,1,0,1,0,0,0,0]
=> ([(3,4)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5} - 2
[1,1,1,1,1,0,0,0,0,0]
=> ([],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 6 - 2
Description
The largest eigenvalue of a graph if it is integral. If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00062: Permutations Lehmer-code to major-code bijectionPermutations
Mp00160: Permutations graph of inversionsGraphs
St000259: Graphs ⟶ ℤResult quality: 38% values known / values provided: 38%distinct values known / distinct values provided: 67%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 0 = 2 - 2
[1,0,1,0]
=> [1,2] => [1,2] => ([],2)
=> ? = 2 - 2
[1,1,0,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1 = 3 - 2
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,3,3} - 2
[1,0,1,1,0,0]
=> [1,3,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> 2 = 4 - 2
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,3,3} - 2
[1,1,0,1,0,0]
=> [2,3,1] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,3,3} - 2
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 3 - 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,2,2,2,2,3,4,4,4} - 2
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 4 - 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,3,4,4,4} - 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 3 = 5 - 2
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {1,2,2,2,2,3,4,4,4} - 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,3,4,4,4} - 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,2,2,2,2,3,4,4,4} - 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,2,2,2,2,3,4,4,4} - 2
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,3,4,4,4} - 2
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {1,2,2,2,2,3,4,4,4} - 2
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,3,4,4,4} - 2
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 3 - 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6} - 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6} - 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3 = 5 - 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6} - 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3 = 5 - 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6} - 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3 = 5 - 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [5,2,4,1,3] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6} - 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 3 = 5 - 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 3 = 5 - 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6} - 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6} - 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6} - 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6} - 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6} - 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6} - 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6} - 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6} - 2
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,1,2,4,3] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6} - 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6} - 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 3 = 5 - 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [5,4,1,3,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6} - 2
[1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6} - 2
[1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6} - 2
[1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6} - 2
[1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6} - 2
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,2,1,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6} - 2
[1,1,1,0,1,0,0,1,0,0]
=> [3,4,2,5,1] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6} - 2
[1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,2,1] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6} - 2
[1,1,1,0,1,1,0,0,0,0]
=> [3,5,4,2,1] => [5,1,4,3,2] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6} - 2
[1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6} - 2
[1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6} - 2
[1,1,1,1,0,1,0,0,0,0]
=> [4,5,3,2,1] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,6} - 2
[1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Mp00100: Dyck paths touch compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000777: Graphs ⟶ ℤResult quality: 36% values known / values provided: 36%distinct values known / distinct values provided: 83%
Values
[1,0]
=> [1] => ([],1)
=> 1 = 2 - 1
[1,0,1,0]
=> [1,1] => ([(0,1)],2)
=> 2 = 3 - 1
[1,1,0,0]
=> [2] => ([],2)
=> ? = 2 - 1
[1,0,1,0,1,0]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,0,1,1,0,0]
=> [1,2] => ([(1,2)],3)
=> ? ∊ {1,3,3} - 1
[1,1,0,0,1,0]
=> [2,1] => ([(0,2),(1,2)],3)
=> 3 = 4 - 1
[1,1,0,1,0,0]
=> [3] => ([],3)
=> ? ∊ {1,3,3} - 1
[1,1,1,0,0,0]
=> [3] => ([],3)
=> ? ∊ {1,3,3} - 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,0,1,0,1,1,0,0]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,3,4,4,4} - 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
[1,0,1,1,0,1,0,0]
=> [1,3] => ([(2,3)],4)
=> ? ∊ {1,2,2,2,2,3,4,4,4} - 1
[1,0,1,1,1,0,0,0]
=> [1,3] => ([(2,3)],4)
=> ? ∊ {1,2,2,2,2,3,4,4,4} - 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,1,0,0,1,1,0,0]
=> [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,3,4,4,4} - 1
[1,1,0,1,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,1,0,1,0,1,0,0]
=> [4] => ([],4)
=> ? ∊ {1,2,2,2,2,3,4,4,4} - 1
[1,1,0,1,1,0,0,0]
=> [4] => ([],4)
=> ? ∊ {1,2,2,2,2,3,4,4,4} - 1
[1,1,1,0,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,1,1,0,0,1,0,0]
=> [4] => ([],4)
=> ? ∊ {1,2,2,2,2,3,4,4,4} - 1
[1,1,1,0,1,0,0,0]
=> [4] => ([],4)
=> ? ∊ {1,2,2,2,2,3,4,4,4} - 1
[1,1,1,1,0,0,0,0]
=> [4] => ([],4)
=> ? ∊ {1,2,2,2,2,3,4,4,4} - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,5} - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,5} - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,5} - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,5} - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,5} - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,5} - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,5} - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,5} - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,5} - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,5} - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,5} - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,5} - 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,5} - 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,5} - 1
[1,1,0,1,0,1,1,0,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,5} - 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,5} - 1
[1,1,0,1,1,0,1,0,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,5} - 1
[1,1,0,1,1,1,0,0,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,5} - 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,5} - 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,1,1,0,0,1,0,1,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,5} - 1
[1,1,1,0,0,1,1,0,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,5} - 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,1,1,0,1,0,0,1,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,5} - 1
[1,1,1,0,1,0,1,0,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,5} - 1
[1,1,1,0,1,1,0,0,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,5} - 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,5} - 1
[1,1,1,1,0,0,1,0,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,5} - 1
[1,1,1,1,0,1,0,0,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,5} - 1
[1,1,1,1,1,0,0,0,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,5,5,5,5,5,5} - 1
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00223: Permutations runsortPermutations
Mp00065: Permutations permutation posetPosets
St001880: Posets ⟶ ℤResult quality: 36% values known / values provided: 36%distinct values known / distinct values provided: 50%
Values
[1,0]
=> [1] => [1] => ([],1)
=> ? = 2
[1,0,1,0]
=> [2,1] => [1,2] => ([(0,1)],2)
=> ? ∊ {2,3}
[1,1,0,0]
=> [1,2] => [1,2] => ([(0,1)],2)
=> ? ∊ {2,3}
[1,0,1,0,1,0]
=> [2,3,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[1,0,1,1,0,0]
=> [2,1,3] => [1,3,2] => ([(0,1),(0,2)],3)
=> ? ∊ {1,4}
[1,1,0,0,1,0]
=> [1,3,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> ? ∊ {1,4}
[1,1,0,1,0,0]
=> [3,1,2] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {1,2,2,2,2,3,3,5}
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {1,2,2,2,2,3,3,5}
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {1,2,2,2,2,3,3,5}
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {1,2,2,2,2,3,3,5}
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {1,2,2,2,2,3,3,5}
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ? ∊ {1,2,2,2,2,3,3,5}
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ? ∊ {1,2,2,2,2,3,3,5}
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {1,2,2,2,2,3,3,5}
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,6}
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,6}
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,6}
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,6}
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [1,5,2,4,3] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,6}
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,6}
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,6}
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,6}
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,6}
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,6}
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,6}
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,6}
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,6}
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,6}
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,6}
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,6}
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,6}
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [1,5,2,4,3] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,6}
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,6}
[1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => [1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,6}
[1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[1,1,1,0,0,1,0,0,1,0]
=> [1,4,2,5,3] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,6}
[1,1,1,0,0,1,0,1,0,0]
=> [1,4,5,2,3] => [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,6}
[1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => [1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,6}
[1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => [1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,6}
[1,1,1,0,1,0,1,0,0,0]
=> [4,5,1,2,3] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,1,1,0,1,1,0,0,0,0]
=> [4,1,2,3,5] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,6}
[1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,6}
[1,1,1,1,0,0,0,1,0,0]
=> [1,2,5,3,4] => [1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,6}
[1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,3,4] => [1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,6}
[1,1,1,1,0,1,0,0,0,0]
=> [5,1,2,3,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Matching statistic: St000771
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00159: Permutations Demazure product with inversePermutations
Mp00160: Permutations graph of inversionsGraphs
St000771: Graphs ⟶ ℤResult quality: 36% values known / values provided: 36%distinct values known / distinct values provided: 67%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 1 = 2 - 1
[1,0,1,0]
=> [1,2] => [1,2] => ([],2)
=> ? = 3 - 1
[1,1,0,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1 = 2 - 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,3,4} - 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,3,4} - 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,3,4} - 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,2,2,2,2,4,4,4,5} - 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,2,2,2,2,4,4,4,5} - 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,2,2,2,2,4,4,4,5} - 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,4,4,4,5} - 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,4,4,4,5} - 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {1,2,2,2,2,4,4,4,5} - 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {1,2,2,2,2,4,4,4,5} - 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,4,4,4,5} - 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,4,4,4,5} - 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6} - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6} - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6} - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6} - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6} - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6} - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6} - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6} - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6} - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6} - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6} - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6} - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6} - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6} - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6} - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6} - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6} - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6} - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6} - 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6} - 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6} - 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6} - 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6} - 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6} - 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6} - 1
[1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6} - 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,2,1,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6} - 1
[1,1,1,0,1,0,0,1,0,0]
=> [3,4,2,5,1] => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [3,5,4,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6} - 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,1,1,1,0,1,0,0,0,0]
=> [4,5,3,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $2$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Mp00024: Dyck paths to 321-avoiding permutationPermutations
Mp00159: Permutations Demazure product with inversePermutations
Mp00160: Permutations graph of inversionsGraphs
St000772: Graphs ⟶ ℤResult quality: 36% values known / values provided: 36%distinct values known / distinct values provided: 67%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 1 = 2 - 1
[1,0,1,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1 = 2 - 1
[1,1,0,0]
=> [1,2] => [1,2] => ([],2)
=> ? = 3 - 1
[1,0,1,0,1,0]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,3,4} - 1
[1,0,1,1,0,0]
=> [2,3,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,1,0,0,1,0]
=> [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,1,0,1,0,0]
=> [1,3,2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,3,4} - 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,3,4} - 1
[1,0,1,0,1,0,1,0]
=> [2,1,4,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {1,2,3,4,4,4,4,4,5} - 1
[1,0,1,0,1,1,0,0]
=> [2,4,1,3] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {1,2,3,4,4,4,4,4,5} - 1
[1,0,1,1,0,1,0,0]
=> [2,3,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,3,4,4,4,4,4,5} - 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[1,1,0,0,1,0,1,0]
=> [3,1,4,2] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,1,0,1,0,0,1,0]
=> [3,1,2,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,3,4,4,4,4,4,5} - 1
[1,1,0,1,0,1,0,0]
=> [1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,2,3,4,4,4,4,4,5} - 1
[1,1,0,1,1,0,0,0]
=> [1,3,4,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,3,4,4,4,4,4,5} - 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,3,4,4,4,4,4,5} - 1
[1,1,1,0,1,0,0,0]
=> [1,2,4,3] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,2,3,4,4,4,4,4,5} - 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,2,3,4,4,4,4,4,5} - 1
[1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,5] => [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,5,3] => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,4,5,1,3] => [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,5,3,4] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,5,1,3,4] => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,0,1,0,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [3,1,4,2,5] => [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,1,0,0,1,0,1,1,0,0]
=> [3,4,1,2,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,1,0,0,1,1,0,0,1,0]
=> [3,1,4,5,2] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [3,4,1,5,2] => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,5,2,4] => [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,5,1,2,4] => [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,1,2,5,4] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,1,1,0,0,0,1,0,1,0]
=> [4,1,5,2,3] => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,1,2,5,3] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,4,2,5,3] => [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,4,5,2,3] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,3,5] => [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,1,1,0,1,0,0,1,0,0]
=> [1,4,2,3,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,1,1,0,1,0,1,0,0,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,5,2,3,4] => [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,2,5,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,1,1,1,0,1,0,0,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $1$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$. The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
St000488: Permutations ⟶ ℤResult quality: 34% values known / values provided: 34%distinct values known / distinct values provided: 83%
Values
[1,0]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 2
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 3
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 2
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [5,2,3,4,1] => 4
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => 3
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => 3
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 3
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,2,3,4,5,1] => 5
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,2,3,5,4,1] => 4
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [6,2,4,3,5,1] => 4
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [6,2,4,5,3,1] => 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [6,2,5,4,3,1] => 4
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [6,3,2,4,5,1] => 4
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [6,3,2,5,4,1] => 3
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [6,3,4,2,5,1] => 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [6,3,4,5,2,1] => 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [6,3,5,4,2,1] => 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [6,4,3,2,5,1] => 4
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [6,4,3,5,2,1] => 2
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [6,5,3,4,2,1] => 4
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [6,5,4,3,2,1] => 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [7,2,3,4,5,6,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [7,2,3,4,6,5,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> [7,2,3,5,4,6,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [7,2,3,5,6,4,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [7,2,3,6,5,4,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> [7,2,4,3,5,6,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> [7,2,4,3,6,5,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [7,2,4,5,3,6,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [7,2,4,5,6,3,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [7,2,4,6,5,3,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [7,2,5,4,3,6,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [7,2,5,4,6,3,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [7,2,6,4,5,3,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [7,2,6,5,4,3,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [7,3,2,4,5,6,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [7,3,2,4,6,5,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> [7,3,2,5,4,6,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [7,3,2,5,6,4,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [7,3,2,6,5,4,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> [7,3,4,2,5,6,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [7,3,4,2,6,5,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [7,3,4,5,2,6,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [7,3,4,5,6,2,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [7,3,4,6,5,2,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [7,3,5,4,2,6,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [7,3,5,4,6,2,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [7,3,6,4,5,2,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [7,3,6,5,4,2,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [7,4,3,2,5,6,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [7,4,3,2,6,5,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [7,4,3,5,2,6,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [7,4,3,5,6,2,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [7,4,3,6,5,2,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [7,5,3,4,2,6,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [7,5,3,4,6,2,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [7,6,3,4,5,2,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [7,6,3,5,4,2,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [7,5,4,3,2,6,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [7,5,4,3,6,2,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [7,6,4,3,5,2,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [7,6,4,5,3,2,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [7,6,5,4,3,2,1] => ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6}
Description
The number of cycles of a permutation of length at most 2.
The following 68 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000264The girth of a graph, which is not a tree. St001060The distinguishing index of a graph. St001626The number of maximal proper sublattices of a lattice. St000455The second largest eigenvalue of a graph if it is integral. St000441The number of successions of a permutation. St000438The position of the last up step in a Dyck path. St000981The length of the longest zigzag subpath. St000214The number of adjacencies of a permutation. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001488The number of corners of a skew partition. St001875The number of simple modules with projective dimension at most 1. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001645The pebbling number of a connected graph. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000460The hook length of the last cell along the main diagonal of an integer partition. St000474Dyson's crank of a partition. St000477The weight of a partition according to Alladi. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000618The number of self-evacuating tableaux of given shape. St000667The greatest common divisor of the parts of the partition. St000668The least common multiple of the parts of the partition. St000681The Grundy value of Chomp on Ferrers diagrams. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000708The product of the parts of an integer partition. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000870The product of the hook lengths of the diagonal cells in an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000993The multiplicity of the largest part of an integer partition. St001175The size of a partition minus the hook length of the base cell. St001176The size of a partition minus its first part. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001249Sum of the odd parts of a partition. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001279The sum of the parts of an integer partition that are at least two. St001280The number of parts of an integer partition that are at least two. St001360The number of covering relations in Young's lattice below a partition. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001389The number of partitions of the same length below the given integer partition. St001432The order dimension of the partition. St001498The normalised height of a Nakayama algebra with magnitude 1. St001527The cyclic permutation representation number of an integer partition. St001568The smallest positive integer that does not appear twice in the partition. St001571The Cartan determinant of the integer partition. St001600The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple graphs. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001607The number of coloured graphs such that the multiplicities of colours are given by a partition. St001611The number of multiset partitions such that the multiplicities of elements are given by a partition. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001924The number of cells in an integer partition whose arm and leg length coincide. St001933The largest multiplicity of a part in an integer partition. St000489The number of cycles of a permutation of length at most 3. St001061The number of indices that are both descents and recoils of a permutation. St001114The number of odd descents of a permutation. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001405The number of bonds in a permutation. St001297The number of indecomposable non-injective projective modules minus the number of indecomposable non-injective projective modules that have reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St000741The Colin de Verdière graph invariant. St001812The biclique partition number of a graph.