Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001127
St001127: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> 1
[2]
=> 4
[1,1]
=> 2
[3]
=> 9
[2,1]
=> 5
[1,1,1]
=> 3
[4]
=> 16
[3,1]
=> 10
[2,2]
=> 8
[2,1,1]
=> 6
[1,1,1,1]
=> 4
[5]
=> 25
[4,1]
=> 17
[3,2]
=> 13
[3,1,1]
=> 11
[2,2,1]
=> 9
[2,1,1,1]
=> 7
[1,1,1,1,1]
=> 5
[6]
=> 36
[5,1]
=> 26
[4,2]
=> 20
[4,1,1]
=> 18
[3,3]
=> 18
[3,2,1]
=> 14
[3,1,1,1]
=> 12
[2,2,2]
=> 12
[2,2,1,1]
=> 10
[2,1,1,1,1]
=> 8
[1,1,1,1,1,1]
=> 6
[7]
=> 49
[6,1]
=> 37
[5,2]
=> 29
[5,1,1]
=> 27
[4,3]
=> 25
[4,2,1]
=> 21
[4,1,1,1]
=> 19
[3,3,1]
=> 19
[3,2,2]
=> 17
[3,2,1,1]
=> 15
[3,1,1,1,1]
=> 13
[2,2,2,1]
=> 13
[2,2,1,1,1]
=> 11
[2,1,1,1,1,1]
=> 9
[1,1,1,1,1,1,1]
=> 7
[8]
=> 64
[7,1]
=> 50
[6,2]
=> 40
[6,1,1]
=> 38
[5,3]
=> 34
[5,2,1]
=> 30
Description
The sum of the squares of the parts of a partition.
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
St001688: Dyck paths ⟶ ℤResult quality: 56% values known / values provided: 56%distinct values known / distinct values provided: 64%
Values
[1]
=> [1,0]
=> [1,0]
=> [1,0]
=> 1
[2]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2
[1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 4
[3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
[2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 5
[1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 9
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 6
[2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 8
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 10
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 16
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 7
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 9
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 11
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 13
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 17
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 25
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 8
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 10
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 12
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 12
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 14
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 18
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 18
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 20
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 26
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 36
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 7
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 9
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 11
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> 13
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 13
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> 15
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> 19
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 17
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 19
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> 21
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> 27
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 25
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 29
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 37
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 49
[8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 8
[7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 10
[6,2]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> 12
[6,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> 14
[5,3]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 14
[5,2,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> 16
[1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 64
[9]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {9,11,15,21,29,39,51,53,65,81}
[8,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {9,11,15,21,29,39,51,53,65,81}
[7,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? ∊ {9,11,15,21,29,39,51,53,65,81}
[6,1,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? ∊ {9,11,15,21,29,39,51,53,65,81}
[5,1,1,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {9,11,15,21,29,39,51,53,65,81}
[4,1,1,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {9,11,15,21,29,39,51,53,65,81}
[3,1,1,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {9,11,15,21,29,39,51,53,65,81}
[2,2,1,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {9,11,15,21,29,39,51,53,65,81}
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {9,11,15,21,29,39,51,53,65,81}
[1,1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? ∊ {9,11,15,21,29,39,51,53,65,81}
[10]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {10,12,14,16,18,22,24,30,32,40,42,44,52,54,58,66,68,82,100}
[9,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {10,12,14,16,18,22,24,30,32,40,42,44,52,54,58,66,68,82,100}
[8,2]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {10,12,14,16,18,22,24,30,32,40,42,44,52,54,58,66,68,82,100}
[8,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? ∊ {10,12,14,16,18,22,24,30,32,40,42,44,52,54,58,66,68,82,100}
[7,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> ? ∊ {10,12,14,16,18,22,24,30,32,40,42,44,52,54,58,66,68,82,100}
[7,1,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? ∊ {10,12,14,16,18,22,24,30,32,40,42,44,52,54,58,66,68,82,100}
[6,2,1,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> ? ∊ {10,12,14,16,18,22,24,30,32,40,42,44,52,54,58,66,68,82,100}
[6,1,1,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {10,12,14,16,18,22,24,30,32,40,42,44,52,54,58,66,68,82,100}
[5,2,1,1,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> ? ∊ {10,12,14,16,18,22,24,30,32,40,42,44,52,54,58,66,68,82,100}
[5,1,1,1,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {10,12,14,16,18,22,24,30,32,40,42,44,52,54,58,66,68,82,100}
[4,2,1,1,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {10,12,14,16,18,22,24,30,32,40,42,44,52,54,58,66,68,82,100}
[4,1,1,1,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {10,12,14,16,18,22,24,30,32,40,42,44,52,54,58,66,68,82,100}
[3,3,1,1,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {10,12,14,16,18,22,24,30,32,40,42,44,52,54,58,66,68,82,100}
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {10,12,14,16,18,22,24,30,32,40,42,44,52,54,58,66,68,82,100}
[3,1,1,1,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {10,12,14,16,18,22,24,30,32,40,42,44,52,54,58,66,68,82,100}
[2,2,2,1,1,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {10,12,14,16,18,22,24,30,32,40,42,44,52,54,58,66,68,82,100}
[2,2,1,1,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {10,12,14,16,18,22,24,30,32,40,42,44,52,54,58,66,68,82,100}
[2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? ∊ {10,12,14,16,18,22,24,30,32,40,42,44,52,54,58,66,68,82,100}
[1,1,1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> ? ∊ {10,12,14,16,18,22,24,30,32,40,42,44,52,54,58,66,68,82,100}
[11]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {11,13,15,17,17,19,21,23,23,25,27,29,31,33,35,37,37,41,43,45,47,49,53,55,57,59,65,67,69,73,83,85,101,121}
[10,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {11,13,15,17,17,19,21,23,23,25,27,29,31,33,35,37,37,41,43,45,47,49,53,55,57,59,65,67,69,73,83,85,101,121}
[9,2]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {11,13,15,17,17,19,21,23,23,25,27,29,31,33,35,37,37,41,43,45,47,49,53,55,57,59,65,67,69,73,83,85,101,121}
[9,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? ∊ {11,13,15,17,17,19,21,23,23,25,27,29,31,33,35,37,37,41,43,45,47,49,53,55,57,59,65,67,69,73,83,85,101,121}
[8,3]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {11,13,15,17,17,19,21,23,23,25,27,29,31,33,35,37,37,41,43,45,47,49,53,55,57,59,65,67,69,73,83,85,101,121}
[8,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> ? ∊ {11,13,15,17,17,19,21,23,23,25,27,29,31,33,35,37,37,41,43,45,47,49,53,55,57,59,65,67,69,73,83,85,101,121}
[8,1,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0,1,0]
=> ?
=> ? ∊ {11,13,15,17,17,19,21,23,23,25,27,29,31,33,35,37,37,41,43,45,47,49,53,55,57,59,65,67,69,73,83,85,101,121}
[7,3,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> ? ∊ {11,13,15,17,17,19,21,23,23,25,27,29,31,33,35,37,37,41,43,45,47,49,53,55,57,59,65,67,69,73,83,85,101,121}
[7,2,2]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {11,13,15,17,17,19,21,23,23,25,27,29,31,33,35,37,37,41,43,45,47,49,53,55,57,59,65,67,69,73,83,85,101,121}
[7,2,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0,1,0,1,0]
=> ?
=> ? ∊ {11,13,15,17,17,19,21,23,23,25,27,29,31,33,35,37,37,41,43,45,47,49,53,55,57,59,65,67,69,73,83,85,101,121}
[7,1,1,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0]
=> ?
=> ? ∊ {11,13,15,17,17,19,21,23,23,25,27,29,31,33,35,37,37,41,43,45,47,49,53,55,57,59,65,67,69,73,83,85,101,121}
[6,3,1,1]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> ? ∊ {11,13,15,17,17,19,21,23,23,25,27,29,31,33,35,37,37,41,43,45,47,49,53,55,57,59,65,67,69,73,83,85,101,121}
[6,2,2,1]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> ? ∊ {11,13,15,17,17,19,21,23,23,25,27,29,31,33,35,37,37,41,43,45,47,49,53,55,57,59,65,67,69,73,83,85,101,121}
[6,2,1,1,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0,1,0,1,0]
=> ?
=> ? ∊ {11,13,15,17,17,19,21,23,23,25,27,29,31,33,35,37,37,41,43,45,47,49,53,55,57,59,65,67,69,73,83,85,101,121}
[6,1,1,1,1,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {11,13,15,17,17,19,21,23,23,25,27,29,31,33,35,37,37,41,43,45,47,49,53,55,57,59,65,67,69,73,83,85,101,121}
[5,3,1,1,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> ? ∊ {11,13,15,17,17,19,21,23,23,25,27,29,31,33,35,37,37,41,43,45,47,49,53,55,57,59,65,67,69,73,83,85,101,121}
[5,2,2,1,1]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> ? ∊ {11,13,15,17,17,19,21,23,23,25,27,29,31,33,35,37,37,41,43,45,47,49,53,55,57,59,65,67,69,73,83,85,101,121}
[5,2,1,1,1,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0,1,0,1,0,1,0]
=> ?
=> ? ∊ {11,13,15,17,17,19,21,23,23,25,27,29,31,33,35,37,37,41,43,45,47,49,53,55,57,59,65,67,69,73,83,85,101,121}
[5,1,1,1,1,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ?
=> ? ∊ {11,13,15,17,17,19,21,23,23,25,27,29,31,33,35,37,37,41,43,45,47,49,53,55,57,59,65,67,69,73,83,85,101,121}
[4,4,1,1,1]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> ? ∊ {11,13,15,17,17,19,21,23,23,25,27,29,31,33,35,37,37,41,43,45,47,49,53,55,57,59,65,67,69,73,83,85,101,121}
Description
The sum of the squares of the heights of the peaks of a Dyck path.