searching the database
Your data matches 295 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001204
(load all 151 compositions to match this statistic)
(load all 151 compositions to match this statistic)
St001204: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> 1
[1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> 1
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> 0
[1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,1,0,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,0]
=> 0
[1,1,1,0,1,0,0,0]
=> 0
[1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> 0
Description
Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra.
Associate to this special CNakayama algebra a Dyck path as follows:
In the list L delete the first entry $c_0$ and substract from all other entries $n$−1 and then append the last element 1. The result is a Kupisch series of an LNakayama algebra.
The statistic gives the $(t-1)/2$ when $t$ is the projective dimension of the simple module $S_{n-2}$.
Matching statistic: St001217
(load all 107 compositions to match this statistic)
(load all 107 compositions to match this statistic)
St001217: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> 0
[1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> 0
[1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> 0
[1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,1,0,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> 0
[1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> 1
Description
The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1.
Matching statistic: St001185
(load all 29 compositions to match this statistic)
(load all 29 compositions to match this statistic)
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St001185: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001185: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,0,1,0]
=> 1
[1,1,0,0]
=> [1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 0
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 0
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
Description
The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra.
Matching statistic: St000745
(load all 29 compositions to match this statistic)
(load all 29 compositions to match this statistic)
Mp00033: Dyck paths —to two-row standard tableau⟶ Standard tableaux
St000745: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000745: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [[1,3],[2,4]]
=> 2 = 1 + 1
[1,1,0,0]
=> [[1,2],[3,4]]
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [[1,3,5],[2,4,6]]
=> 2 = 1 + 1
[1,0,1,1,0,0]
=> [[1,3,4],[2,5,6]]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [[1,2,5],[3,4,6]]
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [[1,2,4],[3,5,6]]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [[1,2,3],[4,5,6]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [[1,3,4,6],[2,5,7,8]]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [[1,3,4,5],[2,6,7,8]]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [[1,2,5,7],[3,4,6,8]]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [[1,2,5,6],[3,4,7,8]]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [[1,2,4,7],[3,5,6,8]]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [[1,2,4,6],[3,5,7,8]]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [[1,2,4,5],[3,6,7,8]]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [[1,2,3,7],[4,5,6,8]]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [[1,2,3,6],[4,5,7,8]]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [[1,2,3,5],[4,6,7,8]]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [[1,2,3,4],[5,6,7,8]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [[1,3,5,7,9],[2,4,6,8,10]]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [[1,3,5,7,8],[2,4,6,9,10]]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [[1,3,5,6,9],[2,4,7,8,10]]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [[1,3,5,6,8],[2,4,7,9,10]]
=> 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [[1,3,5,6,7],[2,4,8,9,10]]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,3,4,7,9],[2,5,6,8,10]]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [[1,3,4,7,8],[2,5,6,9,10]]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [[1,3,4,6,9],[2,5,7,8,10]]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [[1,3,4,6,8],[2,5,7,9,10]]
=> 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [[1,3,4,6,7],[2,5,8,9,10]]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,3,4,5,9],[2,6,7,8,10]]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [[1,3,4,5,8],[2,6,7,9,10]]
=> 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [[1,2,5,7,9],[3,4,6,8,10]]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [[1,2,5,7,8],[3,4,6,9,10]]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [[1,2,5,6,9],[3,4,7,8,10]]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [[1,2,5,6,8],[3,4,7,9,10]]
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [[1,2,5,6,7],[3,4,8,9,10]]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [[1,2,4,7,9],[3,5,6,8,10]]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [[1,2,4,7,8],[3,5,6,9,10]]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [[1,2,4,6,9],[3,5,7,8,10]]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [[1,2,4,6,8],[3,5,7,9,10]]
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [[1,2,4,6,7],[3,5,8,9,10]]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [[1,2,4,5,9],[3,6,7,8,10]]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [[1,2,4,5,8],[3,6,7,9,10]]
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [[1,2,4,5,7],[3,6,8,9,10]]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [[1,2,4,5,6],[3,7,8,9,10]]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [[1,2,3,7,9],[4,5,6,8,10]]
=> 1 = 0 + 1
Description
The index of the last row whose first entry is the row number in a standard Young tableau.
Matching statistic: St000990
(load all 90 compositions to match this statistic)
(load all 90 compositions to match this statistic)
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
St000990: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000990: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,2] => 1 = 0 + 1
[1,1,0,0]
=> [2,1] => 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,2,3] => 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,3,2] => 1 = 0 + 1
[1,1,0,0,1,0]
=> [2,1,3] => 2 = 1 + 1
[1,1,0,1,0,0]
=> [2,3,1] => 1 = 0 + 1
[1,1,1,0,0,0]
=> [3,1,2] => 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => 2 = 1 + 1
Description
The first ascent of a permutation.
For a permutation $\pi$, this is the smallest index such that $\pi(i) < \pi(i+1)$.
For the first descent, see [[St000654]].
Matching statistic: St000237
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00033: Dyck paths —to two-row standard tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000237: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000237: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [[1,3],[2,4]]
=> [2,4,1,3] => 1
[1,1,0,0]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 0
[1,0,1,0,1,0]
=> [[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => 1
[1,0,1,1,0,0]
=> [[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => 1
[1,1,0,0,1,0]
=> [[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => 0
[1,1,0,1,0,0]
=> [[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => 0
[1,1,1,0,0,0]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> [2,4,6,8,1,3,5,7] => 1
[1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> [2,4,7,8,1,3,5,6] => 1
[1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> [2,5,6,8,1,3,4,7] => 1
[1,0,1,1,0,1,0,0]
=> [[1,3,4,6],[2,5,7,8]]
=> [2,5,7,8,1,3,4,6] => 1
[1,0,1,1,1,0,0,0]
=> [[1,3,4,5],[2,6,7,8]]
=> [2,6,7,8,1,3,4,5] => 1
[1,1,0,0,1,0,1,0]
=> [[1,2,5,7],[3,4,6,8]]
=> [3,4,6,8,1,2,5,7] => 0
[1,1,0,0,1,1,0,0]
=> [[1,2,5,6],[3,4,7,8]]
=> [3,4,7,8,1,2,5,6] => 0
[1,1,0,1,0,0,1,0]
=> [[1,2,4,7],[3,5,6,8]]
=> [3,5,6,8,1,2,4,7] => 0
[1,1,0,1,0,1,0,0]
=> [[1,2,4,6],[3,5,7,8]]
=> [3,5,7,8,1,2,4,6] => 0
[1,1,0,1,1,0,0,0]
=> [[1,2,4,5],[3,6,7,8]]
=> [3,6,7,8,1,2,4,5] => 0
[1,1,1,0,0,0,1,0]
=> [[1,2,3,7],[4,5,6,8]]
=> [4,5,6,8,1,2,3,7] => 0
[1,1,1,0,0,1,0,0]
=> [[1,2,3,6],[4,5,7,8]]
=> [4,5,7,8,1,2,3,6] => 0
[1,1,1,0,1,0,0,0]
=> [[1,2,3,5],[4,6,7,8]]
=> [4,6,7,8,1,2,3,5] => 0
[1,1,1,1,0,0,0,0]
=> [[1,2,3,4],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [[1,3,5,7,9],[2,4,6,8,10]]
=> [2,4,6,8,10,1,3,5,7,9] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [[1,3,5,7,8],[2,4,6,9,10]]
=> [2,4,6,9,10,1,3,5,7,8] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [[1,3,5,6,9],[2,4,7,8,10]]
=> [2,4,7,8,10,1,3,5,6,9] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [[1,3,5,6,8],[2,4,7,9,10]]
=> [2,4,7,9,10,1,3,5,6,8] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [[1,3,5,6,7],[2,4,8,9,10]]
=> [2,4,8,9,10,1,3,5,6,7] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,3,4,7,9],[2,5,6,8,10]]
=> [2,5,6,8,10,1,3,4,7,9] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [[1,3,4,7,8],[2,5,6,9,10]]
=> [2,5,6,9,10,1,3,4,7,8] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [[1,3,4,6,9],[2,5,7,8,10]]
=> [2,5,7,8,10,1,3,4,6,9] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [[1,3,4,6,8],[2,5,7,9,10]]
=> [2,5,7,9,10,1,3,4,6,8] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [[1,3,4,6,7],[2,5,8,9,10]]
=> [2,5,8,9,10,1,3,4,6,7] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,3,4,5,9],[2,6,7,8,10]]
=> [2,6,7,8,10,1,3,4,5,9] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [[1,3,4,5,8],[2,6,7,9,10]]
=> [2,6,7,9,10,1,3,4,5,8] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> [2,6,8,9,10,1,3,4,5,7] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> [2,7,8,9,10,1,3,4,5,6] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [[1,2,5,7,9],[3,4,6,8,10]]
=> [3,4,6,8,10,1,2,5,7,9] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [[1,2,5,7,8],[3,4,6,9,10]]
=> [3,4,6,9,10,1,2,5,7,8] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [[1,2,5,6,9],[3,4,7,8,10]]
=> [3,4,7,8,10,1,2,5,6,9] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [[1,2,5,6,8],[3,4,7,9,10]]
=> [3,4,7,9,10,1,2,5,6,8] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [[1,2,5,6,7],[3,4,8,9,10]]
=> [3,4,8,9,10,1,2,5,6,7] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [[1,2,4,7,9],[3,5,6,8,10]]
=> [3,5,6,8,10,1,2,4,7,9] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [[1,2,4,7,8],[3,5,6,9,10]]
=> [3,5,6,9,10,1,2,4,7,8] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [[1,2,4,6,9],[3,5,7,8,10]]
=> [3,5,7,8,10,1,2,4,6,9] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [[1,2,4,6,8],[3,5,7,9,10]]
=> [3,5,7,9,10,1,2,4,6,8] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [[1,2,4,6,7],[3,5,8,9,10]]
=> [3,5,8,9,10,1,2,4,6,7] => 0
[1,1,0,1,1,0,0,0,1,0]
=> [[1,2,4,5,9],[3,6,7,8,10]]
=> [3,6,7,8,10,1,2,4,5,9] => 0
[1,1,0,1,1,0,0,1,0,0]
=> [[1,2,4,5,8],[3,6,7,9,10]]
=> [3,6,7,9,10,1,2,4,5,8] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [[1,2,4,5,7],[3,6,8,9,10]]
=> [3,6,8,9,10,1,2,4,5,7] => 0
[1,1,0,1,1,1,0,0,0,0]
=> [[1,2,4,5,6],[3,7,8,9,10]]
=> [3,7,8,9,10,1,2,4,5,6] => 0
[1,1,1,0,0,0,1,0,1,0]
=> [[1,2,3,7,9],[4,5,6,8,10]]
=> [4,5,6,8,10,1,2,3,7,9] => 0
Description
The number of small exceedances.
This is the number of indices $i$ such that $\pi_i=i+1$.
Matching statistic: St000297
(load all 24 compositions to match this statistic)
(load all 24 compositions to match this statistic)
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00109: Permutations —descent word⟶ Binary words
St000297: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00109: Permutations —descent word⟶ Binary words
St000297: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,2] => 0 => 0
[1,1,0,0]
=> [2,1] => 1 => 1
[1,0,1,0,1,0]
=> [1,2,3] => 00 => 0
[1,0,1,1,0,0]
=> [1,3,2] => 01 => 0
[1,1,0,0,1,0]
=> [2,1,3] => 10 => 1
[1,1,0,1,0,0]
=> [2,3,1] => 01 => 0
[1,1,1,0,0,0]
=> [3,1,2] => 10 => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 000 => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 001 => 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 010 => 0
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 001 => 0
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => 010 => 0
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 100 => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 101 => 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 010 => 0
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 001 => 0
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => 010 => 0
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => 100 => 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => 101 => 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => 010 => 0
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 100 => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0000 => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 0001 => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 0010 => 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 0001 => 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => 0010 => 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 0100 => 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 0101 => 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 0010 => 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 0001 => 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => 0010 => 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => 0100 => 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => 0101 => 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => 0010 => 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => 0100 => 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1000 => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 1001 => 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 1010 => 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 1001 => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => 1010 => 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 0100 => 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 0101 => 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 0010 => 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 0001 => 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => 0010 => 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => 0100 => 0
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => 0101 => 0
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => 0010 => 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => 0100 => 0
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => 1000 => 1
Description
The number of leading ones in a binary word.
Matching statistic: St000352
(load all 10 compositions to match this statistic)
(load all 10 compositions to match this statistic)
Mp00035: Dyck paths —to alternating sign matrix⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000352: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000352: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => 0
[1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => 1
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => 1
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [3,1,2] => 1
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 0
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => 1
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 0
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [3,1,2,4] => 1
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [2,1,4,3] => 1
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 0
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 0
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 0
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 0
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 1
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [2,1,5,3,4] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 0
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 0
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 0
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => 0
[1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [3,1,2,4,5] => 1
Description
The Elizalde-Pak rank of a permutation.
This is the largest $k$ such that $\pi(i) > k$ for all $i\leq k$.
According to [1], the length of the longest increasing subsequence in a $321$-avoiding permutation is equidistributed with the rank of a $132$-avoiding permutation.
Matching statistic: St000390
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00114: Permutations —connectivity set⟶ Binary words
St000390: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00114: Permutations —connectivity set⟶ Binary words
St000390: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [2,1] => 0 => 0
[1,1,0,0]
=> [1,2] => 1 => 1
[1,0,1,0,1,0]
=> [3,2,1] => 00 => 0
[1,0,1,1,0,0]
=> [2,3,1] => 00 => 0
[1,1,0,0,1,0]
=> [3,1,2] => 00 => 0
[1,1,0,1,0,0]
=> [2,1,3] => 01 => 1
[1,1,1,0,0,0]
=> [1,2,3] => 11 => 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 000 => 0
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 000 => 0
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 000 => 0
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 000 => 0
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 000 => 0
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 000 => 0
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 000 => 0
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 000 => 0
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 001 => 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 001 => 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 000 => 0
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 001 => 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 011 => 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 111 => 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => 0000 => 0
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => 0000 => 0
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => 0000 => 0
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => 0000 => 0
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => 0000 => 0
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => 0000 => 0
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => 0000 => 0
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 0000 => 0
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 0000 => 0
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 0000 => 0
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 0000 => 0
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 0000 => 0
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 0000 => 0
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 0000 => 0
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => 0000 => 0
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => 0000 => 0
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 0000 => 0
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 0000 => 0
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 0000 => 0
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => 0000 => 0
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => 0000 => 0
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => 0000 => 0
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => 0001 => 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => 0001 => 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => 0000 => 0
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => 0001 => 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => 0001 => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => 0001 => 1
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => 0000 => 0
Description
The number of runs of ones in a binary word.
Matching statistic: St000541
(load all 14 compositions to match this statistic)
(load all 14 compositions to match this statistic)
Mp00035: Dyck paths —to alternating sign matrix⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000541: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000541: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => 0
[1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => 1
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => 1
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [3,1,2] => 1
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 0
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => 1
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 0
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [3,1,2,4] => 1
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [2,1,4,3] => 1
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 0
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 0
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 0
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 0
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 1
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [2,1,5,3,4] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 0
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 0
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 0
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => 0
[1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [3,1,2,4,5] => 1
Description
The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right.
For a permutation $\pi$ of length $n$, this is the number of indices $2 \leq j \leq n$ such that for all $1 \leq i < j$, the pair $(i,j)$ is an inversion of $\pi$.
The following 285 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000864The number of circled entries of the shifted recording tableau of a permutation. St000989The number of final rises of a permutation. St001271The competition number of a graph. St001276The number of 2-regular indecomposable modules in the corresponding Nakayama algebra. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St000007The number of saliances of the permutation. St000326The position of the first one in a binary word after appending a 1 at the end. St000542The number of left-to-right-minima of a permutation. St000654The first descent of a permutation. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St000051The size of the left subtree of a binary tree. St000096The number of spanning trees of a graph. St000133The "bounce" of a permutation. St000234The number of global ascents of a permutation. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000310The minimal degree of a vertex of a graph. St000315The number of isolated vertices of a graph. St000441The number of successions of a permutation. St000475The number of parts equal to 1 in a partition. St000481The number of upper covers of a partition in dominance order. St000546The number of global descents of a permutation. St000665The number of rafts of a permutation. St000877The depth of the binary word interpreted as a path. St000884The number of isolated descents of a permutation. St000929The constant term of the character polynomial of an integer partition. St000932The number of occurrences of the pattern UDU in a Dyck path. St000948The chromatic discriminant of a graph. St000954Number of times the corresponding LNakayama algebra has $Ext^i(D(A),A)=0$ for $i>0$. St000986The multiplicity of the eigenvalue zero of the adjacency matrix of the graph. St001011Number of simple modules of projective dimension 2 in the Nakayama algebra corresponding to the Dyck path. St001061The number of indices that are both descents and recoils of a permutation. St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra. St001085The number of occurrences of the vincular pattern |21-3 in a permutation. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St001125The number of simple modules that satisfy the 2-regular condition in the corresponding Nakayama algebra. St001172The number of 1-rises at odd height of a Dyck path. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001230The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001353The number of prime nodes in the modular decomposition of a graph. St001356The number of vertices in prime modules of a graph. St001367The smallest number which does not occur as degree of a vertex in a graph. St001465The number of adjacent transpositions in the cycle decomposition of a permutation. St001479The number of bridges of a graph. St001594The number of indecomposable projective modules in the Nakayama algebra corresponding to the Dyck path such that the UC-condition is satisfied. St001691The number of kings in a graph. St001796The absolute value of the quotient of the Tutte polynomial of the graph at (1,1) and (-1,-1). St001826The maximal number of leaves on a vertex of a graph. St000011The number of touch points (or returns) of a Dyck path. St000025The number of initial rises of a Dyck path. St000054The first entry of the permutation. St000056The decomposition (or block) number of a permutation. St000061The number of nodes on the left branch of a binary tree. St000066The column of the unique '1' in the first row of the alternating sign matrix. St000068The number of minimal elements in a poset. St000069The number of maximal elements of a poset. St000286The number of connected components of the complement of a graph. St000314The number of left-to-right-maxima of a permutation. St000363The number of minimal vertex covers of a graph. St000382The first part of an integer composition. St000383The last part of an integer composition. St000392The length of the longest run of ones in a binary word. St000504The cardinality of the first block of a set partition. St000617The number of global maxima of a Dyck path. St000678The number of up steps after the last double rise of a Dyck path. St000733The row containing the largest entry of a standard tableau. St000740The last entry of a permutation. St000838The number of terminal right-hand endpoints when the vertices are written in order. St000883The number of longest increasing subsequences of a permutation. St000917The open packing number of a graph. St000971The smallest closer of a set partition. St000991The number of right-to-left minima of a permutation. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001316The domatic number of a graph. St001481The minimal height of a peak of a Dyck path. St001652The length of a longest interval of consecutive numbers. St001662The length of the longest factor of consecutive numbers in a permutation. St001672The restrained domination number of a graph. St001733The number of weak left to right maxima of a Dyck path. St001784The minimum of the smallest closer and the second element of the block containing 1 in a set partition. St000439The position of the first down step of a Dyck path. St000734The last entry in the first row of a standard tableau. St000969We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n-1}]$ by adding $c_0$ to $c_{n-1}$. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St000552The number of cut vertices of a graph. St001948The number of augmented double ascents of a permutation. St001498The normalised height of a Nakayama algebra with magnitude 1. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St001159Number of simple modules with dominant dimension equal to the global dimension in the corresponding Nakayama algebra. St000661The number of rises of length 3 of a Dyck path. St000225Difference between largest and smallest parts in a partition. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001587Half of the largest even part of an integer partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001175The size of a partition minus the hook length of the base cell. St000461The rix statistic of a permutation. St000153The number of adjacent cycles of a permutation. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000928The sum of the coefficients of the character polynomial of an integer partition. St000117The number of centered tunnels of a Dyck path. St000149The number of cells of the partition whose leg is zero and arm is odd. St000150The floored half-sum of the multiplicities of a partition. St000256The number of parts from which one can substract 2 and still get an integer partition. St000257The number of distinct parts of a partition that occur at least twice. St000292The number of ascents of a binary word. St000480The number of lower covers of a partition in dominance order. St001022Number of simple modules with projective dimension 3 in the Nakayama algebra corresponding to the Dyck path. St001036The number of inner corners of the parallelogram polyomino associated with the Dyck path. St001037The number of inner corners of the upper path of the parallelogram polyomino associated with the Dyck path. St001092The number of distinct even parts of a partition. St001113Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001137Number of simple modules that are 3-regular in the corresponding Nakayama algebra. St001141The number of occurrences of hills of size 3 in a Dyck path. St001163The number of simple modules with dominant dimension at least three in the corresponding Nakayama algebra. St001167The number of simple modules that appear as the top of an indecomposable non-projective modules that is reflexive in the corresponding Nakayama algebra. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St001186Number of simple modules with grade at least 3 in the corresponding Nakayama algebra. St001219Number of simple modules S in the corresponding Nakayama algebra such that the Auslander-Reiten sequence ending at S has the property that all modules in the exact sequence are reflexive. St001253The number of non-projective indecomposable reflexive modules in the corresponding Nakayama algebra. St001266The largest vector space dimension of an indecomposable non-projective module that is reflexive in the corresponding Nakayama algebra. St001414Half the length of the longest odd length palindromic prefix of a binary word. St001423The number of distinct cubes in a binary word. St001524The degree of symmetry of a binary word. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001730The number of times the path corresponding to a binary word crosses the base line. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St000944The 3-degree of an integer partition. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001657The number of twos in an integer partition. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001939The number of parts that are equal to their multiplicity in the integer partition. St000534The number of 2-rises of a permutation. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St000260The radius of a connected graph. St000455The second largest eigenvalue of a graph if it is integral. St001221The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St000663The number of right floats of a permutation. St000215The number of adjacencies of a permutation, zero appended. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. St000658The number of rises of length 2 of a Dyck path. St000791The number of pairs of left tunnels, one strictly containing the other, of a Dyck path. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000850The number of 1/2-balanced pairs in a poset. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St001095The number of non-isomorphic posets with precisely one further covering relation. St001139The number of occurrences of hills of size 2 in a Dyck path. St001651The Frankl number of a lattice. St001552The number of inversions between excedances and fixed points of a permutation. St001728The number of invisible descents of a permutation. St000754The Grundy value for the game of removing nestings in a perfect matching. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001466The number of transpositions swapping cyclically adjacent numbers in a permutation. St001087The number of occurrences of the vincular pattern |12-3 in a permutation. St001372The length of a longest cyclic run of ones of a binary word. St000366The number of double descents of a permutation. St001403The number of vertical separators in a permutation. St001052The length of the exterior of a permutation. St001096The size of the overlap set of a permutation. St001570The minimal number of edges to add to make a graph Hamiltonian. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001049The smallest label in the subtree not containing 1 in the decreasing labelled binary unordered tree associated with the perfect matching. St000456The monochromatic index of a connected graph. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000221The number of strong fixed points of a permutation. St000338The number of pixed points of a permutation. St000873The aix statistic of a permutation. St000282The size of the preimage of the map 'to poset' from Ordered trees to Posets. St000648The number of 2-excedences of a permutation. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St001174The Gorenstein dimension of the algebra $A/I$ when $I$ is the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001745The number of occurrences of the arrow pattern 13 with an arrow from 1 to 2 in a permutation. St000193The row of the unique '1' in the first column of the alternating sign matrix. St000296The length of the symmetric border of a binary word. St000756The sum of the positions of the left to right maxima of a permutation. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St001593This is the number of standard Young tableaux of the given shifted shape. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001820The size of the image of the pop stack sorting operator. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St001383The BG-rank of an integer partition. St001525The number of symmetric hooks on the diagonal of a partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St000137The Grundy value of an integer partition. St000284The Plancherel distribution on integer partitions. St000567The sum of the products of all pairs of parts. St000618The number of self-evacuating tableaux of given shape. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000706The product of the factorials of the multiplicities of an integer partition. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St000781The number of proper colouring schemes of a Ferrers diagram. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000934The 2-degree of an integer partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000941The number of characters of the symmetric group whose value on the partition is even. St000993The multiplicity of the largest part of an integer partition. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001098The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for vertex labelled trees. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001128The exponens consonantiae of a partition. St001176The size of a partition minus its first part. St001177Twice the mean value of the major index among all standard Young tableaux of a partition. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001280The number of parts of an integer partition that are at least two. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001432The order dimension of the partition. St001561The value of the elementary symmetric function evaluated at 1. St001562The value of the complete homogeneous symmetric function evaluated at 1. St001563The value of the power-sum symmetric function evaluated at 1. St001564The value of the forgotten symmetric functions when all variables set to 1. St001568The smallest positive integer that does not appear twice in the partition. St001601The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on trees. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001780The order of promotion on the set of standard tableaux of given shape. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St001924The number of cells in an integer partition whose arm and leg length coincide. St001933The largest multiplicity of a part in an integer partition. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St001961The sum of the greatest common divisors of all pairs of parts. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St001964The interval resolution global dimension of a poset. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000894The trace of an alternating sign matrix. St001846The number of elements which do not have a complement in the lattice. St001043The depth of the leaf closest to the root in the binary unordered tree associated with the perfect matching. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000214The number of adjacencies of a permutation. St000236The number of cyclical small weak excedances. St000241The number of cyclical small excedances. St000649The number of 3-excedences of a permutation. St000801The number of occurrences of the vincular pattern |312 in a permutation. St000741The Colin de Verdière graph invariant. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001904The length of the initial strictly increasing segment of a parking function. St001937The size of the center of a parking function. St001050The number of terminal closers of a set partition. St001621The number of atoms of a lattice.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!